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Abstract

The classification process in handwriting recogni-
tion is designed to provide lists of results rather than
single results, so that context models can be used as
post-processing. Most of the time, the length of the list is
determined once and for all the items to classify. Here,
we present a method based on Dempster-Shafer theory
that allows a different length list for each item, depend-
ing on the precision of the information involved in the
decision process. As it is difficult to compare the re-
sults of such an algorithm to classical accuracy rates,
we also propose a generic evaluation methodology. Fi-
nally, this algorithm is evaluated on Latin and Arabic
handwritten isolated word datasets.

1. Introduction

In handwriting recognition, most of the classifiers
are able to provide an ordered list of the potential
classes, and not only a single preferred class. Hence,
when evaluating an algorithm, not only a single accu-
racy rate is given, but several of them: The TOP 1 ac-
curacy rateAcc(1) considers items for which the classi-
fier ranks the true class at the first position of the output
ordered list, the TOP 2 accuracy rates Acc(2) considers
items for which the classifier ranks the true class among
the first two positions of the list, and so on until the TOP
N accuracy rates, noted Acc(N).

The interests of this methodology are manifold:
Firstly, it provides a richer description of the per-
formances of an algorithm, which helps to discrimi-
nate among several algorithms indicating high perfor-
mances. Secondly, it helps to point out the weaknesses
of a classifier or the difficulties of a dataset: For ex-
ample, if the accuracy rates peaked systematically at

N = 4, it probably means that there exist some groups
(or clusters) of less than four similar classes among
which discrimination is difficult. Consequently, a hier-
archical classification [1] would be interesting. But the
main interest of this evaluation methodology is to quan-
tify what a context model would bring: For instance,
if Acc(2) is far better than Acc(1) on a word recog-
nition application, a grammatical model that discrimi-
nates among the two best propositions would improve
the scores. Then, it is best to set the algorithm so that
lists of two elements are given. In the sequel, the size of
the list provided by the classifier, generically noted N ,
is called the cardinality of a decision.

The main drawback of this methodology roots in the
choice of N . Once this value is tuned, all the items will
be assessed a decision with the same cardinality N , re-
gardless to the difficulty of the classification task. Then,
it does not take into account that some items are difficult
to recognize (then, an imprecise decision with a great
cardinality is suited), whereas, somes are trivial (then, a
precise decision of cardinality 1 is suited). In this arti-
cle, we adress the possibility to adapt the cardinality of
the decision to each item to classify.

To the best of our knowledge, no such strategies ex-
ist in handwriting recognition field. Nevertheless, many
works have been proposed to improve the reliability of
the recognition systems and to find out how trustworthy
is the output of the classifier. Such methods are known
as rejection strategies. For such an aim, rejection mech-
anisms are usually used to reject word hypotheses ac-
cording to an established threshold [2, 15, 13]. In [2]
four different strategies to reject isolated handwritten
street and city names are described. They are based on
normalized likelihoods and the estimation of posterior
probabilities. In [15] authors present several confidence
measures and a neural network to either accept or re-
ject word hypothesis lists for the recognition of cour-



tesy check amounts. In [13] varieties of novel rejec-
tion thresholds including global, class-dependent and
hypothesis-dependent thresholds are proposed to im-
prove the reliability in recognizing unconstrained hand-
written words.

The first goal of this paper is to adapt to handwrit-
ing recognition a new approach for decision-making
based on Dempster-Shafer theory (DST): When an item
is processed, this approach allows determining without
additional external information, whether a precise deci-
sion is trustful (with a cardinality of 1), or on the con-
trary, whether an imprecise decision is more adapted.

Contrarily to ours, classical algorithms provide the
same cardinality for all the decisions. Hence, how is
it possible to fairly compare the results of classical al-
gorithms of the state of the art and ours ? The second
goal of this paper is to propose an adapted evaluation
methodology.

