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Unsteady ompressible �ow in duts withvarying ross-setion: Comparison between thenononservative Euler system and theaxisymmetri �ow modelD. Rohette a, S. Clain b, W. Bussière c

aClermont Université, Université Blaise Pasal, LAEPT, BP 10448, F-63000CLERMONT-FERRAND.
bInstitut de Mathématiques, CNRS UMR 5219, Université Paul Sabatier, F-31062TOULOUSE Cedex 4.

cClermont Université, Université d'Auvergne, LAEPT, BP 10448, F-63000CLERMONT-FERRAND.AbstratNononservative hyperboli system orresponds to a redution of an initial three-dimensional problem deriving from an homogenisation proedure. Unfortunately, theredue model gives rise to two new di�ulties : the resonant problem orrespondingto a splitting or a merging of the genuinely nonlinear waves and the non unique-ness of the Riemann problem solution. The question arises to hek whether thetwo problems orrespond and provide similar solutions, at least numerially. In thispaper, we propose a omparison between the one-dimensional nononservative Eu-ler equations modelling the dut with variable ross-setional area with its originalthree-dimensional onservative Euler system. Based on the lassi�ation of the Rie-mann problems proposed in [11℄, we ompare the numerial results of the two modelsfor a large series of representative on�gurations. We also propose a new example ofnon uniqueness for the Riemann problem involving the resonant phenomena.Key words: Riemann problem in duts, nononservative system, variableross-setion, axisymmetri �ow, shok tube.1 IntrodutionSine two deades, nononservative hyperboli systems have reeived onsider-able attention both from a theoretial and a numerial points of view. Usuallyderiving from an homogenisation proedure of an initial three-dimensionalPreprint submitted to Elsevier 21 June 2010



model, several problems of physial or engineering importane are governedwith a nononservative hyperboli system. We an mention the shallow-waterproblem with topography [15�17℄, the two-layer shallow-water problem [14℄,the sediment transport [8,28℄, the multi-�uid models [6℄, the Baer-Nunziatosystem [4℄, the ompressible gas �ow in variational ross-setion dut [3℄ andthe ompressible gas �ow in porous media [5,26,27℄. For example, the nonon-servative Euler equations, as well named the quasi-one-dimensional Euler in adut, are obtained by averaging the usual multi-dimensional Euler equationsover the dut ross-setion [29℄.Numerial approximations of the nononservative hyperboli system solu-tions have to be leverly evaluated with spei� numerial shemes namedwell-balaned shemes where the steady-state solutions are numerially pre-served [10,11,19,20℄. A large literature is now devoted on the subjet [24,25℄.The question we takle in the artile is the orrespondene between the nu-merial solutions of the redue problem, i.e. the nononservative problemand the numerial solution omputed with the initial problem i.e. the fullthree-dimensional one. Indeed, nononservative systems give rise to essen-tially two new di�ulties: the resonant phenomena and the non uniqueness ofthe solutions [3,10,11,19℄ whereas suh phenomena do not exist at the three-dimensional level: the homogenisation proedure looses informations and thelassial entropy argument (in the Lax sense for instane) is not enough toobtain a unique solution (numerially at least).Few studies on the omparisons have been realised sine suh a problem hasgained less attention and most of them only onern the shallow-water problem[2,3℄. However the question seems of ruial importane for two reasons: �rstlywe have to hek that the solutions of the two problems really orrespond (atleast numerially) for every type of on�guration and seondly we have toselet the most physial solution when we fae a non uniqueness situation: wehave several di�erent entropy solutions (in the Lax sense) with the reduedmodel for the same Riemann problem and we hoose the one whih better �twith the three-dimensional solution.To address the �rst issue, we deal with the variational ross-setion dutproblem or equivalently the gas �ow in inhomogeneous porous media. Wehave implemented the sheme proposed in [11℄ to solve the nononservativeone-dimensional problem and the sheme proposed in [12℄ to solve the fullthree-dimensional axisymmetri one. We have numerially experimented allthe available on�gurations proposed in [11℄ and ompared it with their equiv-alent three-dimensional problem. We aim to prove that all the situations, evenwith the most omplex ones like the splitting or merging of the simple gen-uinely nonlinear wave aross the interfae, are reprodued by the initial onser-vative Euler model whih justify the reality of suh on�gurations. The seondissue we address onerns the non uniqueness of the solution for the redued2



problem. A �rst example has been proposed by [3℄ where a subsoni solutionand a supersoni solution are available for the same Riemann problem. Wehere propose a new non uniqueness ase with a more omplex situation: asupersoni solution and a resonant solution. Suh an example proves that nonuniqueness an also arise with omplex on�gurations involving the mergingor the splitting of the simple waves.The organisation of the paper is as follows. In setion 2, we present the govern-ing Euler equations in ylindrial oordinates assuming rotational symmetryand the one-dimensional nononservative Euler equations as well as a shortreview on the numerial tehniques employed to disretize the equations. Insetion 3, we present all the admissible on�gurations for the Riemann problemin a dut with variable ross-setion. Setion 4 is devoted to the omparisonbetween the exat solutions obtained with the inverse Riemann problem andthe numerial approximations obtained by the one-dimensional nononserva-tive system and the axisymmetri �ow model for all the on�gurations listed in[11℄. In the setion 5, we study the non uniqueness of the Riemann problem forthe nononservative system. We propose a new example involving a omplexon�guration with the resonant phenomenon. Finally, we propose in setion6 a set of simulations to ompare the interation of a planar shok wave en-tering in a dut with a rough or a smooth ross-setion variation. Conludingremarks are made in setion 7.2 Gas �ow models and numerial methodsPerfet gas �ow in variational ross-setion is modelled with the three-dimensionalaxisymmetri Euler system where the ylindrial oordinates are employed toprovide a simpler two-dimensional spae variables problem with respet tothe radial and axial oordinates (r, x). Deriving from the primitive model, anononservative one-dimensional model � named the variational ross-setiondut model ([3℄) � based on an homogenisation with respet to variable r isobtained. The present setion is dediated to a short presentation of the twomodels and their respetive numerial methods. Note that we use the x-axisas symmetry axis instead of the traditional z-axis for the three-dimensionalmodel to provide a natural orrespondene with the one-dimensional nonon-servative model.2.1 Euler equations for axisymmetri �owsLet us onsider an axisymmetri domain Ω × [0, 2π[ obtained by the rotationof a two-dimensional pattern Ω with respet to axis ∆ orresponding to the3



