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Abstract

Nonconservative hyperbolic system corresponds to a reduction of an initial three-
dimensional problem deriving from an homogenisation procedure. Unfortunately, the
reduce model gives rise to two new difficulties : the resonant problem corresponding
to a splitting or a merging of the genuinely nonlinear waves and the non unique-
ness of the Riemann problem solution. The question arises to check whether the
two problems correspond and provide similar solutions, at least numerically. In this
paper, we propose a comparison between the one-dimensional nonconservative Eu-
ler equations modelling the duct with variable cross-sectional area with its original
three-dimensional conservative Euler system. Based on the classification of the Rie-
mann problems proposed in [11], we compare the numerical results of the two models
for a large series of representative configurations. We also propose a new example of
non uniqueness for the Riemann problem involving the resonant phenomena.

Key words: Riemann problem in ducts, nonconservative system, variable
cross-section, axisymmetric flow, shock tube.

1 Introduction

Since two decades, nonconservative hyperbolic systems have received consider-
able attention both from a theoretical and a numerical points of view. Usually
deriving from an homogenisation procedure of an initial three-dimensional
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model, several problems of physical or engineering importance are governed
with a nonconservative hyperbolic system. We can mention the shallow-water
problem with topography [15-17|, the two-layer shallow-water problem [14],
the sediment transport [8,28|, the multi-fluid models |6, the Baer-Nunziato
system [4], the compressible gas flow in variational cross-section duct [3] and
the compressible gas flow in porous media [5,26,27|. For example, the noncon-
servative Euler equations, as well named the quasi-one-dimensional Euler in a
duct, are obtained by averaging the usual multi-dimensional Euler equations
over the duct cross-section [29].

Numerical approximations of the nonconservative hyperbolic system solu-
tions have to be cleverly evaluated with specific numerical schemes named
well-balanced schemes where the steady-state solutions are numerically pre-
served [10,11,19,20]. A large literature is now devoted on the subject [24,25].
The question we tackle in the article is the correspondence between the nu-
merical solutions of the reduce problem, i.e. the nonconservative problem
and the numerical solution computed with the initial problem i.e. the full
three-dimensional one. Indeed, nonconservative systems give rise to essen-
tially two new difficulties: the resonant phenomena and the non uniqueness of
the solutions |3,10,11,19] whereas such phenomena do not exist at the three-
dimensional level: the homogenisation procedure looses informations and the
classical entropy argument (in the Lax sense for instance) is not enough to
obtain a unique solution (numerically at least).

Few studies on the comparisons have been realised since such a problem has
gained less attention and most of them only concern the shallow-water problem
[2,3]. However the question seems of crucial importance for two reasons: firstly
we have to check that the solutions of the two problems really correspond (at
least numerically) for every type of configuration and secondly we have to
select the most physical solution when we face a non uniqueness situation: we
have several different entropy solutions (in the Lax sense) with the reduced
model for the same Riemann problem and we choose the one which better fit
with the three-dimensional solution.

To address the first issue, we deal with the variational cross-section duct
problem or equivalently the gas flow in inhomogeneous porous media. We
have implemented the scheme proposed in [11] to solve the nonconservative
one-dimensional problem and the scheme proposed in [12] to solve the full
three-dimensional axisymmetric one. We have numerically experimented all
the available configurations proposed in [11] and compared it with their equiv-
alent three-dimensional problem. We aim to prove that all the situations, even
with the most complex ones like the splitting or merging of the simple gen-
uinely nonlinear wave across the interface, are reproduced by the initial conser-
vative Euler model which justify the reality of such configurations. The second
issue we address concerns the non uniqueness of the solution for the reduced



problem. A first example has been proposed by [3] where a subsonic solution
and a supersonic solution are available for the same Riemann problem. We
here propose a new non uniqueness case with a more complex situation: a
supersonic solution and a resonant solution. Such an example proves that non
uniqueness can also arise with complex configurations involving the merging
or the splitting of the simple waves.

The organisation of the paper is as follows. In section 2, we present the govern-
ing Euler equations in cylindrical coordinates assuming rotational symmetry
and the one-dimensional nonconservative Euler equations as well as a short
review on the numerical techniques employed to discretize the equations. In
section 3, we present all the admissible configurations for the Riemann problem
in a duct with variable cross-section. Section 4 is devoted to the comparison
between the exact solutions obtained with the inverse Riemann problem and
the numerical approximations obtained by the one-dimensional nonconserva-
tive system and the axisymmetric flow model for all the configurations listed in
[11]. In the section 5, we study the non uniqueness of the Riemann problem for
the nonconservative system. We propose a new example involving a complex
configuration with the resonant phenomenon. Finally, we propose in section
6 a set of simulations to compare the interaction of a planar shock wave en-
tering in a duct with a rough or a smooth cross-section variation. Concluding
remarks are made in section 7.

2 Gas flow models and numerical methods

Perfect gas flow in variational cross-section is modelled with the three-dimensional
axisymmetric Euler system where the cylindrical coordinates are employed to
provide a simpler two-dimensional space variables problem with respect to
the radial and axial coordinates (r,z). Deriving from the primitive model, a
nonconservative one-dimensional model — named the variational cross-section
duct model ([3]) — based on an homogenisation with respect to variable r is
obtained. The present section is dedicated to a short presentation of the two
models and their respective numerical methods. Note that we use the x-axis
as symmetry axis instead of the traditional z-axis for the three-dimensional
model to provide a natural correspondence with the one-dimensional noncon-
servative model.

2.1 Euler equations for axisymmetric flows

Let us consider an axisymmetric domain € x [0, 27[ obtained by the rotation
of a two-dimensional pattern €2 with respect to axis A corresponding to the



azimuthal coordinate x. Remark that the domain is not cylindrical, a pri-
ori, since the orthogonal cross-section S(x) may vary with x as presented in
figure 1.

Fig. 1. Compressible fluid flow in axisymmetric geometry: the cross-section S(x)
is not constant leading to expansions or compressions of the gas when the section
increases or decreases.

Using the cylindrical coordinate and assuming a non swirling flow, the Euler
equations governing axially symmetric flow of a compressible inviscid perfect
gas writes [12,18,21]:

0

O o)+ Lo + () =0, )
0 0 ) 0

a('r’pu,«) + E("’PUT +rP)+ —(rpuyu,) = P, (2)
0 0 0

a('r’puzp) + E('r’puzpu,«) + %(Tpui +1rP) =0, (3)
0 0 0

E(TE) + E(rur(E + P)) + %('rux(E + P)) = 0. (4)

where p, u,, u, and E stand for the density, the radial and axial velocity and
the total energy respectively. The pressure function P is given by the perfect
gas law depending on p and e the specific internal energy:

1
P=(y=Tpe and E=petp(ul+ug), (5)

with v the ratio of specific heats.

The system cast under the generic expression:

o(rU)  O(rF.(U)) O(rF.(U))
o o T o

=G(U), (6)

where U = (p, pu,, pu,, E) denotes the conservative variable vector, F,.(U) =
(puy, pu+ P, pugu,, u.(E+ P)) and F,(U) = (pus, pu, iy, pu+ P,u,(E+ P))
are the conservative fluxes and G(U) = (0, P, 0, 0) is the geometric source term
deriving from the use of cylindrical coordinates.



In the two last decades, several authors have developed numerical schemes
for the Euler system in cylindrical coordinates (see [13,18,22,23] for instance).
To address numerical approximation, we employ a second-order finite volume
scheme proposed in [12| we shortly sum-up in the present article for the sake
of comnsistency.

To this end, we consider a unstructured mesh 7, of the two-dimensional do-
main 2, constituted of triangles (or cells) C; C Q, i = 1,...,1. We denote
by v(i) the index set of the neighbouring triangles C; which share a common
edge S;; with the cell C; and by n;; = (ny;,, nj,) the outward unit normal
vector to C;.

Fig. 2. The two-dimensional mesh: notations. Index set v(i) represents the three
neighbouring triangles of cell Cj;.

Let (" = n At),en be a uniform subdivision of the time interval [0, +00), U

represents an approximation of the average of U on C; at time ¢™:

1
Ul ~ i /U(r,:c,t")rdrdx, (7)
irci

where we have introduced the weighted measures (cell and edge) :

le] :C/i dr dz, |C,~|r:/rdrd1’, |S,~j|r:/7’da.