Section 2 is a brief presentation of the basis of DST.
Section 3 presents our DST-based method to make pre-
cise/imprecise decisions. In section 4, we present a
method to quantify the performances of any algorithm
providing imprecise decisions, so that they can be com-
pared to the performances of the classical algorithms.
Finally, in section 5, we illustrate this methodology by
evaluating the performance of our DST-based method.

2. Basis of Dempster-Shafer Theory

Dempster-Shafer Theory[17, 20] may be explained
in many ways. Although not the most rigorous, the
most intuitive way is to consider it is an application of
the theory of random sets1 [14, 19] in order to model
knowledge inference problems. Its main interest is to
provide different representation for the imprecision (the
information is not focused enough) and the uncertainty
(due to the randomness). This formalism is especially
useful when the collected data is noisy or semi-reliable.

Formally, let Ω = {ω1, ..., ωK} be a finite set called
the frame or the state-space which is made of exclu-
sive and exhaustive hypotheses. A mass function m is
defined on the powerset of Ω, noted P(Ω) and it maps
onto [0, 1] so that

∑
A⊆Ωm (A) = 1 and m(∅) = 0.

Then, a mass function is roughly a probability function
defined on P(Ω) rather than on Ω. Of course, it pro-
vides a richer description, as the support of the function
is greater: If |Ω| is the cardinality of Ω, then P(Ω) con-
tains 2|Ω| elements. The uncertainty is modeled by the
fact that two outcomes ωi and ωj are given some mass,
i.e. m(ωi) > 0 and m(ωj) > 0, in a manner similar
to with probability. On the contrary, the imprecision is

1It is a generalization of probability theory where outcomes can
be non-empty sets of random size.

modeled by the fact, that it is possible to associate some
mass to {ωi, ωj}, without being precise enough to pro-
mote either ωi or ωj . Then, we have m({ωi, ωj}) > 0.

Here are some additional vocabulary: A subset F ⊆
Ω such that m (F ) > 0 is called a focal element of m.
If maxi(|Fi|) = k, then, the mass function is said to be
k-additive [8]. In other words, a k-additive mass func-
tion has at minimum one focal elements of cardinality
k, and no focal elements of cardinality > k. If the fo-
cal elements of a mass functionm are nested, then,m is
said to be consonant. We do not detail here all the oper-
ations defined in the DST and interested readers should
refer to [17, 20].

Finally, probabilistic modeling and Dempster-Shafer
modeling are two different ways to consider a prob-
lem. The second looks richer, but, (1) it has a com-
putation cost, and (2) from a decision point of view, the
insufficient reason principle [12] states that imprecision
should be converted into uncertainty. Thus, there is no
“best” theory, and the choice of one rather than the other
mainly depends on the problem. That is why, the litera-
ture is full of methods to convert a mass function into a
probability [3] and conversely [6, 21], so that it is pos-
sible to move from a model to the other one. In [23] a
method is also described to derive a mass function from
a set of classifiers that do not provide any probabilis-
tic output. Thus, from now, it is safe to consider that
it is possible to derive a mass function from most of
the classical classifiers used in handwriting recognition.
Moreover, the description given by the mass function
is richer than a probabilistic output, and a probabilistic
output is richer than a simple ordered list [23]. Hence,
a mass function is always able to encode all the infor-
mation contained in any list-type output of a classifier,
including the coonfidence values associated to any item
of the list (see [10]).

3. The decision-making procedure

3.1. Principle of the algorithm

In this section, we present how to make decisions
such as described in the introduction from the mass
function derived from a classifier. We expect this pro-
cedure (1) to be able to focus on precise decision (car-
dinality of 1) when possible, while remaining imprecise
otherwise, and (2) the maximum cardinality of the de-
cision is controlled, otherwise too imprecise and conse-
quently worthless decisions would occur.