azimuthal oordinate x. Remark that the domain is not ylindrial, a pri-ori, sine the orthogonal ross-setion S(x) may vary with x as presented in�gure 1.
Fig. 1. Compressible �uid �ow in axisymmetri geometry: the ross-setion S(x)is not onstant leading to expansions or ompressions of the gas when the setioninreases or dereases.Using the ylindrial oordinate and assuming a non swirling �ow, the Eulerequations governing axially symmetri �ow of a ompressible invisid perfetgas writes [12,18,21℄:
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In the two last deades, several authors have developed numerial shemesfor the Euler system in ylindrial oordinates (see [13,18,22,23℄ for instane).To address numerial approximation, we employ a seond-order �nite volumesheme proposed in [12℄ we shortly sum-up in the present artile for the sakeof onsisteny.To this end, we onsider a unstrutured mesh Th of the two-dimensional do-main Ω, onstituted of triangles (or ells) Ci ⊂ Ω, i = 1, . . . , I. We denoteby ν(i) the index set of the neighbouring triangles Cj whih share a ommonedge Sij with the ell Ci and by nij = (nij,r, nij,x) the outward unit normalvetor to Ci.
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Fig. 2. The two-dimensional mesh: notations. Index set ν(i) represents the threeneighbouring triangles of ell Ci.Let (tn = n ∆t)n∈N be a uniform subdivision of the time interval [0, +∞), Un
irepresents an approximation of the average of U on Ci at time tn:
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and the right-hand side ontribution is approximated by
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i ). (8)In the present study, we use the Rusanov �ux ombined with the multislopeMUSCL tehnique on triangles developed in [7,9℄ to redue the di�usion e�et(see also [12℄ for a detailed desription). An important remark is that thesheme has been designed to respet a ruial well-balaned property: an initialstate at rest remains a steady-state at rest.2.2 Nononservative Euler systemWe now deal with the one-dimensional nononservative Euler system desrib-ing the evolution of a perfet gas in a dut with variable ross-setional area

S(x) following [3℄. Let us denote by φ(x) = S(x)
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the ratio between the setionarea and a referene setion, the equations then write:
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are designed to satisfy the well-balaned property to preserve steady-statessolutions (see [11℄ for a detailed onstrution of nononservative shemes).MUSCL reonstrution method is employed to provide a better auray of thenumerial approximation and redue the numerial di�usion. Due to the non-onservative term, one have to pay aution to design the higher-order sheme.We have developed a seond-order reonstrution based on the splitting ofthe φ funtion into a regular part φr (say C1) and a disontinuous pieewise7



onstant one φd

φ(x) = φd(x) + φr(x).The main idea is that the regular part is treated as a lassial volume soureterm whereas the disontinuous part is treated with the help of the nonon-servative �uxes. We obtain a new generi �nite volume sheme
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3 Riemann problem for the nononservative Euler systemThe �nite volume method is based on the solution of a loal Riemann problemon every edges of the mesh. Therefore, from a omputational point of view,the theoretial analysis of the Riemman problem is of ruial importane. Adetailed study in the framework of the nononservative Euler system has beenarried out by Clain and Rohette in [11℄. We reall here the main results.The Riemann problem onsists in solving the nononservative hyperboli sys-tem (12) on R × R

+ with the following initial ondition:
(U, φ)(x, 0) =











(UL, φL), x < 0,

(UR, φR), x > 0,
(17)where (UL, φL) and (UR, φR) are two given onstant states.The solution is onstituted by a suession of simple waves (rarefation, shok,ontat disontinuity, stationary ontat disontinuity) separated by onstantstates named on�guration. The simple waves orrespond to a hange of stateparameterised by the eigenvalues λ0 = 0, λ1 = u − c, λ2 = u, and λ3 = u + c.8



The three last eigenvalues orrespond to the lassial Euler system while the�rst eigenvalue λ0 haraterises the brutal hange of ross-setion. We reallthat the harateristi �elds (or simple waves) assoiated to eigenvalues λ1and λ3 are genuinely nonlinear providing rarefation (noted 1 − r or 3 − r)or shok (noted 1 − s or 3− s) while the harateristi �elds assoiated to λ0and λ2 are linearly degenerated (noted 0 − w or 2 − w). We also say that astate V = (φ, ρ, u, P ) is a subsoni, soni or supersoni state whether we have
u2 < c2, u2 = c2 or u2 > c2 where c stands for the sound veloity.Sine the system (12) is not stritly hyperboli, simple waves an be distintor superposed induing a large number of on�gurations. To selet the ad-missible on�guration, we have introdued several riteria: the on�gurationstability, the sign and the Mah riteria (see [11,19℄) leading to the followinglassi�ation in four groups we shall preise in the next subsetions:(1) the lassial wave on�gurations orrespond to the situation where the foursimple waves are separated by onstant states (see �gure 3).(2) the splitting wave on�gurations orrespond to a situation where a genuinelynonlinear wave is splitted by the 0 − w wave (see �gure 4).(3) the resonant wave on�gurations orrespond to the situation when a genuinelynonlinear wave splits the 0 − w wave (see �gure 5).(4) the resonant and splitting wave on�gurations is the more omplex ase: agenuinely nonlinear wave is splitted by the 0 − w wave where one of the partof the wave merges with the 0 − w wave (see �gure 6).3.1 Classial on�gurationsThe lassial on�gurations represent the situations where the eigenvalues λkare distint orresponding to the Riemann problem for the onservative Eulersystem augmented of the stationary wave loated at the interfae x = 0. Wean list four distint on�gurations in funtion of the simple waves positionwith respet to the interfae i.e. the 0−w wave. If all the waves are on the leftside (on�guration A) or on the right side (on�guration D ) of the interfae,we deal with a supersoni �ow where all the states are supersoni. The twolast on�gurations orrespond to a subsoni �ow whether the veloity at theinterfae is negative (on�guration B) or positive (on�guration C). As anexample, �gure 3 represents the B on�guration where the gas veloity at theinterfae is negative. Note that the 1 −w simple wave is on the left while the
3 − w simple wave is on the right. 9



Fig. 3. Example of lassial on�gurations: the B on�guration. The genuinely non-linear simple waves 1−w and 3−w waves are rarefation or shok waves whereas the
2−w wave is the λ2 = u ontat disontinuity and the 0−w wave is the stationaryontat disontinuity wave orresponding to the ross-setion disontinuity.3.2 Splitting on�gurationsThe on�guration where one of the genuinely nonlinear 1−w or 3−w wavesis splitted into two waves by the 0 − w stationary wave on both side of theinterfae is a splitting on�guration. It is proved that a rarefation always takesplae on the side orresponding to the lower φL or φR. Moreover the fan musttouh the interfae whih orresponds to a soni state. Consequently, there isfour distint on�gurations in funtion of the values of φ and the genuinelynonlinear waves whih are splitted. Con�guration LR1 (Left Rarefation withthe 1 − w as shown in �gure 4) orresponds to a rarefation with a 1 − w onthe left side. Note that the seond part of the 1 − w is situated on the otherside of the interfae and an be an other rarefation or a shok. In a similarway, we use the notations: RR1 is a Right Rarefation with the 1 − w wavewhile LR3 and RR3 represent the Left Rarefation and Right Rarefation forthe 3 − w wave respetively.