C; Sij

In the same way, we define the approximation of the flux across the interface
S,; during the time interval [¢", "] by

F;?:f(Uf’U;L>nij)z

JEU) nii + FolU) i) v do
Sij

| Sl



and the right-hand side contribution is approximated by

G = GUM) ~ 1" /G(U) dr dz.
7 &

|C

A general finite volume scheme can be written as:

Cil UM = |Cil, U — At Y 1Sy F (U U ng) + At|GIG(UT). (8)

jev(i)

In the present study, we use the Rusanov flux combined with the multislope
MUSCL technique on triangles developed in |7,9] to reduce the diffusion effect
(see also [12| for a detailed description). An important remark is that the
scheme has been designed to respect a crucial well-balanced property: an initial
state at rest remains a steady-state at rest.

2.2  Nonconservative Euler system

We now deal with the one-dimensional nonconservative Euler system describ-
ing the evolution of a perfect gas in a duct with variable cross-sectional area
S(x) following [3]. Let us denote by ¢(x) = g(_x; the ratio between the section

area and a reference section, the equations then write:

O (08) + - (opu) =0, )

O (0r) + o (op® + o) = P (10

9 (68) + 2 (ou(2+ P) = (1)
and we assume that ¢(x) only depends on @, i.c. == = 0.

The system cast in the following nonconservative form:

U  OF(U)
_'_

ot ox

= G(U)%, (12)

where conservative quantities are represented by vector U = (¢p, ¢pu, oF)
and the flux vector by F(U) = (¢pu, ppu® + ¢ P, pu(E + P)) while the non-
conservative term writes G(U) = (0, P,0).

we first
o I—1

To provide a numerical approximation of the solution of system (12

),
discretize domain [a, b] with uniformly cells C; = [x;_1/2, Tit1/2], 1 = 1,



—a x
of length Az = 7 where we set x;_1/5 = i{Az and x; = 7;_1/2 + 5 is the
cell center.

Like in the previous subsection, U is an approximation of the mean value
of U on cell C; at time t" and we denote by V;" the associated vector using
the physical variables, V' = (¢, p,u, P). We consider a generic well-balanced

scheme of the form:

. . At _
Urtt = U — E(Fz‘+1/2 + G = Fioap - Gj—l/2> (13)

where Fii 1o = F(V;, Viy1) and Fi_1/2 = F(Vi_1, V;) represent the conservative
numerical flux across interface x;;1/2 and x;_;/ while Gi_+1/2 =G (Vi,Viqa)
and G;r_l /o = Gt (Vi_1,V;) represent the nonconservative contribution across
the interface consecutive to the ¢ space variation.

To compute the conservative fluxes we use the modified version of the Rusanov
scheme

F(V;) + F(Vig)

F(Viy Vi) = =) V(1 Vi), (14
with
Pit1 — Pi
V(‘/Za ‘/i—i-l) = )‘gbz—l—% Pi+1Ui+1 — Pill; ) ¢z+% = max<¢i7 ¢i+1>7
Ei-i—l - Ez

whereas the nonconservative fluxes given by

G~ (V;,Vigy) = —w

$i = din1
2

v oo

g+(‘/i—1> ‘/;) =+

N o

(15)

)
)

are designed to satisfy the well-balanced property to preserve steady-states
solutions (see [11] for a detailed construction of nonconservative schemes).

MUSCL reconstruction method is employed to provide a better accuracy of the
numerical approximation and reduce the numerical diffusion. Due to the non-
conservative term, one have to pay caution to design the higher-order scheme.
We have developed a second-order reconstruction based on the splitting of
the ¢ function into a regular part ¢" (say C') and a discontinuous piecewise



constant one ¢?
¢x) = ¢"(x) + ¢' ().
The main idea is that the regular part is treated as a classical volume source

term whereas the discontinuous part is treated with the help of the noncon-
servative fluxes. We obtain a new generic finite volume scheme

" . At
U = Uz - Aflf [{f( z+1/2’ z+1/2)+g ( z+1/2’V+1/2)}

{}"(V 1/2=Vn1/2)+g+( 1/2=Vn1/2)}+3( z+1/2avn1/2)}

a T
where the term S corresponds to the contribution of the regular part P ;5
x
given by
0
n, | PLipt P,

S(Vz+1/2= Vi 1/2> / B Y (¢i+1/2 - 211/2) ’ (16)

0

3 Riemann problem for the nonconservative Euler system

The finite volume method is based on the solution of a local Riemann problem
on every edges of the mesh. Therefore, from a computational point of view,
the theoretical analysis of the Riemman problem is of crucial importance. A
detailed study in the framework of the nonconservative Euler system has been
carried out by Clain and Rochette in [11]. We recall here the main results.

The Riemann problem consists in solving the nonconservative hyperbolic sys-
tem (12) on R x R* with the following initial condition:

U, &)(a,0) = { VO TS0 a7
(Ur, ¢r), x >0,

where (Up, ¢r) and (Ug, ¢r) are two given constant states.

The solution is constituted by a succession of simple waves (rarefaction, shock,
contact discontinuity, stationary contact discontinuity) separated by constant
states named configuration. The simple waves correspond to a change of state
parameterised by the eigenvalues \g =0, \y = u — ¢, A\s = u, and A3 = u + c.



The three last eigenvalues correspond to the classical Euler system while the
first eigenvalue Ay characterises the brutal change of cross-section. We recall
that the characteristic fields (or simple waves) associated to eigenvalues A\
and A3 are genuinely nonlinear providing rarefaction (noted 1 —r or 3 —r)
or shock (noted 1 — s or 3 — s) while the characteristic fields associated to Ag
and A are linearly degenerated (noted 0 — w or 2 — w). We also say that a
state V' = (¢, p, u, P) is a subsonic, sonic or supersonic state whether we have
u? < 2, u? = or u? > ¢ where ¢ stands for the sound velocity.

Since the system (12) is not strictly hyperbolic, simple waves can be distinct
or superposed inducing a large number of configurations. To select the ad-
missible configuration, we have introduced several criteria: the configuration
stability, the sign and the Mach criteria (see [11,19]) leading to the following
classification in four groups we shall precise in the next subsections:

(1) the classical wave configurations correspond to the situation where the four
simple waves are separated by constant states (see figure 3).

(2) the splitting wave configurations correspond to a situation where a genuinely
nonlinear wave is splitted by the 0 —w wave (see figure 4).

(3) the resonant wave configurations correspond to the situation when a genuinely
nonlinear wave splits the 0 — w wave (see figure 5).

(4) the resonant and splitting wave configurations is the more complex case: a
genuinely nonlinear wave is splitted by the 0 — w wave where one of the part
of the wave merges with the 0 — w wave (see figure 6).

3.1 Classical configurations

The classical configurations represent the situations where the eigenvalues A
are distinct corresponding to the Riemann problem for the conservative Euler
system augmented of the stationary wave located at the interface x = 0. We
can list four distinct configurations in function of the simple waves position
with respect to the interface 7.e. the 0 —w wave. If all the waves are on the left
side (configuration A) or on the right side (configuration D ) of the interface,
we deal with a supersonic flow where all the states are supersonic. The two
last configurations correspond to a subsonic flow whether the velocity at the
interface is negative (configuration B) or positive (configuration C). As an
example, figure 3 represents the B configuration where the gas velocity at the
interface is negative. Note that the 1 — w simple wave is on the left while the
3 — w simple wave is on the right.



Fig. 3. Example of classical configurations: the B configuration. The genuinely non-
linear simple waves 1 —w and 3 —w waves are rarefaction or shock waves whereas the
2 —w wave is the Ao = u contact discontinuity and the 0 — w wave is the stationary
contact discontinuity wave corresponding to the cross-section discontinuity.

3.2 Splitting configurations

The configuration where one of the genuinely nonlinear 1 — w or 3 — w waves
is splitted into two waves by the 0 — w stationary wave on both side of the
interface is a splitting configuration. It is proved that a rarefaction always takes
place on the side corresponding to the lower ¢ or ¢r. Moreover the fan must
touch the interface which corresponds to a sonic state. Consequently, there is
four distinct configurations in function of the values of ¢ and the genuinely
nonlinear waves which are splitted. Configuration LR; (Left Rarefaction with
the 1 — w as shown in figure 4) corresponds to a rarefaction with a 1 — w on
the left side. Note that the second part of the 1 — w is situated on the other
side of the interface and can be an other rarefaction or a shock. In a similar
way, we use the notations: RR; is a Right Rarefaction with the 1 — w wave
while LR3 and RRj3 represent the Left Rarefaction and Right Rarefaction for
the 3 — w wave respectively.