According to random set theory, a mass function
with Ω as frame can be seen as a probability distribu-
tion with P(Ω) as support. Making a maximum a pos-
teriori decision on this probability distribution is pos-



sible. Practically, it means that 2|Ω| different options
can be considered during the decision process. Among
these options |Ω| of them correspond to precise deci-
sions, and the others are imprecise, as they correspond
to non-singleton focal elements. Nonetheless, such a
decision-making procedure may lead to unpleasant sit-
uations: If the cardinality of the decision is close to |Ω|,
it is practically so imprecise that it is irrelevant. This
is why, a precise decision, based on a maximum a pos-
teriori strategy on a classical probability distribution is
most of the time preferred. An alternative would be to
consider k-additive mass functions, with controlled k.

The pignistic transform [18] is a very popular
method to convert a mass function onto a probability
distribution. It is designed so that, after the applica-
tion of the transform, a maximum a posteriori decision
corresponds to a decision which is made according to a
statistically winning strategy.

In [4], a generalization of the pignistic transform is
presented, and some of its mathematical properties are
studied in [5]. This transform is used in [1] to derive
a two-level classification procedure, where the second
level is optional, in order to recognize American Sign
Language in videos. Here, we aim at using it to make
imprecise decisions is the context of handwriting recog-
nition. The interest of this generalization is to convert
any mass function into a k-additive mass function, the
value of k being controlled. The original pignistic trans-
form is a particular case of this transform, as a probabil-
ity distribution corresponds to a 1-additive mass func-
tion. Moreover, this generalization is designed accord-
ing to the original pignistic transform, so that it respects
the same requirements. Consequently, it can be used in
a statistically winning strategy too.

Finally, by considering a correctly constructed k-
additive mass function as a probability, it is possible to
implement precise and imprecise decisions according to
our expectation of a controlled imprecision.

3.2. Description of the transform

Let m[Cl] be the mass function obtained from the
output of the classifier. Let k be the maximum autorized
value for the cardinality of the decision. The purpose is
to convert m[Cl] onto a k-additive mass function m[k],
and to select the focal element F∗ such that:

F∗ = arg max
Fi

(
m[k] (Fi)

)
(1)

If |F∗| = 1, the decision is precise, and if 2 ≤ |F∗| ≤ k
the decision is imprecise, but with a limited impreci-
sion. Practically, m[k] is defined ∀B ⊆ Ω such that
|B| ≤ k as:

m[k](B) = m[Cl](B)+
∑

A⊃B,
A⊆Ω,|A|>k

m[Cl](A) · |B|
N (|A|, k)

(2)

m[k](.) = 0 otherwise, and where

N (|A|, k) =
k∑

i=1

(
|A|
i

)
· i =

k∑
i=1

|A|!
(i− 1)!(|A| − i)!

represents the number of subsets of A of cardinality at
most k, each of them being “weighted” by its cardinal-
ity. Intuitively, the mass m(A) associated with any fo-
cal element A of cardinality |A| > k is divided into
N (|A|, k) equal parts, and these parts are redistributed
to the focal elements of cardinality ≤ k in a manner
proportional to their cardinality.

3.3. Warning

In pattern classification [7] it is possible to find an
item which does not correspond to any of the classes.
Then, an interesting issue is to discard it automatically
by defining a reject class. In lexicon-driven handwrit-
ing approach, assuming that all words are present in the
lexicon, the notion of rejection does not refer to a reject
class. Instead, it refers to the rejection of the classi-
fier decision. This rejection may occur as there is not
enough evidence to come to a unique decision since 1)
more than one word hypothesis appears adequate; 2) no
word hypothesis appears adequate.

In fact, the precise/imprecise decision process pre-
sented in this paper is not a reject class implementation,
nor it is a procedure to reject the decision-making. It is
obviously possible to degenerate our procedure to im-
plement a rejection of the decision process, by rejecting
the cases where a too imprecise decision is given, but
this strategy implies a loss of information. Moreover,
the generalization of the pignistic transform is not de-
signed to allow the tuning of the proportion of imprecise
decisions, as for classical decision rejection, but to tune
the maximum amount of imprecision. Then, the state
of mind is completely different and comparisons would
be abusive. This is why, in the sequel, we do not po-
sition this algorithm with respect to reject classification
or with rejection of decision.