Fig. 4. Example of the splitting on�gurations: the LR1 on�guration. The 1−w issplitted into two parts, a rarefation wave on the left side whom the fan reahes theinterfae and a rarefation or a shok wave on the right side of the 0−w stationarywave due to the ross-setion disontinuity.
10



3.3 Resonant wave on�gurationsWe now onsider the symmetri ase where a genuinely nonlinear 1 − w or
3 − w wave splits the stationary wave into two parts named the resonanton�guration (see [19℄ p.892 ase 1a (C) for example and [11℄). For suh a sit-uation, the genuinely nonlinear wave is also a stationary shok orrespondingto a subsoni-supersoni transition whih takes plae at an intermediate valueof φs ∈ [φL, φR]. These two situations are referened by R1 (see �gure 5 forinstane) or R3 whether the resonant on�guration is obtained with the �rstor the third eigenvalue.
Fig. 5. Example of the resonant on�gurations: the R1 on�guration. The 1− s is astationary shok wave superposed to the 0 − w wave. From left to right, we have a�rst 0 − w wave transition from φL to an intermediate value φs. Then a stationary
1 − s shok wave ours followed by an other 0 − w wave transition from φs to φR.The two other 2 − w and 3 − w waves are the lassial ones.3.4 Resonant and splitting wave on�gurationsThe last group is the most ompliated one sine we ombine a resonantsituation with a splitting situation. A genuinely nonlinear 1−w or 3−w waveis splitted into two piees where the part situated on the lower ross-setion isa rarefation whih touhes the interfae. The other part is a stationary shoksharing the 0 − w wave in another two parts leading to a resonant situation.This on�guration has been introdued in [19,10,11℄. For example, as shown in�gure 6, the 1−w is splitted into a rarefation on the left side of the interfae.The �rst 0−w wave takes plae orresponding to a transition from φL to theintermediate value φs followed by the seond part of the stationary 1−s shok.At last, a seond transition with the 0−w ours from φs to φR. The two otherwaves are the lassial ones. The notation LRR1 means that we deal with aLeft Rarefation and Resonant on�guration with the 1−w simple wave while
RRR1 orresponds to the Right Rarefation and Resonant on�guration. Inthe same way, we have the LRR3 and the RRR3 on�gurations.11



Fig. 6. Example of resonant splitting on�gurations: LRR1 on�guration. The �rstpart of the 1−w wave is a 1− r rarefation wave taking plae on the left side of theinterfae and the seond part is a 1 − s stationary shok superposed to the 0 − wstationary for an intermediate value φs.4 Comparisons between the two modelsThe aim of the urrent setion is to draw omparisons between numerial so-lution of the Riemann problems presented in the previous setion of the twomodels and the exat solution obtained with the inverse Riemann method(see [11℄). A similar work has already been arried out by [3℄ using a two-dimensional model to ompare the solutions but only for the lassial on�g-urations. We propose here a systemati omparison of all the on�gurations.For the nononservative Euler model, we onsider a shok tube of length
x = [0 : 2] where the initial disontinuity is loated at x = 0.8 and weuse a subdivision of 1000 mesh ells and an adapted time step to provide thestability. For the axisymmetri model, we onsider a ylindrial shok tubeof x = [0 : 2] length and the referene radius is arbitrarily hosen equal to
Rref = 0.05 orresponding to φ = 1. Like in the previous ase, the initialross-setion disontinuity is loated at x = 0.8. We use a 46000 triangle ellsmesh and the time step is ontrolled to provide a stable solution. The twomodels are relied by the dut ross-setion ratio with respet to the refereneradius and we set :
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, (18)where RL and RR are respetively the ross-setion dut radius on the leftand right side of the interfae.We now give a detailed omparison of all the on�gurations. For a given leftand right side, we report in the table the exat solutions (note that we anhave several solutions) obtained by the inverse Riemann problem where we listthe suessive onstant states from left to right. Then we print out the densityand veloity of the gas for the one-dimensional nononservative problem at arepresentative time tr and the graph of the same quantities in funtion of xfollowing the axis r = 0 for the three-dimensional axisymmetri Euler ase.We �nally plot a ut of the plane Orx to provide the density map for theaxisymmetri problem at the same time tr.12



4.1 Classial wave on�gurations4.1.1 Con�guration ATable 1Con�guration of type A = {1 − r, 2 − w, 3 − s, 0 − w}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 1.0 1 -1000 400000 1.336306
Va 1.0 0.714825 -757.020985 250000 1.081867
Vb 1.0 0.5 -757.020985 250000 0.904813
Vl 1.0 0.177419 -1609.823851 50000 2.562889
VR 0.5 0.432066 -1322.085708 173835.409095 1.761576
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Fig. 7. Con�guration of type A = {1 − r, 2 − w, 3 − s, 0 − w} at time 3.10−4 s.
Fig. 8. 50 isodensity from 1 to 0.09 at time 3.10−4 s.Comments. Table 1 gives the exat solution obtained with the inverse Rie-mann problem while �gures 7 and 8 show respetively the omparison betweenthe exat solution and the numerial approximations for the density and velo-ity with the two shemes. We note that the 1D-solutions (exat or numerial)roughly orrespond to the axisymmetri ase. Indeed, the one-dimensional aseorresponds to strit longitudinal waves following the axial diretion while thenumerial solution of the axisymmetri ase provides oblique shoks leadingto a more omplex density distribution and a smoothing e�et for the shoks.However, the axisymmetri numerial solution learly athes the on�gura-tion A in omparison with the exat solution.13



4.1.2 Con�guration BTable 2Con�guration of type B = {1 − r, 2 − w, 0 − w, 3 − s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 1.0 3.6 -100 400000 0.253546
Va 1.0 2.931302 -20.597552 300000 0.054415
Vl 1.0 4 -20.597552 300000 0.063565
Vr 0.5 3.975401 -41.450012 297420.273072 0.128075
VR 0.5 1.597881 -329.977019 75000 1.287245
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Fig. 9. Con�guration of type B = {1 − r, 2 − w, 0 − w, 3 − s} at time 12.10−4 s.
Fig. 10. 50 isodensity from 1.5 to 4 at time 12.10−4 s.Comments. Table 2 gives the exat solution obtained with the inverse Rie-mann problem while �gures 9 and 10 show respetively the omparison be-tween the exat solution and the numerial approximations for the densityand veloity with the two shemes. For this on�guration, we observe that the1D-solutions (exat or numerial) perfetly �t with the axisymmetri solutionsine the shok waves are prinipally longitudinal reduing the smoothing ef-fet. 14



4.1.3 Con�guration CTable 3Con�guration of type C = {1 − r, 0 − w, 2 − w, 3 − s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 0.9 3.6 100 300000 0.292770
Vl 0.9 2.694778 196.112884 200000 0.608399
Vr 1.0 2.828882 168.134511 214071.314011 0.516560
Va 1.0 3.4 168.134511 214071.314011 0.566308
VR 1.0 3.238852 153.784754 200000 0.523034
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Fig. 11. Con�guration of type C = {1 − r, 0 − w, 2 − w, 3 − s} at time 12.10−4 s.
Fig. 12. 50 isodensity from 2.3 to 3.6 at time 12.10−4 s.Comments. Table 3 gives the exat solution obtained with the inverse Rie-mann problem while �gures 11 and 12 show respetively the omparison be-tween the exat solution and the numerial approximations for the densityand veloity with the two shemes. In the viinity of the ross-setion dison-tinuity, we note di�erenes between the solutions of the axisymmetri problemand the nononservative one. The very small jump of ross-setion seems to besmoothed in the three-dimensional ontext while the one-dimensional modelpreserves the stationary shok. However, the other waves �t well with theexat solution. 15



