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tNon
onservative hyperboli
 system 
orresponds to a redu
tion of an initial three-dimensional problem deriving from an homogenisation pro
edure. Unfortunately, theredu
e model gives rise to two new di�
ulties : the resonant problem 
orrespondingto a splitting or a merging of the genuinely nonlinear waves and the non unique-ness of the Riemann problem solution. The question arises to 
he
k whether thetwo problems 
orrespond and provide similar solutions, at least numeri
ally. In thispaper, we propose a 
omparison between the one-dimensional non
onservative Eu-ler equations modelling the du
t with variable 
ross-se
tional area with its originalthree-dimensional 
onservative Euler system. Based on the 
lassi�
ation of the Rie-mann problems proposed in [11℄, we 
ompare the numeri
al results of the two modelsfor a large series of representative 
on�gurations. We also propose a new example ofnon uniqueness for the Riemann problem involving the resonant phenomena.Key words: Riemann problem in du
ts, non
onservative system, variable
ross-se
tion, axisymmetri
 �ow, sho
k tube.1 Introdu
tionSin
e two de
ades, non
onservative hyperboli
 systems have re
eived 
onsider-able attention both from a theoreti
al and a numeri
al points of view. Usuallyderiving from an homogenisation pro
edure of an initial three-dimensionalPreprint submitted to Elsevier 21 June 2010



model, several problems of physi
al or engineering importan
e are governedwith a non
onservative hyperboli
 system. We 
an mention the shallow-waterproblem with topography [15�17℄, the two-layer shallow-water problem [14℄,the sediment transport [8,28℄, the multi-�uid models [6℄, the Baer-Nunziatosystem [4℄, the 
ompressible gas �ow in variational 
ross-se
tion du
t [3℄ andthe 
ompressible gas �ow in porous media [5,26,27℄. For example, the non
on-servative Euler equations, as well named the quasi-one-dimensional Euler in adu
t, are obtained by averaging the usual multi-dimensional Euler equationsover the du
t 
ross-se
tion [29℄.Numeri
al approximations of the non
onservative hyperboli
 system solu-tions have to be 
leverly evaluated with spe
i�
 numeri
al s
hemes namedwell-balan
ed s
hemes where the steady-state solutions are numeri
ally pre-served [10,11,19,20℄. A large literature is now devoted on the subje
t [24,25℄.The question we ta
kle in the arti
le is the 
orresponden
e between the nu-meri
al solutions of the redu
e problem, i.e. the non
onservative problemand the numeri
al solution 
omputed with the initial problem i.e. the fullthree-dimensional one. Indeed, non
onservative systems give rise to essen-tially two new di�
ulties: the resonant phenomena and the non uniqueness ofthe solutions [3,10,11,19℄ whereas su
h phenomena do not exist at the three-dimensional level: the homogenisation pro
edure looses informations and the
lassi
al entropy argument (in the Lax sense for instan
e) is not enough toobtain a unique solution (numeri
ally at least).Few studies on the 
omparisons have been realised sin
e su
h a problem hasgained less attention and most of them only 
on
ern the shallow-water problem[2,3℄. However the question seems of 
ru
ial importan
e for two reasons: �rstlywe have to 
he
k that the solutions of the two problems really 
orrespond (atleast numeri
ally) for every type of 
on�guration and se
ondly we have tosele
t the most physi
al solution when we fa
e a non uniqueness situation: wehave several di�erent entropy solutions (in the Lax sense) with the redu
edmodel for the same Riemann problem and we 
hoose the one whi
h better �twith the three-dimensional solution.To address the �rst issue, we deal with the variational 
ross-se
tion du
tproblem or equivalently the gas �ow in inhomogeneous porous media. Wehave implemented the s
heme proposed in [11℄ to solve the non
onservativeone-dimensional problem and the s
heme proposed in [12℄ to solve the fullthree-dimensional axisymmetri
 one. We have numeri
ally experimented allthe available 
on�gurations proposed in [11℄ and 
ompared it with their equiv-alent three-dimensional problem. We aim to prove that all the situations, evenwith the most 
omplex ones like the splitting or merging of the simple gen-uinely nonlinear wave a
ross the interfa
e, are reprodu
ed by the initial 
onser-vative Euler model whi
h justify the reality of su
h 
on�gurations. The se
ondissue we address 
on
erns the non uniqueness of the solution for the redu
ed2