Fig. 4. Example of the splitting configurations: the LR; configuration. The 1 —w is
splitted into two parts, a rarefaction wave on the left side whom the fan reaches the
interface and a rarefaction or a shock wave on the right side of the 0 — w stationary
wave due to the cross-section discontinuity.
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3.8  Resonant wave configurations

We now consider the symmetric case where a genuinely nonlinear 1 — w or
3 — w wave splits the stationary wave into two parts named the resonant
configuration (see [19] p.892 case la (C) for example and [11]). For such a sit-
uation, the genuinely nonlinear wave is also a stationary shock corresponding
to a subsonic-supersonic transition which takes place at an intermediate value
of ¢s € [¢r, dr|. These two situations are referenced by R; (see figure 5 for
instance) or R3 whether the resonant configuration is obtained with the first
or the third eigenvalue.

O-w I-s O-w

1 1 ]
17ar ¥
1 LAY

o
#r ’ 3-
ﬁ:ﬁ‘ 7/’ "

n " 7

| S — x

=0

kg
2

S0

Fig. 5. Example of the resonant configurations: the R; configuration. The 1 —s is a
stationary shock wave superposed to the 0 — w wave. From left to right, we have a
first 0 — w wave transition from ¢y to an intermediate value ¢s. Then a stationary
1 — s shock wave occurs followed by an other 0 — w wave transition from ¢, to ¢g.
The two other 2 — w and 3 — w waves are the classical ones.

3.4 Resonant and splitting wave configurations

The last group is the most complicated one since we combine a resonant
situation with a splitting situation. A genuinely nonlinear 1 —w or 3 —w wave
is splitted into two pieces where the part situated on the lower cross-section is
a rarefaction which touches the interface. The other part is a stationary shock
sharing the 0 — w wave in another two parts leading to a resonant situation.
This configuration has been introduced in [19,10,11]. For example, as shown in
figure 6, the 1 —w is splitted into a rarefaction on the left side of the interface.
The first 0 — w wave takes place corresponding to a transition from ¢, to the
intermediate value ¢, followed by the second part of the stationary 1—s shock.
At last, a second transition with the 0 —w occurs from ¢4 to ¢r. The two other
waves are the classical ones. The notation LRR; means that we deal with a
Left Rarefaction and Resonant configuration with the 1 —w simple wave while
RRR; corresponds to the Right Rarefaction and Resonant configuration. In
the same way, we have the LRR3; and the RRR3 configurations.

11
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Fig. 6. Example of resonant splitting configurations: LRR; configuration. The first
part of the 1 —w wave is a 1 — r rarefaction wave taking place on the left side of the
interface and the second part is a 1 — s stationary shock superposed to the 0 — w
stationary for an intermediate value ¢;.

4 Comparisons between the two models

The aim of the current section is to draw comparisons between numerical so-
lution of the Riemann problems presented in the previous section of the two
models and the exact solution obtained with the inverse Riemann method
(see [11]). A similar work has already been carried out by [3] using a two-
dimensional model to compare the solutions but only for the classical config-
urations. We propose here a systematic comparison of all the configurations.
For the nonconservative Euler model, we consider a shock tube of length
x = [0 : 2] where the initial discontinuity is located at « = 0.8 and we
use a subdivision of 1000 mesh cells and an adapted time step to provide the
stability. For the axisymmetric model, we consider a cylindrical shock tube
of x = [0 : 2] length and the reference radius is arbitrarily chosen equal to
R,.; = 0.05 corresponding to ¢ = 1. Like in the previous case, the initial
cross-section discontinuity is located at x = 0.8. We use a 46000 triangle cells
mesh and the time step is controlled to provide a stable solution. The two
models are relied by the duct cross-section ratio with respect to the reference
radius and we set :
TR2 TR%

= = 18
¢L WRfef ) ¢R ﬂ_R%ef ) ( )

where R; and Rp are respectively the cross-section duct radius on the left
and right side of the interface.

We now give a detailed comparison of all the configurations. For a given left
and right side, we report in the table the exact solutions (note that we can
have several solutions) obtained by the inverse Riemann problem where we list
the successive constant states from left to right. Then we print out the density
and velocity of the gas for the one-dimensional nonconservative problem at a
representative time ¢, and the graph of the same quantities in function of x
following the axis » = 0 for the three-dimensional axisymmetric Euler case.
We finally plot a cut of the plane Orxz to provide the density map for the
axisymmetric problem at the same time ¢,.

12



4.1 Classical wave configurations

4.1.1  Configuration A

Table 1
Configuration of type A ={1 -2 —w,3 — 5,0 —w}

| | ) | p (kg.m™3) | u (m.s™ 1) | P (Pa) | Mach |
147 1.0 1 -1000 400000 1.336306 O-w
Va 1.0 0.714825 -757.020985 250000 1.081867
' 1.0 0.5 -757.020985 250000 0.904813
Vi 1.0 0.177419 -1609.823851 50000 2.562889
Vr 0.5 0.432066 -1322.085708 173835.409095 1.761576 Fr
X
1 -500
=—a Exact
— 1D =—= Exact
—— 2D Axi — 1D
0.8 —— 2D axi
-1000
¢ 0.6 ~
£ 3
y E
> 2z
2 8 ]
‘031 0.4 g ‘
-1500 -
0.2
0 . . . . ~2000 . . . .
0 0.4 0.8 12 16 2 0 0.4 0.8 12 1.6 2
Domain (m) Domain (m)

Fig. 7. Configuration of type A = {1 — 7,2 —w,3 — 5,0 — w} at time 3.107% s,

0.4

-—LA

Fig. 8. 50 isodensity from 1 to 0.09 at time 3.10~% s.

Comments. Table 1 gives the exact solution obtained with the inverse Rie-
mann problem while figures 7 and 8 show respectively the comparison between
the exact solution and the numerical approximations for the density and veloc-
ity with the two schemes. We note that the 1D-solutions (exact or numerical)
roughly correspond to the axisymmetric case. Indeed, the one-dimensional case
corresponds to strict longitudinal waves following the axial direction while the
numerical solution of the axisymmetric case provides oblique shocks leading
to a more complex density distribution and a smoothing effect for the shocks.
However, the axisymmetric numerical solution clearly catches the configura-
tion A in comparison with the exact solution.
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4.1.2  Configuration B

Table 2
Configuration of type B ={1 —r,2 — w,0 — w,3 — s}

| | b | p (kg.m™3) | u (m.s™ 1) | P (Pa) | Mach |
\%3 1.0 3.6 -100 400000 0.253546
Va 1.0 2.931302 -20.597552 300000 0.054415
Vi 1.0 4 -20.597552 300000 0.063565
Vr 0.5 3.975401 -41.450012 297420.273072 0.128075
Vr 0.5 1.597881 -329.977019 75000 1.287245
X
5 0
=—= Exact
YN == Exact
—— 2Daxi — 1
—— 2D axi
-100
I?E_ _‘\;
o £
2 8
a s
oL -300 |-
1 . . . . ~400 . . . .
0 0.4 0.8 1.2 16 2 0 0.4 0.8 1.2 1.6 2

Domain (m) Domain (m)

Fig. 9. Configuration of type B = {1 —r,2 —w,0 —w,3 — s} at time 12.107% s.

0.5 0.6 0.7
I

o 0.1 0.2 0.3 o.‘v4 ; K/ ) .
0.15 - N //

o

0.075

Fig. 10. 50 isodensity from 1.5 to 4 at time 12.107% s.