4.1.4 Con�guration DTable 4Con�guration of type D = {0 − w, 1 − s, 2 − w, 3 − s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 0.7 1 800 80000 2.390457
Vr 1.0 0.656948 852.426066 44425.652469 2.770393
Va 1.0 1.154958 661.437525 100000 1.899800
Vb 1.0 4 661.437525 100000 3.535532
VR 1.0 3.259259 623.748607 75000 3.475157
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Fig. 13. Con�guration of type D = {0 − w, 1 − s, 2 − w, 3 − s} at time 12.10−4 s.
Fig. 14. 50 isodensity from 0.06 to 4.3 at time 12.10−4 s.Comments. Table 4 gives the exat solution obtained with the inverse Rie-mann problem while �gures 13 and 14 show respetively the omparison be-tween the exat solution and the numerial approximations for the density andveloity with the two shemes. The pro�les are roughly respeted in the shoktube but we note important osillations of the axisymmetri solution (essen-tially on the �rst left plateau). Like on�guration A, we observe slanted wavesstemming from the three-dimensional ontext (radial waves are generated atthe interfae). 16



4.2 Splitting wave on�gurations4.2.1 Con�guration LR1 with rarefationTable 5Con�guration of type LR1 with rarefation LR1_rar = {1−r, 0−w, 1−r, 2−w, 3−r}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 0.8 5 250 400000 0.747018
Vl 0.8 4.031127 320.553342 295868.736587 1.0
Vr 1.0 2.262737 456.859511 131822.563570 1.599708
Va 1.0 1.583820 555.189919 80000 2.087783
Vb 1.0 1.68 555.189919 80000 2.150241
VR 1.0 2.376396 647.909308 130000 2.341197
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Fig. 15. Con�guration of type LR1_rar = {1 − r, 0−w, 1 − r, 2 −w, 3− r} at time
12.10−4 s.

Fig. 16. 50 isodensity from 1 to 5 at time 12.10−4 s.Comments. Table 5 gives the exat solution obtained with the inverse Rie-mann problem while �gures 15 and 16 show respetively the omparison be-tween the exat solution and the numerial approximations for the densityand veloity with the two shemes. We �rst remark that both the 1D-modeland the 3D-model present left rarefation whih spreads out from the leftsubsoni state so far to a soni state at the interfae as stated by the theoryin [11℄. The urves �t well despite some osillations of the Vr state for thethree-dimensional on�guration onseutive to oblique shoks. Thanks to ourexperiene and after a lot of numerial experiments, it appears that this par-tiular state (just before or just after a rarefation reahing the soni point)is always di�ult to aurately approximate. It is one of the most sensitivestate. 17



4.2.2 Con�guration LR1 with shokTable 6Con�guration of type LR1 with shok LR1_sck = {1− r, 0−w, 1− s, 2−w, 3− s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 0.8 5 200 300000 0.690066
Vl 0.8 3.835307 274.856279 206958.559906 1.0
Vr 1.0 2.152820 391.731075 92209.160840 1.599708
Va 1.0 3.037373 303.313516 150000 1.153536
Vb 1.0 1.68 303.313516 150000 0.857900
VR 1.0 1.033846 136.275239 75000 0.427612
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Fig. 17. Con�guration of type LR1_sck = {1 − r, 0−w, 1 − s, 2−w, 3− s} at time
12.10−4 s.

Fig. 18. 50 isodensity from 1 to 5 at time 12.10−4 s.Comments. Table 6 gives the exat solution obtained with the inverse Rie-mann problem while �gures 17 and 18 show respetively the omparison be-tween the exat solution and the numerial approximations for the density andveloity with the two shemes. The previous omments apply to this on�gura-tion: the intermediate state Vr for the 3D-solution presents strong osillationsand we observe that the 1 − s shok omputed with the 1D-model partingthe Vr and Va states is smoothed. However, the axisymmetri solution learlyoinides well with the one-dimensional solutions.18



4.2.3 Con�guration LR3 with rarefationTable 7Con�guration of type LR3 with rarefation LR3_rar = {1−s, 2−w, 3−r, 0−w, 3−r}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 0.5 2 -200 400000 0.377964
Va 0.5 2.666667 -358.113883 600000 0.638066
Vb 0.5 10.0 -358.113883 600000 1.235610
Vl 0.5 12.123795 -301.208593 785679.190499 1.0
Vr 1.0 18.258264 -100.003790 1393780.920329 0.305904
VR 1.0 26.112017 21.244529 2300000.0 0.060498
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Fig. 19. Con�guration of type LR3_rar = {1− s, 2−w, 3 − r, 0 −w, 3 − r} at time
8.10−4 s.

Fig. 20. 50 isodensity from 2 to 27 at time 8.10−4 s.Comments. Table 7 gives the exat solution obtained with the inverse Rie-mann problem while �gures 19 and 20 show respetively the omparison be-tween the exat solution and the numerial approximations for the densityand veloity with the two shemes. The theoretial small 3 − r rarefationwhih takes plae from state Vb to the soni point Vl predited by the one-dimensional model is not well reprodued by the three-dimensional model. Onemore time, small osillations onseutive to oblique waves before and after theross-setion hange appear. Nevertheless, the intermediate states orrespondand the three simulations provide a LR3 on�guration.19



4.2.4 Con�guration LR3 with shokTable 8Con�guration of type LR3 with shok LR3_sck = {1− s, 2−w, 3− r, 0−w, 3− s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 0.5 5 -250 400000 0.747018
Va 0.5 6.666667 -350 600000 0.986013
Vb 0.5 10.0 -350 600000 1.207615
Vl 0.5 11.854071 -299.856279 761317.446137 1.0
Vr 1.0 17.852064 -99.554810 1350563.618802 0.305904
VR 1.0 4.619603 -542.096262 130000.0 2.731134
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Fig. 21. Con�guration of type LR3_sck = {1 − s, 2−w, 3 − r, 0 −w, 3− s} at time
8.10−4 s.

Fig. 22. 50 isodensity from 3 to 19 at time 8.10−4 s.Comments. Table 8 gives the exat solution obtained with the inverse Rie-mann problem while �gures 21 and 22 show respetively the omparison be-tween the exat solution and the numerial approximations for the density andveloity with the two shemes. The present simulation is very similar to theformer one but we have, in this ase, a 3−s shok to link Vr to VR on the rightside of the interfae while we have a 3− r rarefation to link the states in theprevious ase. Comments and remarks are very similar, the three simulationsprovide the same on�guration but osillations due to oblique shoks appearwith the three-dimensional model. 20



4.2.5 Con�guration RR1 with rarefationTable 9Con�guration of type RR1 with rarefation RR1_rar = {1−r, 0−w, 1−r, 2−w, 3−s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 1.0 3.6 0.0 400000 0.0
Vl 1.0 2.501047 138.544575 240218.917576 0.377818
Vr 0.6 1.701108 339.491071 140042.899031 0.999999
Va 0.6 1.337395 419.224375 100000 1.295723
Vb 0.6 0.7 419.224375 100000 0.937414
VR 0.6 0.570370 329.130629 75000 0.767100
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Fig. 23. Con�guration of type RR1_rar = {1− r, 0−w, 1− r, 2 −w, 3− s} at time
12.10−4 s.