4. Evaluation methodology

The proposed strategy is of course more flexible.
Nonetheless, before using it, we need to make sure that
it will not lead to lower performances. Hence, we need
to quantify its performances so that they can be com-
pared to the classical ones of the state of the art, espe-
cially the Acc(1), Acc(2), . . . Acc(N) values. The aim



of this section is the definition of such an evaluation
methodology.

The central idea is the following: In classical algo-
rithms, N is both the maximum cardinality for each de-
cision and the mean cardinality of all the decisions on a
datasets (as they have all the same cardinality). In our
case, k represents the maximum cardinality for each de-
cision, but not the mean cardinality of all the decisions.
The idea is to compute the mean cardinality, and to con-
sider all the performances with respect to this value.

Prior to any rigorous definition, let us consider a
toy example where 100 items are classified. For 60 of
them, a decision of cardinality 1 is made, and a deci-
sion of cardinality 2 is made for the remaining 40 of
them. Thus, the mean cardinality of the decision pro-
cess is 60+2×40

100 = 1.4. Obviously, this value belongs to
Q, contrarily to the classical cases, as N belongs to N.
Thus, we note it Q.

More formally, if T is the size of the dataset and if
αj , j > 0 represents the number of items for which a
decision of cardinality j is made, then, the mean cardi-
nality of the decision is:

Q =

∑
j j · αj

T

Then, the next step is to define the Rational Rank
Accuracy rate Acc(Q), i.e. an accuracy rate for a fic-
tive rank Q (this rank being a rational number). This
accuracy must be coherent with the classical Acc(N),
which represents the accuracy where decisions have a
cardinality ofN . By definition, if δN

i = 1 when the i-th
element of the dataset is ranked in the first N elements
of the output list of classifier (and δN

i = 0 otherwise),
then,

Acc(N) =
∑T

i=1 δ
N
i

T
=
∑T

i=1 δ
N
i ×N

T ×N
=
∑T

i=1 δ
N
i ×N∑T

i=1 δ
T
i ×N

as T =
∑T

i=1 δ
T
i . Moreover N corresponds to the car-

dinality of the decision for item i. Let Li, be the list of
the classifier, we have N = |Li|. Hence, we provide a
more general definition of the accuracy:

Acc
(
|Li|
)

=
∑T

i=1 δ
|Li|
i × |Li|∑T

i=1 δ
T
i × |Li|

where |Li| is the mean of the |Li|’s, or, in other words,
Q. Let us expand this expression so that elements with
lists of same size are grouped:

Acc(Q) =

∑
j

j × ∑
i/|Li|=j

δj
i


∑

j

j × ∑
i/|Li|=j

δT
i

 =

∑
j

j · βj∑
j

j · αj

where βj the number of items for which a decision of
cardinality j is correctly made.

In our toy example, if among the 60 precise deci-
sions, 50 are correct, and among the 40 imprecise deci-
sions, 30 are correct, then the accuracy is:

Acc(1.4) =
50× 1 + 30× 2
60× 1 + 40× 2

=
110
140

= 78.6%

It is very simple to interpretAcc(Q). Let us note bQc
the integer part of Q and dQe = bQc + 1. Acc(bQc)
and Acc(dQe) are classical accuracy rates that can be
computed for any classical algorithm. From them, it
is possible to compute iAcc(Q), a linear interpolation
of Acc(bQc) and Acc(dQe) for the value Q. This lat-
ter serves as a reference value for the Acc(Q) of the
algorithm to evaluate. For instance, if the reference al-
gorithm has Acc(1) = 80% and Acc(2) = 90%, then,
Acc(1.7) must be compared to iAcc(1.7) = 87%.