Comments. Table 2 gives the exact solution obtained with the inverse Rie-
mann problem while figures 9 and 10 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density
and velocity with the two schemes. For this configuration, we observe that the
1D-solutions (exact or numerical) perfectly fit with the axisymmetric solution
since the shock waves are principally longitudinal reducing the smoothing ef-

fect.
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4.1.3  Configuration C

Table 3
Configuration of type C = {1 — 7,0 — w,2 — w,3 — s}

| | ¢ | p (kg.m™3) | u (m.s™1) | P (Pa) | Mach
%3 0.9 3.6 100 300000 0.292770
Vi 0.9 2.694778 196.112884 200000 0.608399
Vr 1.0 2.828882 168.134511 214071.314011 0.516560
Va 1.0 3.4 168.134511 214071.314011 0.566308
Vr 1.0 3.238852 153.784754 200000 0.523034 143
3.6 - - - - 200
34 1 180 + 1
32t 1 o~ e0f ]
£ 2]
g E
= z
7] 8
& 3r , T w0t i
=—=a Exact
— 1D =—=a Exact
. — 2D axi — 1D
28 1 120 | —— 2Daxi i
26 . . . . 100 . . . .
0 0.4 0.8 1.2 1.6 2 0 0.4 0.8 1.2 1.6 2

Domain (m) Domain (m)

Fig. 11. Configuration of type C = {1 — 7,0 — w,2 — w,3 — s} at time 12.107% s.

0.9

N A=

Fig. 12. 50 isodensity from 2.3 to 3.6 at time 12.107% s.

Comments. Table 3 gives the exact solution obtained with the inverse Rie-
mann problem while figures 11 and 12 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density
and velocity with the two schemes. In the vicinity of the cross-section discon-
tinuity, we note differences between the solutions of the axisymmetric problem
and the nonconservative one. The very small jump of cross-section seems to be
smoothed in the three-dimensional context while the one-dimensional model
preserves the stationary shock. However, the other waves fit well with the
exact solution.
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4.1.4  Configuration D

Table 4
Configuration of type D = {0 —w,1 — 5,2 —w,3 — s}

| | @ | p (kg.m™3) | u (m.s™ 1) | P (Pa) | Mach |
%3 0.7 1 800 80000 2.390457
Vr 1.0 0.656948 852.426066 44425.652469 2.770393
Va 1.0 1.154958 661.437525 100000 1.899800
Vi 1.0 4 661.437525 100000 3.535532
Vr 1.0 3.259259 623.748607 75000 3.475157 ¥
4 T 900
—— Exact
— 1D /l
— 2D axi
3t ]
800
'VE. _‘(’;;
> E
s2r z
£ 3
g 2 Exact
[a} > — 1D
700 —— 2D axi 4
| L
0 . . . 600 . . .
0 0.5 1 15 2 0 0.5 1 15 2

Domain (m)

Domain (m)

Fig. 13. Configuration of type D = {0 —w,1 — 5,2 — w,3 — s} at time 12.107% s.

Fig. 14. 50 isodensity from 0.06 to 4.3 at time 12.107% s.

Comments. Table 4 gives the exact solution obtained with the inverse Rie-
mann problem while figures 13 and 14 show respectively the comparison be-

tween the exact solution and the numerical approximations for the density and

velocity with the two schemes. The profiles are roughly respected in the shock
tube but we note important oscillations of the axisymmetric solution (essen-
tially on the first left plateau). Like configuration A, we observe slanted waves
stemming from the three-dimensional context (radial waves are generated at
the interface).
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4.2 Splitting wave configurations

4.2.1 Configuration LRy with rarefaction

Table 5
Configuration of type LR; with rarefaction LRy _rar = {1—r,0—w,1—r,2—w,3—r}

| | b | P (k:g.m73) | u (m.sil) | P (Pa) | Mach |
%3 0.8 5 250 400000 0.747018
\7] 0.8 4.031127 320.553342 295868.736587 1.0
Vr 1.0 2.262737 456.859511 131822.563570 1.599708
Va 1.0 1.583820 555.189919 80000 2.087783
Vi 1.0 1.68 555.189919 80000 2.150241
Vr 1.0 2.376396 647.909308 130000 2.341197

700

600 -

.~ 500

Density (kg.m ™)
w
Velocity (m.s

IN
S
S

N

300 -

0 014 018 112 1.‘6 2 0 0.‘4 018 112 118 2
Domain (m) Domain (m)

Fig. 15. Configuration of type LRy _rar = {1 —r,0 —w,1 — 7,2 —w,3 — r} at time

12.107% s.

05 06 07 08 0.9 1 1.1 1.2 13 14 15 16 17 1.8 1.9 2

Fig. 16. 50 isodensity from 1 to 5 at time 12.107% s.

Comments. Table 5 gives the exact solution obtained with the inverse Rie-
mann problem while figures 15 and 16 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density
and velocity with the two schemes. We first remark that both the 1D-model
and the 3D-model present left rarefaction which spreads out from the left
subsonic state so far to a sonic state at the interface as stated by the theory
in |11|. The curves fit well despite some oscillations of the V, state for the
three-dimensional configuration consecutive to oblique shocks. Thanks to our
experience and after a lot of numerical experiments, it appears that this par-
ticular state (just before or just after a rarefaction reaching the sonic point)
is always difficult to accurately approximate. It is one of the most sensitive
state.
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4.2.2  Configuration LRy with shock

Table 6
Configuration of type LRy with shock LR; sck={1—-7r,0—-w,1 —s,2—w,3 — s}

| | ) | p (kg.m™3) | u (m.s™1) | P (Pa) | Mach |
\%3 0.8 5 200 300000 0.690066
Vi 0.8 3.835307 274.856279 206958.559906 1.0
Vr 1.0 2.152820 391.731075 92209.160840 1.599708
Va 1.0 3.037373 303.313516 150000 1.153536
Vi 1.0 1.68 303.313516 150000 0.857900
Vr 1.0 1.033846 136.275239 75000 0.427612

400
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— 1D
—— 2D axi

w
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0 0.4 0.8 12 1.6 2 0 0.4 0.8 12 16 2
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Fig. 17. Configuration of type LRy sck = {1 —r,0 —w,1 — s,2 —w,3 — s} at time
12.107% s.

Fig. 18. 50 isodensity from 1 to 5 at time 12.107% s.

Comments. Table 6 gives the exact solution obtained with the inverse Rie-
mann problem while figures 17 and 18 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density and
velocity with the two schemes. The previous comments apply to this configura-
tion: the intermediate state V,. for the 3D-solution presents strong oscillations
and we observe that the 1 — s shock computed with the 1D-model parting
the V. and V, states is smoothed. However, the axisymmetric solution clearly
coincides well with the one-dimensional solutions.

18



4.2.3  Configuration LRs with rarefaction

Table 7

Configuration of type LR3 with rarefaction LR3 rar = {1—s,2—w,3—r,0—w,3—7r}

=—a Exact
— 1D
—— 2D axi

| | b | P (k:g.m73) | u (m.s™ 1) | P (Pa) | Mach |
%3 0.5 2 -200 400000 0.377964
Va 0.5 2.666667 -358.113883 600000 0.638066
Vi 0.5 10.0 -358.113883 600000 1.235610
Vi 0.5 12.123795 -301.208593 785679.190499 1.0
Vr 1.0 18.258264 -100.003790 1393780.920329 0.305904
Vr 1.0 26.112017 21.244529 2300000.0 0.060498
30 100
ol
20
< ~ -100 |
€ 4
g £
2 »—= Exact %
H — 1 3 -200
[a} —— 2Daxi >
10 +
-300 -
. 5
0 : : : : -400
0 0.4 0.8 12 16 2 0

Fig. 19. Configuration of type LR3 rar = {1 —s,2—w,3 —r,0 —w,3 — r} at time

8104 s.

0.075

Comments. Table 7 gives the exact solution obtained with the inverse Rie-
mann problem while figures 19 and 20 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density
and velocity with the two schemes. The theoretical small 3 — r rarefaction
which takes place from state V, to the sonic point V; predicted by the one-
dimensional model is not well reproduced by the three-dimensional model. One
more time, small oscillations consecutive to oblique waves before and after the
cross-section change appear. Nevertheless, the intermediate states correspond
and the three simulations provide a LR3 configuration.