Fig. 24. 50 isodensity from 0.5 to 3.6 at time 12.10−4 s.Comments. Table 9 gives the exat solution obtained with the inverse Rie-mann problem while �gures 23 and 24 show respetively the omparison be-tween the exat solution and the numerial approximations for the density andveloity with the two shemes. We now onsider situations when the lowestross-setion is on the right side leading this time to a right rarefation. Weobserve that for this partiular on�guration the three urves suit well.21



4.2.6 Con�guration RR1 with shokTable 10Con�guration of type RR1 with shok RR1_sck = {1− s, 0−w, 1− r, 2−w, 3− s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 1.0 3 100 200000 0.327327
Vl 1.0 3.259671 74.409093 224662.868292 0.239543
Vr 0.4 2.126227 285.187189 123521.258857 1.0
Va 0.4 1.559044 370.984366 80000.0 1.384127
Vb 0.4 1.0 370.984366 80000.0 1.108528
VR 0.4 0.862385 322.059761 65000.0 0.991440
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Fig. 25. Con�guration of type RR1_sck = {1− s, 0−w, 1− r, 2−w, 3− s} at time
12.10−4 s.

Fig. 26. 50 isodensity from 0.8 to 3.6 at time 12.10−4 s.Comments. Table 10 gives the exat solution obtained with the inverse Rie-mann problem while �gures 25 and 26 show respetively the omparison be-tween the exat solution and the numerial approximations for the densityand veloity with the two shemes. In ontrast with the previous ase, theseond part of the 1−w wave whih shares the states VL and Vl is a shok (ararefation in the former ase). Note that despite the large ross-setion ratio,we obtain the same on�guration between the "real" three-dimensional modeland the "homogenised" one-dimensional model.22



4.2.7 Con�guration RR3 with rarefationTable 11Con�guration of type RR3 with rarefation RR3_rar = {1−s, 2−w, 3−r, 0−w, 3−r}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 1.0 5 -250 100000 1.494036
Va 1.0 6.666667 -300 150000 1.690309
Vb 1.0 8 -300 150000 1.851640
Vl 1.0 9.648037 -269.076202 194975.414173 1.599708
Vr 0.8 17.188238 -188.796060 437611.952725 1.0
VR 0.8 22.801474 133.905733 650000 0.670286
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Fig. 27. Con�guration of type RR3_rar = {1− s, 2−w, 3− r, 0−w, 3− r} at time
12.10−4 s.

Fig. 28. 50 isodensity from 4 to 23 at time 12.10−4 s.Comments. Table 11 gives the exat solution obtained with the inverse Rie-mann problem while �gures 27 and 28 show respetively the omparison be-tween the exat solution and the numerial approximations for the density andveloity with the two shemes. The present simulation shows learly the osil-lations origin. Strong slanted shoks propagate and the nie plateau (onstantsolution) obtained with the one-dimensional is poorly reprodued by the ax-isymmetri solution. Nevertheless, the theoretial on�guration predited bythe 1D-model is on�rmed by the 3D-simulation whih indiates the adequayof the homogenised model with the "real" one.. 23



4.2.8 Con�guration RR3 with shokTable 12Con�guration of type RR3 with shok RR3_sck = {1− s, 2−w, 3− s, 0−w, 3− r}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 1.0 3 -400 50000 2.618615
Va 1.0 4.875 -480.064077 100000.0 2.832843
Vb 1.0 1.0 -480.064077 100000.0 1.283025
Vl 1.0 0.783632 -569.600910 70964.939235 1.599708
Vr 0.8 1.396062 -399.657818 159277.033801 1.0
VR 0.8 1.642596 -333.595729 200000.0 0.807992
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Fig. 29. Con�guration of type RR3_sck = {1− s, 2−w, 3− s, 0−w, 3− r} at time
12.10−4 s.

Fig. 30. 50 isodensity from 0.4 to 5 at time 12.10−4 s.Comments. Table 12 gives the exat solution obtained with the inverse Rie-mann problem while �gures 29 and 30 show respetively the omparison be-tween the exat solution and the numerial approximations for the densityand veloity with the two shemes. With this last on�guration of the RRgroup, we observe that the density urve of the 3D-solution �ts rather wellwith the theoretial density urve but the veloity are very poorly approxi-mated. The origin of suh a di�erene seems to be the ontat disontinuitywhih is learly not preserved by the axisymmetri solution. In this ase, itbeomes di�ult to draw omparisons between the two models although theon�gurations are really similar. 24



4.3 Resonant wave on�gurations4.3.1 Con�guration R1Table 13Con�guration of type R1 = {0 − w, 1 − s, 0 − w, 2 − w, 3 − r}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 1.0 1 500 100000 1.336306
Vs,l 0.979139 1.051791 485.507722 107325.116343 1.284536
Vs,r 0.979139 1.565848 326.119084 188717.365256 0.793928
Vr 0.95 1.453274 362.158786 170000.000005 0.894920
Va 0.95 1.2 362.158786 170000.000005 0.813207
VR 0.95 1.347710 414.461597 200000.0 0.909292
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Fig. 31. Con�guration of type R1 = {0−w, 1−s, 0−w, 2−w, 3−r} at time 12.10−4 s.
Fig. 32. 50 isodensity from 0.8 to 2 at time 12.10−4 s.Comments. Table 13 gives the exat solution obtained with the inverse Rie-mann problem while �gures 31 and 32 show respetively the omparison be-tween the exat solution and the numerial approximations for the densityand veloity with the two shemes. In the resonant on�guration, the transi-tion between the state VL and Vr requires two intermediate states Vs,l and Vs,rwhih are superposed with the interfae with two di�erent densities (indiatedby the blak box in �gure 31). We indeed observe that the three-dimensionalsimulation presents a peak at the interfae whih orresponds to the higher in-termediate density. It is remarkable to see that the 1D-exat solution oinidesvery well with the axisymmetri solution.25



4.3.2 Con�guration R3Table 14Con�guration of type R3 = {1 − r, 2 − w, 0 − w, 3 − s, 0 − w}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 0.9 1 -1000 400000 1.336306
Va 0.9 0.909028 -929.300937 350000 1.265747
Vl 0.9 0.3 -929.300937 350000 0.727142

Vs,l 0.947867 0.314418 -841.908993 373773.744392 0.652605
Vs,r 0.947867 0.148077 -1787.656974 123423.468739 1.654876
VR 1.0 0.136386 -1839.710883 110000.000014 1.731309
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Fig. 33. Con�guration of type R3 = {1−r, 2−w, 0−w, 3−s, 0−w} at time 3.10−4 s.
Fig. 34. 50 isodensity from 0.1 to 1 at time 3.10−4 s.Comments. Table 14 gives the exat solution obtained with the inverse Rie-mann problem while �gures 33 and 34 show respetively the omparison be-tween the exat solution and the numerial approximations for the density andveloity with the two shemes. We now onsider a similar resonant situationbut with the 3 − s stationary shok inside the interfae. The three solutions�t niely and no peak is observed sine the intermediate state density Vs,l,

Vs,r belongs to the density of Vl and VL. This point seems to on�rm thatthe peak in the previous 3D approximation is not a numerial artefat but anapproximation of the intermediate state densities.26



4.4 Resonant and splitting wave on�gurations4.4.1 Con�guration LRR1Table 15Con�guration of type LRR1 = {1 − r, 0 − w, 1 − s, 0 − w, 2 − w, 3 − s}

φ ρ u P Mah
VL 1.3 1.862000 0.826000 2.458300 0.607559
Vl 1.3 1.327678 1.270616 1.531063 1.0