In the next section, we aim at evaluating our algo-
rithm. To do so, we use the same setting (same dataset,
same classifier, same learning, and so on) with a classi-
cal decision making process and ours. Then, we com-
pare the Acc(Q) of our algorithm with the iAcc(Q)
for the reference algorithm. If the interpolated value
is greater, our algorithm is not efficient, whereas if the
interpolated value is smaller, it is efficient.

To achieve a detailed comparison, we also need to
consider Partial Accuracy rate of rank j,∀j ≤ k, noted
pAcc(j). It simply corresponds to the rate βj/αj , i.e.
the accuracy rates computed on the restricted set of
items on which a decision of cardinality j is made. In
case of a random choice for the cardinality of the deci-
sion, pAcc(j) is roughly equivalent to the classical ac-
curcay Acc(j) computed on all the dataset. In our case,
the method is designed on purpose, so that the precise
decisions are made only when they are reliable. Hence,
we expect the pAcc(j)’s to be higher for the decisions
small cardinality. This point is interesting, as it means
precision and robustness are linked.

5. Application to multiscript handwriting
recognition

To evaluate this decision process, experiments
are conducted on three publicly available databases:
IFN/ENIT benchmark database of Arabic words and
RIMES and IRONOFF databases for Latin words.
The IFN/ENIT [16] contains 32,492 handwritten words
(Arabic symbols) of 946 Tunisian town/villages names
written by 411 different writers. Four different sets (a,
b, c, d) are used for training and 3000 word images from
set (e) for testing. The RIMES database [9] is com-
posed of isolated handwritten word snippets extracted



from handwritten letters (latin symbols). In our exper-
iments, 36000 snippets of words are used to train the
different HMM classifiers and 3000 words are used in
the test. IRONOFF [22] is both an on-line and off-
line dataset. The subdataset IRONOFF-Chèque only
contains a small lexicon of roughly 30 words used on
French checks (numbers, currencies, etc.). 7956 words
are used for the training and 3987 are used for tests.

Datasets Acc(1) Acc(2) Acc(3) Acc(4)

RIMES 54.10 66.40 72.13 75.87
IFN/ENIT 73.60 79.77 82.83 84.60
IRONOFF 85.65 91.51 93.84 95.55

Table 1. TOP N accuracy rates for the
RIMES, IFN/ENIT and IRONOFF datasets.

The absolute accuracy of the classifier being not an
issue here, a simple protocol is applied: A HMM classi-
fier based on the upper contour description of the image
of the word is used to derive a posterior probabilities for
the word to recognize to belong to each class [11]. As
it clearly appears in Table 1 where the TOP 1 to TOP 4
performances are given, we have chosen three datasets
of heterogeneous difficulty with respect to the classifier
used : RIMES is rather difficult, IFN/ENIT is of inter-
mediate difficulty and IRONOFF is the simplest.

After the classification step, the posterior probabil-
ity distribution of the HMM classifier is converted into
a consonant mass function with the transform from [6].
Roughly, the probabilities are decreasingly sorted, and
masses proportional to the pairwise differences are as-
sociated to the corresponding focal elements. Then, the
generalization of pignistic transform is applied, with
different values of k ∈ {2, 3, 4}. In fact, for k = 1
the results are those of the Acc(1) in Table 1. The per-
formances are computed according to the previous sec-
tion, and are presented in Table 2. They are based on
the values T, αj , βj summarized in Table 3.

In Table 2, we consider ∆ = Acc(Q) − iAcc(Q).
Positive values (≥ 0.4) shows an improvement, whereas
values close to zero (|∆| < 0.1) shows the two decision-
making algorithms are equivalent. There are no nega-
tive values indicating our method is less efficient than
the classical one. Hence, according to the Rational
Rank Accuracy rates, the improvement of the result is
significant for the RIMES and IRONOFF datasets: even
1 point of improvement is satisfying as (1) it must be
compared to the remaining proportion of error mistake
(it is easier to improve from 53 to 54% than from 97 to
98%), and as (2) the classification procedure as well as
the learning phase are the same (the improvements only

rely on the decision process). On the other hand, no im-
provement/lessening appears on the IFN/ENIT dataset.