Domain (m)

0.4

0.8

Domain (m)

Fig. 20. 50 isodensity from 2 to 27 at time 8.107% s.
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4.2.4  Configuration LRs with shock

Table 8
Configuration of type LRs with shock LR3 sck ={1 —5,2—w,3 —r,0 —w,3 — s}

| | b | P (k:g.m73) | u (m.s™ 1) | P (Pa) | Mach | 17 f
%3 0.5 5 -250 400000 0.747018
Va 0.5 6.666667 -350 600000 0.986013
Vi 0.5 10.0 -350 600000 1.207615
Vi 0.5 11.854071 -299.856279 761317.446137 1.0
Vr 1.0 17.852064 -99.554810 1350563.618802 0.305904
Vr 1.0 4.619603 -542.096262 130000.0 2.731134
X
20 T T T T 0
=—a Exact
— 1D =—a Exact
—— 2D axi -100 - — 1D
—— 2D axi
15
-200 -
E . | }
=
i 10 | > 300 - | )}
g g J
a S
f- -400
|
5 ‘ f
=500 -
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0 0.4 0.8 12 16 2 0 0.4 0.8 12 16 2
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Fig. 21. Configuration of type LR3 sck = {1 —$,2 —w,3 —r,0 — w,3 — s} at time
8.107% s.

Fig. 22. 50 isodensity from 3 to 19 at time 8.107% s.

Comments. Table 8 gives the exact solution obtained with the inverse Rie-
mann problem while figures 21 and 22 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density and
velocity with the two schemes. The present simulation is very similar to the
former one but we have, in this case, a 3 — s shock to link V. to Vx on the right
side of the interface while we have a 3 — r rarefaction to link the states in the
previous case. Comments and remarks are very similar, the three simulations
provide the same configuration but oscillations due to oblique shocks appear
with the three-dimensional model.
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4.2.5 Configuration RRy with rarefaction

Table 9
Configuration of type RR; with rarefaction RR; _rar = {1—r,0—w,1—r,2—w, 3—s}

| | ) | p (kg.m™3) | u (m.s™ 1) | P (Pa) | Mach |

\%3 1.0 3.6 0.0 400000 0.0

Vi 1.0 2.501047 138.544575 240218.917576 0.377818
Vr 0.6 1.701108 339.491071 140042.899031 0.999999
Va 0.6 1.337395 419.224375 100000 1.295723
Vi 0.6 0.7 419.224375 100000 0.937414
Vr 0.6 0.570370 329.130629 75000 0.767100

4 500
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300 -

-1,

Density (kg.m )
Velocity (m.s )
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=—u Exact
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Fig. 23. Configuration of type RR; _rar = {1 —r,0 —w,1 — 7,2 —w,3 — s} at time
12.107% s.

Fig. 24. 50 isodensity from 0.5 to 3.6 at time 12.107% s.

Comments. Table 9 gives the exact solution obtained with the inverse Rie-
mann problem while figures 23 and 24 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density and
velocity with the two schemes. We now consider situations when the lowest
cross-section is on the right side leading this time to a right rarefaction. We
observe that for this particular configuration the three curves suit well.
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4.2.6  Configuration RRy with shock

Table 10
Configuration of type RRy with shock RRy _sck ={1—s,0—w,1—7r,2 —w,3 — s}

| | ) | p (kg.m™3) | u (m.s™1) | P (Pa) | Mach |

\%3 1.0 3 100 200000 0.327327
Vi 1.0 3.259671 74.409093 224662.868292 0.239543
Vr 0.4 2.126227 285.187189 123521.258857 1.0

Va 0.4 1.559044 370.984366 80000.0 1.384127
Vi 0.4 1.0 370.984366 80000.0 1.108528
Vr 0.4 0.862385 322.059761 65000.0 0.991440

4 400

T T T T T T T T
=—a Exact '
— 1D
—— 2D axi

3 b 300

=—a Exact
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N
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Fig. 25. Configuration of type RR; sck ={1—s,0—w,1 — 7,2 —w,3 — s} at time
12.107% s.

Fig. 26. 50 isodensity from 0.8 to 3.6 at time 12.107% s.

Comments. Table 10 gives the exact solution obtained with the inverse Rie-
mann problem while figures 25 and 26 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density
and velocity with the two schemes. In contrast with the previous case, the
second part of the 1 —w wave which shares the states V7, and V] is a shock (a
rarefaction in the former case). Note that despite the large cross-section ratio,
we obtain the same configuration between the "real" three-dimensional model
and the "homogenised" one-dimensional model.
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4.2.7 Configuration RR3 with rarefaction

Table 11
Configuration of type RR3 with rarefaction RR3 rar = {1—s,2—w,3—7r,0—w,3—7r}

| | b | P (k:g.m73) | u (m.s™ 1) | P (Pa) | Mach |

%3 1.0 5 -250 100000 1.494036

Va 1.0 6.666667 -300 150000 1.690309

Vi 1.0 8 -300 150000 1.851640

Vi 1.0 9.648037 -269.076202 194975.414173 1.599708

Vr 0.8 17.188238 -188.796060 437611.952725 1.0

Vr 0.8 22.801474 133.905733 650000 0.670286
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Fig. 27. Configuration of type RRs _rar = {1 —s,2 —w,3 —r,0 —w,3 — r} at time
12.107% s.

Fig. 28. 50 isodensity from 4 to 23 at time 12.107% s.

Comments. Table 11 gives the exact solution obtained with the inverse Rie-
mann problem while figures 27 and 28 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density and
velocity with the two schemes. The present simulation shows clearly the oscil-
lations origin. Strong slanted shocks propagate and the nice plateau (constant
solution) obtained with the one-dimensional is poorly reproduced by the ax-
isymmetric solution. Nevertheless, the theoretical configuration predicted by
the 1D-model is confirmed by the 3D-simulation which indicates the adequacy
of the homogenised model with the "real" one.
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4.2.8 Configuration RRs with shock

Table 12
Configuration of type RR3 with shock RR3 sck = {1 —5,2—w,3—5,0—w,3 -1}

| | ) | p (kg.m™3) | u (m.s™ 1) | P (Pa) | Mach |
\%3 1.0 3 -400 50000 2.618615
Va 1.0 4.875 -480.064077 100000.0 2.832843
Vi 1.0 1.0 -480.064077 100000.0 1.283025
\7] 1.0 0.783632 -569.600910 70964.939235 1.599708 250
Vr 0.8 1.396062 -399.657818 159277.033801 1.0
Vr 0.8 1.642596 -333.595729 200000.0 0.807992 >
5 -300
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Fig. 29. Configuration of type RR3s sck = {1 —s,2—w,3 — 5,0 —w,3 —r} at time
12.107% s.
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Fig. 30. 50 isodensity from 0.4 to 5 at time 12.107% s.

Comments. Table 12 gives the exact solution obtained with the inverse Rie-
mann problem while figures 29 and 30 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density
and velocity with the two schemes. With this last configuration of the RR
group, we observe that the density curve of the 3D-solution fits rather well
with the theoretical density curve but the velocity are very poorly approxi-
mated. The origin of such a difference seems to be the contact discontinuity
which is clearly not preserved by the axisymmetric solution. In this case, it
becomes difficult to draw comparisons between the two models although the
configurations are really similar.
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4.3  Resonant wave configurations

4.3.1 Configuration R,

Table 13
Configuration of type Ry = {0 —w,1 — 5,0 —w,2 —w,3 —r}
I3
| | ¢ | p (kg.m™3) | u (m.s™1) | P (Pa) | Mach |
VL 1.0 1 500 100000 1.336306 Oow 15 0w
Vs 0.979139 1.051791 485.507722 107325.116343 1.284536 IV ! ! 2w
s, 1 ¥sn ’
Vs,r 0.979139 1.565848 326.119084 188717.365256 0.793928 | I & 1 ¥ ',V 3
1, 1¥zr@ -w
Vr 0.95 1.453274 362.158786 170000.000005 0.894920 4 | e /' )
7
Va 0.95 1.2 362.158786 170000.000005 0.813207 |43 ? : LI Vi
Vi 0.95 1.347710 414.461597 200000.0 0.909292 e x
x=0
17 : : : : 550
=——= Exact =—a Exact
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Fig. 31. Configuration of type Ry = {0—w,1—s,0—w,2—w, 3—r} at time 12.107% s.

UL —

Fig. 32. 50 isodensity from 0.8 to 2 at time 12.107% s.