Vs,l 1.31102 1.214478 1.377370 1.351478 1.103511
Vs,r 1.31102 1.427126 1.172136 1.694791 0.909049
Vr 1.6 1.789307 0.766029 2.326095 0.567819
Va 1.6 2.0 0.766029 2.326095 0.600320
VR 1.6 1.795636 0.629806 2.0 0.504356
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Fig. 35. Con�guration of type LRR1 = {1 − r, 0 − w, 1 − s, 0 − w, 2 − w, 3 − s} attime 0.5 s.
Fig. 36. 50 isodensity from 1.3 to 2 at time 0.5 s.Comments. Table 15 gives the exat solution obtained with the inverse Rie-mann problem while �gures 35 and 36 show respetively the omparison be-tween the exat solution and the numerial approximations for the densityand veloity with the two shemes. We here deal with the more omplex sit-uation where we have both a splitting wave and a resonant situation. Thepositive point is that we obtain the same theoretial on�guration both withthe one-dimensional and the three-dimensional model whih suggest that suha on�guration is physial. The negative point is the very poor approximationof the 1 − r rarefation on the left side of the interfae that reahes the sonipoint. We have performed numerial simulations with �ner meshes with theaxisymmetri model to see if, possibly, we better ath the rarefation but thetests were negative. 27



4.4.2 Con�guration LRR3Table 16Con�guration of type LRR3 = {1 − s, 2 − w, 3 − r, 0 − w, 3 − s, 0 − w}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mah
VL 0.95 1.6 -200.0 100000 0.676123
Va 0.95 2.6 -355.043418 200000 1.081905
Vb 0.95 3.0 -355.043418 200000 1.162152
Vl 0.95 3.427892 -313.761442 241045.084752 1.0

Vs,l 0.968138 2.987938 -353.216986 198875.088944 1.157106
Vs,r 0.968138 3.786653 -278.713217 277505.646851 0.870133
VR 1.0 4.052357 -252.140550 305143.954267 0.776569
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Fig. 37. Con�guration of type LRR3 = {1 − s, 2 − w, 3 − r, 0 − w, 3 − s, 0 − w} attime 12.10−4 s.
Fig. 38. 50 isodensity from 1.6 to 5.2 at time 12.10−4 s.Comments. Table 16 gives the exat solution obtained with the inverse Rie-mann problem while �gures 37 and 38 show respetively the omparison be-tween the exat solution and the numerial approximations for the density andveloity with the two shemes. This test was performed with a small variationof φ so the 3 − r rarefation from Vb to the soni state Vs,l is small, neverthe-less, we observe an overshoot for the axisymmetri simulation and osillationswith the 1D-solution whih indiates that suh a on�guration is really di�-ult to ompute. The positive point is that the three solutions orrespond tothe same on�guration and state Va is well-approahed. Note that the densityof the intermediate state Vs,l is lower than Vl and Vb. We observe that boththe 1D and 3D approximations try to ath the lower density, we think thatsuh a behaviour of the sheme is responsible of a wrong evaluation of therarefation up to the soni state. 28



4.4.3 Con�guration RRR1Table 17Con�guration of type RRR1 = {0 − w, 1 − s, 0 − w, 1 − r, 2 − w, 3 − r}

φ ρ u P Mah
VL 1.0 1.3 2 1 1.927248
Vs,l 0.78177 1.872903 1.775738 1.667250 1.590641
Vs,r 0.78177 3.775791 0.880818 4.643562 0.671275
Vr 0.7 2.969906 1.250641 3.318027 1.0
Va 0.7 0.533582 3.067818 0.3 3.457843
Vb 0.7 1.0 3.067818 0.3 4.733745
VR 0.7 2.363115 3.675948 1.0 4.775818
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Fig. 39. Con�guration of type RRR1 = {0 − w, 1 − s, 0 − w, 1 − r, 2 − w, 3 − r} attime 0.2 s.
Fig. 40. 50 isodensity from 0.3 to 4 at time 0.2 s.Comments. Table 17 gives the exat solution obtained with the inverse Rie-mann problem while �gures 39 and 40 show respetively the omparison be-tween the exat solution and the numerial approximations for the density andveloity with the two shemes. We �rst mention that we have drawn a simpleline between Vr and Va for the sake of simpliity to represent the rarefationand the real urve would be a onvex one very similar to the numerial approx-imations. For the present ase, the intermediate value Vs,r density is higherthan the other density and we �nd again that both the numerial approxima-tions try to ath the higher density value.29



4.4.4 Con�guration RRR3Table 18Con�guration of type RRR3 = {1 − s, 2 − w, 0 − w, 3 − s, 0 − w, 3 − r}

φ ρ u P Mah
VL 1.0 1.4 -2.0 2.0 1.414214
Va 1.0 2.077419 -2.591083 3.5 1.687118
Vl 1.0 0.3 -2.591083 3.5 0.641127

Vs,l 0.889412 0.258647 -3.379023 2.843740 0.861264
Vs,r 0.889412 0.200487 -4.359267 1.987030 1.170281
Vr 0.87 0.232799 -3.837976 2.449388 1.0
VR 0.87 0.269081 -3.273959 3.0 0.828687
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Fig. 41. Con�guration of type RRR3 = {1 − s, 2 − w, 0 − w, 3 − s, 0 − w, 3 − r} attime 0.15 s.
Fig. 42. 50 isodensity from 0.2 to 2.2 at time 0.15 s.Comments. Table 18 gives the exat solution obtained with the inverse Rie-mann problem while �gures 41 and 42 show respetively the omparison be-tween the exat solution and the numerial approximations for the density andveloity with the two shemes. The on�guration RRR3 is similar to the LRR1one (in partiular the veloity). The 3 − r transition to the 3D soni state atthe interfae is poorly approximated where this time the shemes attempt toath the higher veloity between the three states Vs,l, Vs,r and Vr. Densityvariations are too small to omment the simulations around the interfae butthe other states Va, Vl are well-approximated.30



5 Non uniqueness of the Riemann problem solutionsNon uniqueness of the Riemann problem solutions is well-known for the non-onservative Euler system [3℄ and the nononservative shallow-water problem[2℄. The point is that the transition aross the interfae does not behave in thesame manner whether we deal with a subsoni or a supersoni �ow. Conse-quently, we an exhibit Riemann problems with two distint entropy solutions(in the Lax sense) whether we use the subsoni branh of the interfae transi-tion or the supersoni one. We propose here several ouples of on�gurationswhih are solutions of the same Riemann problem and we ompare the 1D-solution with the numerial approximation obtained with the axisymmetrimodel.5.1 Non uniqueness between on�gurations C and DWe �rst test the on�guration proposed by Andrianov and Warneke in [3℄.We have listed the densities, veloities and pressures obtained by the inverseRiemann problem in table 19.Table 19Con�guration of type C and D

φ ρ u PCon�guration of type C = {1 − s, 0 − w, 2 − w, 3 − s}

VL 0.8 0.2069 3.991 0.07
Vl 0.8 1.1109 0.3377 3.4634
Vr 0.3 1.0019 0.9985 2.9972
Va 0.3 0.6997 0.9985 2.9972
VR 0.3 0.1354 -3.1668 0.0833Con�guration of type D = {0 − w, 1 − s, 2 − w, 3 − s}

VL 0.8 0.2069 3.991 0.07
Vr 0.3 0.5736 3.8387 0.2918
Va 0.3 2.4112 1.6389 3.934
Vb 0.3 0.724 1.6389 3.934
VR 0.3 0.1354 -3.1668 0.0833With the same initial onditions, the Riemann problem for the nononser-vative model has two distint entropy solutions in the Lax sense but the31



numerial sheme based on the nononservative Rusanov �ux [11℄ and thenumerial sheme based on the axisymmetri model provide the same on�g-uration C. Figures 43 give the theoretial density and the entropy using theinverse Riemann problem and the numerial approximations obtained with theone-dimensional model and the axisymmetri model (at r = 0). We presentin �gure 44 the repartition of the density and entropy at the same time forthe full three-dimensional model. We observe that the shok are longitudinalwhih guarantees a good orrespondene between the one-dimensional non-onservative model and the three-dimensional onservative one.
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Fig. 43. Distribution of the density and the entropy obtained by the nononservativeand the axisymmetri models and the two solutions of the inverse Riemann problemat time t = 0.35 s.

