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Abstract.

In this article we propose to determine the triangles" class i i i A B C orthohomological with a given triangle ABC , inscribed în the triangle ABC ( , ,

i i i A BC B AC C AB   
).

We"ll remind, here, the fact that if the triangle

i i i
A B C inscribed in ABC is orthohomologic with it, then the perpendiculars in , ii AB , respectively in A B C , it will be sufficient to solve the following problem.

Problem.

Let"s consider a point i P in the plane of the triangle ABC and i i i A B C its pedal triangle. Determine the locus of point i P such that the triangles ABC and i i i

A B C to be homological.

Solution.

Let"s consider the triangle ABC , (1, 0, 0), (0,1, 0), (0, 0,1)

A B C
, and the point ( , , ),

0 i P          .
The perpendicular vectors on the sides are:

      2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 , , , 2 , , , 2 BC 
CA AB U a a b c a b c U a b c b a b c U a b c a b c c                   
The coordinates of the vector BC  are (0, 1,1)



, and the line BC has the equation 0 x  . The equation of the perpendicular raised from point i P on BC is:

2 2 2 2 2 2 2 0 2 x y z a a b c a b c          
We note ( , , ) i A x y z , because The coordinates y and z of i A can be found by solving the system of equations

2 2 2 2 2 2 2 2 0 2 0 x y z a a b c a b c yz                  
We have:

2 2 2 2 2 2 2 2 2 2 yz a a b c a a b c              ,     2 2 2 2 2 2 2 2 2 2 y a b c a z a b c a                      ,     2 2 2 2 2 2 2 2 2 1 2 a b c a yy a b c a              ,       2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 a b c a a b c a y a b c a                    ,     2 2 2 2 2 2 1 2 a y a b c a             , it results   2 2 2 2 2 y a b c a           2 2 2 2 2 2 22 11 22 z y a b c a b c aa                 . Therefore,     2 2 2 2 2 22 0, , 22 i A a b c a b c aa            .
Similarly we find:

    2 2 2 2 2 2 22 , 0, 22 i B a b c a b c bb             ,     2 2 2 2 2 2 22 , , 0 22 i C a b c a b c cc             . We have:             2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 cos 2 cos 2 cos 2 cos 2 cos 2 cos 2 i i i i i i a b c AB c B a a b C a AC a b c a a b c BC a C b b c A b BA abc a abc CA b A c c a B c CB a b c c                                                               .
(We took into consideration the cosine"s theorem:

2 2 2 2 cos a b c bc A   
). In conformity with Ceva"s theorem, we have:

1 i i i iii A B B C C A A C B A C B           .       cos cos cos a c B b a C c b A                 cos cos cos a b C b c A c a B                   2 2 2 2 2 2 2 2 cos cos cos cos cos cos a b c A B C b c a B A C                 2 2 2 2 cos cos cos 0 c a b C A B        .
Dividing it by 2 2 2 abc , we obtain that the equation in barycentric coordinates of the locus L of the point i P is:

    2 2 2 2 2 2 2 2 cos cos cos cos cos cos A B C B A C a c b b a c                           22 22 cos cos cos 0 C A B c b a           . We note , , A B C
ddd the distances oriented from the point i P to the sides , BC C A respectively AB , and we have:

, , 2 2 2 C AB d dd a s b s c s      
.

The locus" L equation can be written as follows:

        2 2 2 2 cos cos cos cos cos cos A C B B A C d d d A B C d d d B A C          22 cos cos cos 0 C B A d d d C A B    
Remarks.

1. It is obvious that the triangle"s ABC orthocenter belongs to locus L. The orthic triangle and the triangle ABC are orthohomologic; a orthological center is the orthocenter H , which is the center of homology. 2. The center of the inscribed circle in the triangle ABC belongs to the locus L, because

= = A B C d d d r 
and thus locus" equation is quickly verified.

Theorem (Smarandache-Pătraşcu).

If a point P belongs to locus L, then also its isogonal ' P belongs to locus L.

Proof.

Let  

,, P    a point that verifies the locus" L. equation, and   ' ' ' '

,,

P    its isogonal in the triangle ABC . It is known that ' ' ' 2 2 2 a b c       .
We"ll prove that ' P  L, i.e.

 

' '2 '2 22 cos cos cos 0 A B C a c b             ' '2 2 '2 2 22 cos cos cos 0 bc A B C a b c              ' '2 2 '2 2 22 cos cos cos 0 b c A B C ab c          ' ' ' 2 2 ' ' 22 cos cos cos 0 cc A B C ab c                   ' ' ' 2 2 22 cos cos cos 0 cb A B C ab c                  ' ' ' 2 2 2 2 22 cos cos cos 0 cb A B C ab c                  ' ' ' 2 2 22 2 2 2 2 1 cos cos cos 0 b c A B C a b c b c                            .
We obtain that:

  ' ' ' 2 2 22 cos cos cos 0 A B C a c b                 , this is true because P  L.

Remark.

We saw that the triangle "s ABC orthocenter H belongs to the locus, from the precedent theorem it results that also O , the center of the circumscribed circle to the triangle ABC (isogonable to H ), belongs to the locus.

Open problem:

What does it represent from the geometry"s point of view the equation of locus L?

In the particular case of an equilateral triangle we can formulate the following:

Proposition:

The locus of the point P from the plane of the equilateral triangle ABC with the property that the pedal triangle of P and the triangle ABC are homological, is the union of the triangle"s heights.

Proof:

Let   ,, P    a point that belongs to locus L. The equation of the locus becomes:

      2 2 2 2 2 2 0                Because:       2 2 2 2 2 2 2 2 2 2 2 2                              2 2 2 2 2 2                                  2                                                              .
We obtain that   or   or   , that shows that P belongs to the medians (heights) of the triangle ABC .

  , respectively AB are concurrent in a point i P (the orthological center of the given triangles), and the lines , ,i i iA A B B C C are concurrent in point (the homological center of the given triangles). To find the triangles i i i