Datasets RIMES IFN/ENIT IRONOFF
k = 2
Q 1.778 1.705 1.675

Acc(Q) (%) 64.96 78.00 90.29
iAcc(Q) (%) 63.67 77.95 89.60

∆ +1.29 +0.06 +0.69
pAcc(1) (%) 70.12 85.67 96.05
pAcc(1) (%) 64.22 76.40 88.91

k = 3
Q 2.235 2.075 2.068

Acc(Q) (%) 69.22 79.95 92.11
iAcc(Q) (%) 67.75 80.00 91.67

∆ +1.47 -0.04 +0.45
pAcc(1) (%) 70.95 85.91 96.00
pAcc(2) (%) 69.48 80.62 91.07
pAcc(3) (%) 68.81 77.97 91.53

k = 4
Q 2.72 2.467 2.536

Acc(Q) (%) 71.76 81.19 94.06
iAcc(Q) (%) 70.53 81.20 92.76

∆ +1.23 -0.01 +1.31
pAcc(1) (%) 74.21 87.10 96.76
pAcc(2) (%) 72.45 83.21 93.19
pAcc(3) (%) 71.76 80.09 93.61
pAcc(4) (%) 71.14 79.35 94.02

Table 2. Comparison between our algo-
rithm and the classical approach.

According to the Partial Accuracy rates, the more
the results are precise, the more robust (pAcc(N) ≥
pAcc(N + 1)). This is noticeable for RIMES and
IFN/ENIT datasets, but less obvious for IRONOFF.
When compared to the classical TOP N of Table 1, it is
interesting to see that precise decisions are trustful. This
is an additional major interest of our method, that can
be illustrated on an example: Let us consider a sentence
of 20 words, and a classical decision making algorithm
tuned to provide decision of cardinality 4. The context
model must discriminate among 420 = 1.1× 1012 pos-
sible sentences. On the contrary, using our algorithm,
the number possible sentences is far lower (this reduc-
tion is quantified by k −Q), but mostly, the few words
with precise decision are rather trustful (the pAcc(1)’s
are really high), which implies they act like fix points
which drastically reduce the number of combinations,
and thus, the number of possible sentences.

Finally, the improvement is the most noticeable on
RIMES dataset, i.e. the most difficult one. This fact cor-



Datasets T k = 2, α1, β1, α2, β2 k = 3, α1, β1, α2, β2, α3, β3 k = 4, α1, β1, α2, β2, α3, β3, α4, β4

RIMES 3000 666, 467, 2334, 1499 661, 469, 973, 676, 1366, 940 539, 400, 686, 497, 850, 610, 925, 658
IFN/ENIT 3000 886, 759, 2114, 1615 887, 762, 1001, 807, 1112, 867 775, 675, 786, 654, 703, 563, 736, 584
IRONOFF 3979 1292, 1241, 2687, 2389 1299, 1247, 1109, 1010, 1571, 1438 1080, 1045, 808, 753, 971, 909, 1120, 1053

Table 3. Nessary values for the computations of the results of Table 2.

responds to the general remark of [23], indicating that
DST-based method are particularly efficient on difficult
handwriting recognition problems.

6. Conclusion

We have presented a new decision making algorithm
in the context of handwriting recognition. We stressed
its interest and developed a methodology to compare
it to the state of the art. We experimentally proved its
slight superiority on three different datasets of various
difficulties and scripts. Beyond the accuracy rates, we
have justified its use in a complete handwriting recogni-
tion setup. Future works will focus on dealing with the
imprecise decisions, by the use of context model.
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