Comments. Table 13 gives the exact solution obtained with the inverse Rie-
mann problem while figures 31 and 32 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density
and velocity with the two schemes. In the resonant configuration, the transi-
tion between the state V7, and V, requires two intermediate states V; and Vj ,
which are superposed with the interface with two different densities (indicated
by the black box in figure 31). We indeed observe that the three-dimensional
simulation presents a peak at the interface which corresponds to the higher in-
termediate density. It is remarkable to see that the 1D-exact solution coincides
very well with the axisymmetric solution.
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4.3.2  Configuration Rs

Table 14
Configuration of type R3 = {1 —r,2 —w,0 —w,3 — 5,0 — w}
I3
| | ¢ | p (kg.m™3) | u (m.s™1) | P (Pa) | Mach |
VL, 0.9 1 -1000 400000 1.336306 0w 35 O-w
Va 0.9 0.909028 -929.300937 350000 1.265747 2-w :VJ:Y !
s,
Vi 0.9 0.3 -929.300937 350000 0.727142 \\ o 1
1w Va \\ &+¢R
Vs,l 0.947867 0.314418 -841.908993 373773.744392 0.652605 ~ ‘&* |
Y
Vs, r 0.947867 0.148077 -1787.656974 123423.468739 1.654876 143 s : : Vr
Vr 1.0 0.136386 -1839.710883 110000.000014 1.731309 — x
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Fig. 33. Configuration of type R3 = {1—7,2—w,0—w,3—s,0—w} at time 3.107* s.
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Fig. 34. 50 isodensity from 0.1 to 1 at time 3.107% s.

Comments. Table 14 gives the exact solution obtained with the inverse Rie-
mann problem while figures 33 and 34 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density and
velocity with the two schemes. We now consider a similar resonant situation
but with the 3 — s stationary shock inside the interface. The three solutions
fit nicely and no peak is observed since the intermediate state density V,,
Vs belongs to the density of V; and V. This point seems to confirm that
the peak in the previous 3D approximation is not a numerical artefact but an
approximation of the intermediate state densities.
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4.4 Resonant and splitting wave configurations

4.4.1 Configuration LRR,

Table 15
Configuration of type LRR; = {1 —r,0 —w,1 —$,0 —w,2 — w,3 — s}
t
T o+ [ 7+ T « T © T vea]
Vi, 1.3 1.862000 | 0.826000 | 2.458300 | 0.607559
\7 1.3 1.327678 | 1.270616 | 1.531063 1.0 1 Ow I 0w
Yo 2-w
Ve, | 1.31102 | 1.214478 | 1.377370 | 1.351478 | 1.103511 v IV Loy
s 5r)
Vs,r | 1.31102 | 1.427126 | 1.172136 | 1.694791 | 0.909049 YRS A 3w
Vy 1.6 1.789307 | 0.766029 | 2.326095 | 0.567819 v h?"s |/‘%
L s R
Va 1.6 2.0 0.766029 | 2.326095 | 0.600320 bk
| —— ) x
Vg 1.6 1.795636 | 0.629806 2.0 0.504356 =0
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Fig. 35. Configuration of type LRR; = {1 — 7,0 —w,1 — 5,0 —w,2 —w,3 — s} at

time 0.5 s.
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Fig. 36. 50 isodensity from 1.3 to 2 at time 0.5 s.

Comments. Table 15 gives the exact solution obtained with the inverse Rie-
mann problem while figures 35 and 36 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density
and velocity with the two schemes. We here deal with the more complex sit-
uation where we have both a splitting wave and a resonant situation. The
positive point is that we obtain the same theoretical configuration both with
the one-dimensional and the three-dimensional model which suggest that such
a configuration is physical. The negative point is the very poor approximation
of the 1 — r rarefaction on the left side of the interface that reaches the sonic
point. We have performed numerical simulations with finer meshes with the
axisymmetric model to see if, possibly, we better catch the rarefaction but the
tests were negative.
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4.4.2  Configuration LRR;

Table 16
Configuration of type LRRs = {1 —s,2 —w,3 — 7,0 —w,3 — 5,0 —w}
— — t
| | ¢ | p (kg.m™3) | u (m.s™1) | P (Pa) | Mach |
\%% 0.95 1.6 -200.0 100000 0.676123
Va 0.95 2.6 -355.043418 200000 1.081905
Vp 0.95 3.0 -355.043418 200000 1.162152
7 0.95 3.427892 -313.761442 | 241045.084752 1.0
Vs | 0.968138 2.987938 -353.216986 | 198875.088944 | 1.157106 %
Ve,r | 0.968138 3.786653 -278.713217 | 277505.646851 | 0.870133
Vr 1.0 4.052357 -252.140550 | 305143.954267 | 0.776569
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Fig. 37. Configuration of type LRR3 = {1 — 5,2 —w,3 — 1,0 —w,3 — 5,0 — w} at
time 12.1074 s.
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Fig. 38. 50 isodensity from 1.6 to 5.2 at time 12.107% s.
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Comments. Table 16 gives the exact solution obtained with the inverse Rie-
mann problem while figures 37 and 38 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density and
velocity with the two schemes. This test was performed with a small variation
of ¢ so the 3 — r rarefaction from Vj, to the sonic state V;; is small, neverthe-
less, we observe an overshoot for the axisymmetric simulation and oscillations
with the 1D-solution which indicates that such a configuration is really diffi-
cult to compute. The positive point is that the three solutions correspond to
the same configuration and state V, is well-approached. Note that the density
of the intermediate state V; is lower than V; and V,. We observe that both
the 1D and 3D approximations try to catch the lower density, we think that
such a behaviour of the scheme is responsible of a wrong evaluation of the
rarefaction up to the sonic state.
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4.4.3  Configuration RRR,

Table 17
Configuration of type RRR; = {0 —w,1 — 5,0 —w,1 — 7,2 —w,3 —r}
i
C T o T > [ « T v [ wea]
\%3 1.0 1.3 2 1 1.927248
Vs,L 0.78177 1.872903 1.775738 1.667250 1.590641
Vs, r 0.78177 3.775791 0.880818 4.643562 0.671275
Vr 0.7 2.969906 1.250641 3.318027 1.0
Va 0.7 0.533582 3.067818 0.3 3.457843 v,
W 0.7 1.0 3.067818 0.3 4.733745
Vr 0.7 2.363115 3.675948 1.0 4.775818
4 4
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Fig. 39. Configuration of type RRR; = {0 —w,1 —s,0 —w,1 — 7,2 —w,3 —r} at
time 0.2 s.

Fig. 40. 50 isodensity from 0.3 to 4 at time 0.2 s.

Comments. Table 17 gives the exact solution obtained with the inverse Rie-
mann problem while figures 39 and 40 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density and
velocity with the two schemes. We first mention that we have drawn a simple
line between V,. and V, for the sake of simplicity to represent the rarefaction
and the real curve would be a convex one very similar to the numerical approx-
imations. For the present case, the intermediate value V, density is higher
than the other density and we find again that both the numerical approxima-
tions try to catch the higher density value.
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4.4.4  Configuration RRR3

Table 18
Configuration of type RRR3 = {1 — 5,2 —w,0 —w,3 — 5,0 —w,3 —r}
C T 5 T > T v [ v [ ] :
Vv 1.0 1.4 2.0 2.0 1.414214
L 0-w 35 O-w
Va 1.0 2.077419 | -2.591083 35 1.687118 N o
2-w
v 1.0 0.3 -2.591083 3.5 0.641127 SR :V :V \,:
s I
Vo, | 0.880412 | 0.258647 | -3.379023 | 2.843740 | 0.861264 tw Vs
) . . . Y | o
Ve | 0.889412 | 0.200487 | -4.359267 | 1.987030 | 1.170281 N”LT i
Vi 0.87 0.232799 | -3.837976 | 2.449388 1.0 >
VR 0.87 0.269081 | -3.273959 3.0 0.828687 =0
25 T T T T -15
== Exact == Exact
pT —— 10
2+ —— 2D axi —— 2Daxi

0
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Fig. 41. Configuration of type RRR3 = {1 — 5,2 —w,0 — w,3 — 5,0 —w,3 — r} at
time 0.15 s.

0.075

Fig. 42. 50 isodensity from 0.2 to 2.2 at time 0.15 s.