Fig. 44. 50 isodensity (top) from 0.135 to 1.13 and 50 isoentropy (bottom) from0.635 to 4.92 at time t = 0.35 s.We plot the veloity and the Mah number in �gure 45 for the theoretialsolutions (on�guration C and D), the one-dimensional approximation andthe axisymmetri model solution at r = 0 while we give in �gures 46 the mapof the veloity and the Mah number using the axisymmetri model. Like thedensity map, the veloity obtained by the axisymmetri model presents verystraight longitudinal shoks whih legitimate the one-dimensional approah.32
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Fig. 45. Distribution of the veloity and the Mah number obtained by the nonon-servative and the axisymmetri models and the two solutions of the inverse Riemannproblem at time t = 0.35 s.

Fig. 46. 50 isoveloity (top) from -3.17 to 3.99 and 50 isomah (bottom) from 0.0179to 5.8 at time t = 0.35 s.5.2 Non uniqueness between on�gurations D and RRR1We proposed here a new non uniqueness ase between on�gurations D and
RRR1. Densities, veloities and pressures for the two on�gurations obtainedby the inverse Riemann problem are presented in table 20.With the same initial onditions, the Riemann problem for the nononservativemodel has two distint entropy solutions in the Lax sense but the numerialsheme based on the nononservative Rusanov �ux [11℄ selets the D on-�guration whereas the numerial solution based on the axisymmetri model[12℄ orresponds to the RRR1 on�guration. We display in �gure 47 the the-oretial density and entropy using the inverse Riemann problem and the twonumerial solutions (with the one-dimensional and the axisymmetri models).We note that the physial solution obtained with the 3D-model orresponds33



Table 20Con�guration of type D and RRR1

φ ρ (kg.m−3) u (m.s−1) P (Pa)Con�guration of type D = {0 − w, 1 − s, 2 − w, 3 − s}

VL 1.0 1 650 60000
Vr 0.75 1.4557 595.3377 101502.1874
Va 0.75 0.7469 790.5361 39874.3
Vb 0.75 4.9888 790.5361 39874.3
VR 0.75 9.2747 860.373 95000Con�guration of type RRR1 = {0 − w, 1 − s, 0 − w, 1 − r, 2 − w, 3 − r}

VL 1.0 1 650 60000
Vs,l 0.940495 1.0802 639.7901 66846.4501
Vs,r 0.940495 3.1490 219.4730 357338.2303
Vr 0.75 2.3128 374.7221 231970.8357
Va 0.75 0.6589 790.7742 40000
Vb 0.75 5 790.7742 40000
VR 0.75 9.2747 860.373 95000to the largest global entropy prodution (global in the sense that we spatiallyintegrate the entropy on interval [0, 2]). Suh a riterion has been mentionedby Andrianov and Warneke [3℄.

0 0.5 1 1.5 2
Domain (m)

0

2

4

6

8

10

D
en

si
ty

 (
kg

.m
−

3 )

Exact_D
Exact_RRR1
2D axi
1D

0 0.5 1 1.5 2
Domain (m)

0

20000

40000

60000

80000

E
nt

ro
py

 (
J.

kg
−

1 )

Exact_D
Exact_RRR1
1D
2D axi

Fig. 47. Distribution of the density and the entropy obtained by the nononservativeand the axisymmetri models and the two solutions of the inverse Riemann problemat time t = 1 ms.We show in �gure 48 the density and the entropy maps obtained with the34



axisymmetri model. We observe that the shoks are mainly longitudinal whihexplains the nie �tting between the numerial solution and on�guration
RRR1.

Fig. 48. 50 isodensity (top) from 0 to 10 and 50 isoentropy (bottom) from 0 to 80000at time t = 1 ms.We plot in �gure 49 the veloity and the Mah number for the theoretialsolutions for on�gurations D and RRR1 and the numerial approximationusing the 1D-nononservative model and the 3D-onservative one. We ob-serve a very good orrespondene between the 1D-model and on�guration Dwhereas the approximations obtained with the axisymmetri model suit wellwith on�guration RRR1.
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Fig. 49. Distribution of the veloity and the Mah number obtained by the nonon-servative and the axisymmetri models and the two solutions of the inverse Riemannproblem at time t = 1 ms.Figure 50 represents the veloity and Mah number maps at time t = 1 ms.Like the density and the entropy, shok waves are longitudinal whih guaranteea good orrespondene with the theoretial one-dimensional model.35



Fig. 50. 50 isoveloity (top) from 0 to 900 and 50 isomah (bottom) from 0 to 8 attime t = 1 ms.5.3 Remarks and onjunturesWe propose here some remarks and onjuntures based on our numerial ex-periene. We do not have lear theoretial arguments or solid experimentalfats to prove the onjuntures but just some intuitions upon the omplexproblem of non uniqueness.
• Sine we do not have uniqueness of the solutions with on�gurations D and

C but also with on�gurations D and RRR1, we should have non unique-ness situations with on�gurations A and B but also with on�gurations Aand LRR3.
• We also think that they may have many other situations of non unique-ness, for example between on�gurations D and RR1 (very similar to Dand RRR1) but also D and LR1. Non uniqueness with three available on-�gurations like D, RRR1 and RR1 seems also oneivable.
• When the solutions of the nononservative problem are not unique, it hasbeen notied that two di�erent numerial methods an provide two di�er-ent solutions for the one-dimensional problem (see [2℄ for the shallow waterproblem). A �rst onlusion ould be that sheme S1 hooses the right so-lution while sheme S2 hooses the wrong one. We think that the numerialshemes do not behave like that and we propose here an other explanation.Assume that for very large veloity uL on the left side, we have a unique su-personi solution orresponding to on�guration D. If we redue the veloity

uL till a limit veloity ulim the non uniqueness situation arises and two on-�gurations are now available D and RRR1 for uL < ulim. The axisymmetrimodel simulation provides the RRR1 solution but the numerial simulationwith a sheme S1 provides on�guration D. We think that sheme S1 willprovide a D on�guration as long as uL is larger to a ritial veloity uc:for uL > uc the sheme S1 provides a D on�guration and for uL < uc it36



swithes to the "good" on�guration RRR1.The value of uc depends on the sheme S1 and if we onsider an other sheme
S2 for the one-dimensional ase, the ritial veloity where it swithes fromthe wrong on�guration to the right on�guration may be di�erent. Ourview is the following: some shemes have ritial veloity lose to the limitveloity uc ≈ ulim, hene they rapidly behave as the axisymmetri modelwhile other shemes have a ritial veloity far from the limit veloity
uc << ulim and they provide the wrong solution for a larger number ofinitial onditions.As a onlusion, we think that a numerial �ux does not always provide theright or the wrong solution but provides the right or the wrong solutionsfor two distint sets of initial onditions in the phase spae.