Comments. Table 18 gives the exact solution obtained with the inverse Rie-
mann problem while figures 41 and 42 show respectively the comparison be-
tween the exact solution and the numerical approximations for the density and
velocity with the two schemes. The configuration RRR;3 is similar to the LRR;
one (in particular the velocity). The 3 — r transition to the 3D sonic state at
the interface is poorly approximated where this time the schemes attempt to
catch the higher velocity between the three states Vj;, V;, and V,. Density
variations are too small to comment the simulations around the interface but
the other states V,, V; are well-approximated.
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5 Non uniqueness of the Riemann problem solutions

Non uniqueness of the Riemann problem solutions is well-known for the non-
conservative Euler system |3] and the nonconservative shallow-water problem
|2]. The point is that the transition across the interface does not behave in the
same manner whether we deal with a subsonic or a supersonic flow. Conse-
quently, we can exhibit Riemann problems with two distinct entropy solutions
(in the Lax sense) whether we use the subsonic branch of the interface transi-
tion or the supersonic one. We propose here several couples of configurations
which are solutions of the same Riemann problem and we compare the 1D-
solution with the numerical approximation obtained with the axisymmetric
model.

5.1 Non uniqueness between configurations C and D

We first test the configuration proposed by Andrianov and Warnecke in [3].
We have listed the densities, velocities and pressures obtained by the inverse
Riemann problem in table 19.

Table 19
Configuration of type C' and D
0] p u P
Configuration of type C' = {1 — 5,0 —w,2 —w,3 — s}
Vi | 0.8 | 0.2069 | 3.991 0.07
V; 1 0.8 1.1109 | 0.3377 3.4634
V- | 0.3 | 1.0019 | 0.9985 2.9972
Vo | 0.3 ] 0.6997 | 0.9985 2.9972
Vr | 0.3 | 0.1354 | -3.1668 0.0833

Configuration of type D = {0 —w,1 — 5,2 —w,3 — s}

Vi 1 0.810.2069 | 3.991 0.07

Vi1 0.3 | 0.5736 | 3.8387 0.2918
Vo | 03] 24112 | 1.6389 3.934
Vo [ 03| 0.724 | 1.6389 3.934
Vr | 0.3 ] 0.1354 | -3.1668 0.0833

With the same initial conditions, the Riemann problem for the nonconser-
vative model has two distinct entropy solutions in the Lax sense but the
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numerical scheme based on the nonconservative Rusanov flux [11] and the
numerical scheme based on the axisymmetric model provide the same config-
uration C'. Figures 43 give the theoretical density and the entropy using the
inverse Riemann problem and the numerical approximations obtained with the
one-dimensional model and the axisymmetric model (at » = 0). We present
in figure 44 the repartition of the density and entropy at the same time for
the full three-dimensional model. We observe that the shock are longitudinal
which guarantees a good correspondence between the one-dimensional non-
conservative model and the three-dimensional conservative one.

=—=a ExactC

4 —4ExactD 4—aA Exact_C

— 2Daxi o — o Exact D

—— 1D - — 20 .
6 —— 1D * -

Entropy (J.kg )
~

Density (kg.m )

N

Domain (m) Domain (m)

Fig. 43. Distribution of the density and the entropy obtained by the nonconservative
and the axisymmetric models and the two solutions of the inverse Riemann problem
at time £ = 0.35 s.

0.15

Fig. 44. 50 isodensity (top) from 0.135 to 1.13 and 50 isoentropy (bottom) from
0.635 to 4.92 at time t = 0.35 s.

We plot the velocity and the Mach number in figure 45 for the theoretical
solutions (configuration C' and D), the one-dimensional approximation and
the axisymmetric model solution at » = 0 while we give in figures 46 the map
of the velocity and the Mach number using the axisymmetric model. Like the
density map, the velocity obtained by the axisymmetric model presents very
straight longitudinal shocks which legitimate the one-dimensional approach.
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Fig. 45. Distribution of the velocity and the Mach number obtained by the noncon-
servative and the axisymmetric models and the two solutions of the inverse Riemann
problem at time ¢ = 0.35 s.
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Fig. 46. 50 isovelocity (top) from -3.17 to 3.99 and 50 isomach (bottom) from 0.0179
to 5.8 at time ¢ = 0.35 s.

5.2 Non uniqueness between configurations D and RRR1

We proposed here a new non uniqueness case between configurations D and
RRR,. Densities, velocities and pressures for the two configurations obtained
by the inverse Riemann problem are presented in table 20.

With the same initial conditions, the Riemann problem for the nonconservative
model has two distinct entropy solutions in the Lax sense but the numerical
scheme based on the nonconservative Rusanov flux [11]| selects the D con-
figuration whereas the numerical solution based on the axisymmetric model
[12] corresponds to the RRR; configuration. We display in figure 47 the the-
oretical density and entropy using the inverse Riemann problem and the two
numerical solutions (with the one-dimensional and the axisymmetric models).
We note that the physical solution obtained with the 3D-model corresponds
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Table 20

Configuration of type D and RRR;

¢ p (kg.m™?)

u (m.s™h)

P (Pa)

Configuration of type D = {0 —w,1 — 5,2 —w,3 — s}

%5 1.0 1 650 60000

Vi 0.75 1.4557 595.3377 101502.1874
Va 0.75 0.7469 790.5361 39874.3
Wy 0.75 4.9888 790.5361 39874.3
Vg 0.75 9.2747 860.373 95000

Configuration of type RRR; = {0 —w,1 —

$,0—w,1 —r2—w3—r}

%5 1.0 1 650 60000
Vs | 0.940495 1.0802 639.7901 66846.4501
Visr | 0.940495 3.1490 219.4730 357338.2303
Vi 0.75 2.3128 374.7221 231970.8357
Va 0.75 0.6589 790.7742 40000
Wy 0.75 3 790.7742 40000
Vg 0.75 9.2747 860.373 95000

to the largest global entropy production (global in the sense that we spatially
integrate the entropy on interval [0, 2]). Such a criterion has been mentioned
by Andrianov and Warnecke [3].
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Fig. 47. Distribution of the density and the entropy obtained by the nonconservative
and the axisymmetric models and the two solutions of the inverse Riemann problem

at time t = 1 ms.

We show in figure 48 the density and the entropy maps obtained with the
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axisymmetric model. We observe that the shocks are mainly longitudinal which
explains the nice fitting between the numerical solution and configuration
RRR;.

0.075

0.15

0.075

013

Fig. 48. 50 isodensity (top) from 0 to 10 and 50 isoentropy (bottom) from 0 to 80000
at time £ =1 ms.

We plot in figure 49 the velocity and the Mach number for the theoretical
solutions for configurations D and RRR; and the numerical approximation
using the 1D-nonconservative model and the 3D-conservative one. We ob-
serve a very good correspondence between the 1D-model and configuration D
whereas the approximations obtained with the axisymmetric model suit well
with configuration RRR;.
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Fig. 49. Distribution of the velocity and the Mach number obtained by the noncon-

servative and the axisymmetric models and the two solutions of the inverse Riemann

problem at time ¢t = 1 ms.

Figure 50 represents the velocity and Mach number maps at time ¢ = 1 ms.
Like the density and the entropy, shock waves are longitudinal which guarantee
a good correspondence with the theoretical one-dimensional model.
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0.075

0.13

Fig. 50. 50 isovelocity (top) from 0 to 900 and 50 isomach (bottom) from 0 to 8 at
time t = 1 ms.

5.3  Remarks and conjunctures

We propose here some remarks and conjunctures based on our numerical ex-
perience. We do not have clear theoretical arguments or solid experimental
facts to prove the conjunctures but just some intuitions upon the complex
problem of non uniqueness.

e Since we do not have uniqueness of the solutions with configurations D and
C but also with configurations D and RRR;, we should have non unique-

ness situations with configurations A and B but also with configurations A
and LRRs.

e We also think that they may have many other situations of non unique-
ness, for example between configurations D and RR; (very similar to D
and RRR;) but also D and LR;. Non uniqueness with three available con-
figurations like D, RRR, and RR; seems also conceivable.

e When the solutions of the nonconservative problem are not unique, it has
been noticed that two different numerical methods can provide two differ-
ent solutions for the one-dimensional problem (see |2| for the shallow water
problem). A first conclusion could be that scheme S1 chooses the right so-
lution while scheme S2 chooses the wrong one. We think that the numerical
schemes do not behave like that and we propose here an other explanation.
Assume that for very large velocity uy, on the left side, we have a unique su-
personic solution corresponding to configuration D. If we reduce the velocity
uy, till a limit velocity u;,, the non uniqueness situation arises and two con-
figurations are now available D and RRR1 for uy < w;,,. The axisymmetric
model simulation provides the RRR; solution but the numerical simulation
with a scheme S1 provides configuration D. We think that scheme S1 will
provide a D configuration as long as uj, is larger to a critical velocity wu..:
for ur > u. the scheme S1 provides a D configuration and for uy < wu, it
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switches to the "good" configuration RRR;.

The value of u. depends on the scheme S1 and if we consider an other scheme
S2 for the one-dimensional case, the critical velocity where it switches from
the wrong configuration to the right configuration may be different. Our
view is the following: some schemes have critical velocity close to the limit
velocity u. = um, hence they rapidly behave as the axisymmetric model
while other schemes have a critical velocity far from the limit velocity
U, << Uy, and they provide the wrong solution for a larger number of
initial conditions.

As a conclusion, we think that a numerical flux does not always provide the
right or the wrong solution but provides the right or the wrong solutions
for two distinct sets of initial conditions in the phase space.
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6 Shock wave interaction with a cross-section reduction in a duct

In numerous engineering applications |5,26], practical situations do not exactly
correspond to pure Riemann problems for the nonconservative Euler system
with two definitively different states on the left and right side of a cross-
section discontinuity. Indeed, in many applications, the state discontinuity
and the cross-section jump are not located at the same place (see figure 51).
A Riemann problem for the conservative Euler system generates travelling
waves (an explosion generated by a high pressure and a low pressure chambers
separated by a diaphragm for instance) which interact with the cross-section
jump located after the diaphragm. The incident shock wave is then separated
into a transmitted shock wave and a reflected shock wave in function of the
section variation.

DR =100 mmn IO High pressure chamber ) Low pressure | chamber ]$ DL =63.24 mm
0.7 m
< 14m >
2m
D, =100 mm I 0 High pressure chamber ) Low pressure | chamber $DL =50.0 mm
P 0./m .
1.4m
1.7 m
2m

Fig. 51. Shock tube geometry for the test 1 (top) and test 2 (bottom).

In order to perform numerical simulations of such a situation, we consider a
shock tube of length = = [0 : 2] equipped with a section reduction situated at
x = 1.4 m. The initial discontinuity between the high pressure chamber and
the low pressure chamber is located at x = 0.7 m. As in the previous sections,
we compare the waves evolution between the one-dimensional nonconservative
model and the three-dimensional axisymmetric model. We have carried out
two kinds of simulation whether we use a discontinuous or a smooth transition
between the two sections as displayed in figure 51. We sum up here the two
configurations we deal with. Note that the classical Riemann problem we use
to generate the shock wave is exactly the same in the two situations in order
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to compare the transition effects.

e A discontinuous cross-section reduction (test 1), 7.e. an abrupt transition from
¢ = 1to ¢ = 0.4 (respectively a change of cross-section from R = 0.05 to
R = 0.0316 in the axisymmetric context). The initial conditions of the shock
tube are summarised in table 21.

Table 21
Initial conditions of the shock tube for the test 1

Position (m) | ¢ | R (m) | p (kgm™3) | u (m.s™') | P (Pa)

r=1[0:07 | 1 | 0.05 35.6 0 30 x 10°
r=100.7:14| 1 | 0.05 1.1867 0 1 x10°
r=1[1.4:2] | 0400316 | 1.1867 0 1 x 10°

e A regular cross-section reduction (test 2), i.e. corresponding to a linear transition
from ¢ =1 to ¢ = 0.25 (respectively a linear transition of the cross-section from
R =0.05 to R = 0.025). The initial conditions of the shock tube are summarised
in table 22.

Table 22
Initial conditions of the shock tube for the test 2

Position (m) 10) R (m) p (kgm™3) | u(m.s™1) | P (Pa)
z=1[0:0.7] 1 0.05 35.6 0 30 x 10°
x=1[0.7:1.4] 1 0.05 1.1867 0 1 x10°
r=1[14:17|1-0.25]0.05—0025| 1.1867 0 1 x 10°
r=[17:2] 0.25 0.025 1.1867 0 1 x10°

6.1 The discontinuous transition case

We first consider the situation of the abrupt transition. Table 21 gives the
initial conditions of the shock tube while figures 52 show respectively the
comparison between the one-dimensional model and the axisymmetric one (we
display the cut at r = 0) for the density and Mach number at two different
times ¢ = 1.3 ms (top) and ¢ = 1.7 ms (bottom). At last, figure 53 gives the
density isolines for the axisymmetric model at time t = 1.7 ms.
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Fig. 52. Distribution of the density and the Mach number obtained by the two
models at time ¢ = 1.3 ms (top) and ¢ = 1.7 ms (bottom) for the test 1.
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Fig. 53. 50 isodensity from 1 to 36 at time ¢ = 1.7 ms.

Comments. The incident shock wave generated by the Riemann problem is
parted into a transmitted wave and a reflected wave at time ¢ = 1.3 ms by
the cross-section discontinuity located at = 1.4 m. Both the models give a
similar behaviour but several differences can be highlighted. We first observe
that the nonconservative model generates a higher reflected wave density and
a lower transmitted wave density with respect to the axisymmetric model. The
transition between the cross-section discontinuity and the transmitted shock
(the 3 — s shock) is also different: we note that the gas velocity increases just
after the cross-section discontinuity for the axisymmetric model whereas the
one-dimensional model presents a flat curve for the velocity. Nevertheless, we
obtain a very good agreement between the two solutions, in particular the
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3 — s shock corresponding to the transmitted wave is the same in the two
simulations.

6.2 The smooth transition case

We now deal with the smooth transition case where we use the same Riemann
problem to generate the incident wave. Table 22 gives the initial conditions
of the shock tube while figures 54 show respectively the comparison between
the one-dimensional model and the axisymmetric one (we display the cut at
r = 0) for the density and Mach number at two different times ¢t = 1.45 ms
(top) and t = 1.76 ms (bottom). At last, figure 55 gives the density isolines
for the axisymmetric model at time ¢t = 1.76 ms.
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Fig. 54. Distribution of the density and the Mach number obtained by the two
models at time ¢ = 1.45 ms (top) and ¢ = 1.76 ms (bottom) for the test 2.

Comments. With a regular cross-section variation, we obtain a perfect agree-
ment between the two models even in the delicate zone situated after the po-
sition x = 1.4 m. Transitions between subsonic and supersonic states are also
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nice and, in this case, the one-dimensional nonconservative model is represen-
tative of the fully three-dimensional conservative one since there is no oblique
wave generated by the cross-section variation. It is noticeable that the solution
for regular variation situation is different to the abrupt one: the reflected and
transmitted waves are smoothed and the intermediate states are different. For
example, in the brutal variation case we observe a constant state just after
the contact discontinuity 0 — w whereas the density increases linearly in the
smooth variation case due to the linear variation of the cross-section.

7 Conclusion

A systematic comparison of all the admissible configurations between the one-
dimensional nonconservative model and the axisymmetric conservative Euler
system has been carried out. For the one-dimensional approach, we use the
Rusanov flux adapted to the nonconservative Euler system proposed by [11]
and the specific high-order scheme for the Euler system with cylindrical co-
ordinates developed in [12]. Numerical results show a very good correspon-
dence between the two models when the solutions of the axisymmetric model
present, straight longitudinal shocks ¢.e. no noticeable transversal shock per-
turbs the solution. Simulations based on the axisymmetric model also confirm
the existence of complex configurations such as the LR, RR, LRR and RRR
configurations introduced in [11].

We have tested the example of non uniqueness proposed by [3] and also pro-
posed a new example of non uniqueness based on the D and RRR; config-
urations. Indeed, two entropy solutions in the Lax sense are available and
we show that the numerical scheme for the one-dimensional nonconservative
problem does not always pick up the same solution obtained by the axisym-
metric model.

In the last section, we have proposed a representative situation of engineering
applications where a strong shock wave, generated upstream, comes to prop-
agate in a converging duct. Numerical results have shown a good agreement
between the two models even if the cross-section transition is abrupt.
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