37



6 Shok wave interation with a ross-setion redution in a dutIn numerous engineering appliations [5,26℄, pratial situations do not exatlyorrespond to pure Riemann problems for the nononservative Euler systemwith two de�nitively di�erent states on the left and right side of a ross-setion disontinuity. Indeed, in many appliations, the state disontinuityand the ross-setion jump are not loated at the same plae (see �gure 51).A Riemann problem for the onservative Euler system generates travellingwaves (an explosion generated by a high pressure and a low pressure hambersseparated by a diaphragm for instane) whih interat with the ross-setionjump loated after the diaphragm. The inident shok wave is then separatedinto a transmitted shok wave and a re�eted shok wave in funtion of thesetion variation.

Fig. 51. Shok tube geometry for the test 1 (top) and test 2 (bottom).In order to perform numerial simulations of suh a situation, we onsider ashok tube of length x = [0 : 2] equipped with a setion redution situated at
x = 1.4 m. The initial disontinuity between the high pressure hamber andthe low pressure hamber is loated at x = 0.7 m. As in the previous setions,we ompare the waves evolution between the one-dimensional nononservativemodel and the three-dimensional axisymmetri model. We have arried outtwo kinds of simulation whether we use a disontinuous or a smooth transitionbetween the two setions as displayed in �gure 51. We sum up here the twoon�gurations we deal with. Note that the lassial Riemann problem we useto generate the shok wave is exatly the same in the two situations in order38



to ompare the transition e�ets.
• A disontinuous ross-setion redution (test 1), i.e. an abrupt transition from

φ = 1 to φ = 0.4 (respetively a hange of ross-setion from R = 0.05 to
R = 0.0316 in the axisymmetri ontext). The initial onditions of the shoktube are summarised in table 21.Table 21Initial onditions of the shok tube for the test 1Position (m) φ R (m) ρ (kg.m−3) u (m.s−1) P (Pa)

x = [0 : 0.7] 1 0.05 35.6 0 30 × 105

x = [0.7 : 1.4] 1 0.05 1.1867 0 1 × 105

x = [1.4 : 2] 0.4 0.0316 1.1867 0 1 × 105

• A regular ross-setion redution (test 2), i.e. orresponding to a linear transitionfrom φ = 1 to φ = 0.25 (respetively a linear transition of the ross-setion from
R = 0.05 to R = 0.025). The initial onditions of the shok tube are summarisedin table 22.Table 22Initial onditions of the shok tube for the test 2Position (m) φ R (m) ρ (kg.m−3) u (m.s−1) P (Pa)
x = [0 : 0.7] 1 0.05 35.6 0 30 × 105

x = [0.7 : 1.4] 1 0.05 1.1867 0 1 × 105

x = [1.4 : 1.7] 1 → 0.25 0.05 → 0.025 1.1867 0 1 × 105

x = [1.7 : 2] 0.25 0.025 1.1867 0 1 × 105

6.1 The disontinuous transition aseWe �rst onsider the situation of the abrupt transition. Table 21 gives theinitial onditions of the shok tube while �gures 52 show respetively theomparison between the one-dimensional model and the axisymmetri one (wedisplay the ut at r = 0) for the density and Mah number at two di�erenttimes t = 1.3 ms (top) and t = 1.7 ms (bottom). At last, �gure 53 gives thedensity isolines for the axisymmetri model at time t = 1.7 ms.39
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Fig. 52. Distribution of the density and the Mah number obtained by the twomodels at time t = 1.3 ms (top) and t = 1.7 ms (bottom) for the test 1.
Fig. 53. 50 isodensity from 1 to 36 at time t = 1.7 ms.Comments. The inident shok wave generated by the Riemann problem isparted into a transmitted wave and a re�eted wave at time t = 1.3 ms bythe ross-setion disontinuity loated at x = 1.4 m. Both the models give asimilar behaviour but several di�erenes an be highlighted. We �rst observethat the nononservative model generates a higher re�eted wave density anda lower transmitted wave density with respet to the axisymmetri model. Thetransition between the ross-setion disontinuity and the transmitted shok(the 3− s shok) is also di�erent: we note that the gas veloity inreases justafter the ross-setion disontinuity for the axisymmetri model whereas theone-dimensional model presents a �at urve for the veloity. Nevertheless, weobtain a very good agreement between the two solutions, in partiular the40



3 − s shok orresponding to the transmitted wave is the same in the twosimulations.6.2 The smooth transition aseWe now deal with the smooth transition ase where we use the same Riemannproblem to generate the inident wave. Table 22 gives the initial onditionsof the shok tube while �gures 54 show respetively the omparison betweenthe one-dimensional model and the axisymmetri one (we display the ut at
r = 0) for the density and Mah number at two di�erent times t = 1.45 ms(top) and t = 1.76 ms (bottom). At last, �gure 55 gives the density isolinesfor the axisymmetri model at time t = 1.76 ms.
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Fig. 54. Distribution of the density and the Mah number obtained by the twomodels at time t = 1.45 ms (top) and t = 1.76 ms (bottom) for the test 2.Comments.With a regular ross-setion variation, we obtain a perfet agree-ment between the two models even in the deliate zone situated after the po-sition x = 1.4 m. Transitions between subsoni and supersoni states are also41



Fig. 55. 50 isodensity from 1 to 36 at time t = 1.76 ms.nie and, in this ase, the one-dimensional nononservative model is represen-tative of the fully three-dimensional onservative one sine there is no obliquewave generated by the ross-setion variation. It is notieable that the solutionfor regular variation situation is di�erent to the abrupt one: the re�eted andtransmitted waves are smoothed and the intermediate states are di�erent. Forexample, in the brutal variation ase we observe a onstant state just afterthe ontat disontinuity 0 − w whereas the density inreases linearly in thesmooth variation ase due to the linear variation of the ross-setion.
7 ConlusionA systemati omparison of all the admissible on�gurations between the one-dimensional nononservative model and the axisymmetri onservative Eulersystem has been arried out. For the one-dimensional approah, we use theRusanov �ux adapted to the nononservative Euler system proposed by [11℄and the spei� high-order sheme for the Euler system with ylindrial o-ordinates developed in [12℄. Numerial results show a very good orrespon-dene between the two models when the solutions of the axisymmetri modelpresent straight longitudinal shoks i.e. no notieable transversal shok per-turbs the solution. Simulations based on the axisymmetri model also on�rmthe existene of omplex on�gurations suh as the LR, RR, LRR and RRRon�gurations introdued in [11℄.We have tested the example of non uniqueness proposed by [3℄ and also pro-posed a new example of non uniqueness based on the D and RRR1 on�g-urations. Indeed, two entropy solutions in the Lax sense are available andwe show that the numerial sheme for the one-dimensional nononservativeproblem does not always pik up the same solution obtained by the axisym-metri model.In the last setion, we have proposed a representative situation of engineeringappliations where a strong shok wave, generated upstream, omes to prop-agate in a onverging dut. Numerial results have shown a good agreementbetween the two models even if the ross-setion transition is abrupt.AknowledgmentThis work was �nanially supported by the Shneider Eletri ompany.42
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