problem. A �rst example has been proposed by [3℄ where a subsoni
 solutionand a supersoni
 solution are available for the same Riemann problem. Wehere propose a new non uniqueness 
ase with a more 
omplex situation: asupersoni
 solution and a resonant solution. Su
h an example proves that nonuniqueness 
an also arise with 
omplex 
on�gurations involving the mergingor the splitting of the simple waves.The organisation of the paper is as follows. In se
tion 2, we present the govern-ing Euler equations in 
ylindri
al 
oordinates assuming rotational symmetryand the one-dimensional non
onservative Euler equations as well as a shortreview on the numeri
al te
hniques employed to dis
retize the equations. Inse
tion 3, we present all the admissible 
on�gurations for the Riemann problemin a du
t with variable 
ross-se
tion. Se
tion 4 is devoted to the 
omparisonbetween the exa
t solutions obtained with the inverse Riemann problem andthe numeri
al approximations obtained by the one-dimensional non
onserva-tive system and the axisymmetri
 �ow model for all the 
on�gurations listed in[11℄. In the se
tion 5, we study the non uniqueness of the Riemann problem forthe non
onservative system. We propose a new example involving a 
omplex
on�guration with the resonant phenomenon. Finally, we propose in se
tion6 a set of simulations to 
ompare the intera
tion of a planar sho
k wave en-tering in a du
t with a rough or a smooth 
ross-se
tion variation. Con
ludingremarks are made in se
tion 7.2 Gas �ow models and numeri
al methodsPerfe
t gas �ow in variational 
ross-se
tion is modelled with the three-dimensionalaxisymmetri
 Euler system where the 
ylindri
al 
oordinates are employed toprovide a simpler two-dimensional spa
e variables problem with respe
t tothe radial and axial 
oordinates (r, x). Deriving from the primitive model, anon
onservative one-dimensional model � named the variational 
ross-se
tiondu
t model ([3℄) � based on an homogenisation with respe
t to variable r isobtained. The present se
tion is dedi
ated to a short presentation of the twomodels and their respe
tive numeri
al methods. Note that we use the x-axisas symmetry axis instead of the traditional z-axis for the three-dimensionalmodel to provide a natural 
orresponden
e with the one-dimensional non
on-servative model.2.1 Euler equations for axisymmetri
 �owsLet us 
onsider an axisymmetri
 domain Ω × [0, 2π[ obtained by the rotationof a two-dimensional pattern Ω with respe
t to axis ∆ 
orresponding to the3



azimuthal 
oordinate x. Remark that the domain is not 
ylindri
al, a pri-ori, sin
e the orthogonal 
ross-se
tion S(x) may vary with x as presented in�gure 1.
Fig. 1. Compressible �uid �ow in axisymmetri
 geometry: the 
ross-se
tion S(x)is not 
onstant leading to expansions or 
ompressions of the gas when the se
tionin
reases or de
reases.Using the 
ylindri
al 
oordinate and assuming a non swirling �ow, the Eulerequations governing axially symmetri
 �ow of a 
ompressible invis
id perfe
tgas writes [12,18,21℄:

∂

∂t
(rρ) +

∂

∂r
(rρur) +

∂

∂x
(rρux) = 0, (1)

∂

∂t
(rρur) +

∂

∂r
(rρu2

r + rP ) +
∂

∂x
(rρurux) = P, (2)

∂

∂t
(rρux) +

∂

∂r
(rρuxur) +

∂

∂x
(rρu2

x + rP ) = 0, (3)
∂

∂t
(rE) +

∂

∂r
(rur(E + P )) +

∂

∂x
(rux(E + P )) = 0. (4)where ρ, ur, ux and E stand for the density, the radial and axial velo
ity andthe total energy respe
tively. The pressure fun
tion P is given by the perfe
tgas law depending on ρ and e the spe
i�
 internal energy:

P = (γ − 1)ρ e and E = ρ e +
1

2
ρ(u2

r + u2
x), (5)with γ the ratio of spe
i�
 heats.The system 
ast under the generi
 expression:

∂(rU)

∂t
+

∂(rFr(U))

∂r
+

∂(rFx(U))

∂x
= G(U), (6)where U = (ρ, ρur, ρux, E) denotes the 
onservative variable ve
tor, Fr(U) =

(ρur, ρu2
r +P, ρuxur, ur(E +P )) and Fx(U) = (ρux, ρurux, ρu2

x +P, ux(E +P ))are the 
onservative �uxes and G(U) = (0, P, 0, 0) is the geometri
 sour
e termderiving from the use of 
ylindri
al 
oordinates.4



In the two last de
ades, several authors have developed numeri
al s
hemesfor the Euler system in 
ylindri
al 
oordinates (see [13,18,22,23℄ for instan
e).To address numeri
al approximation, we employ a se
ond-order �nite volumes
heme proposed in [12℄ we shortly sum-up in the present arti
le for the sakeof 
onsisten
y.To this end, we 
onsider a unstru
tured mesh Th of the two-dimensional do-main Ω, 
onstituted of triangles (or 
ells) Ci ⊂ Ω, i = 1, . . . , I. We denoteby ν(i) the index set of the neighbouring triangles Cj whi
h share a 
ommonedge Sij with the 
ell Ci and by nij = (nij,r, nij,x) the outward unit normalve
tor to Ci.
Ci

Cj

Sij

nij

Fig. 2. The two-dimensional mesh: notations. Index set ν(i) represents the threeneighbouring triangles of 
ell Ci.Let (tn = n ∆t)n∈N be a uniform subdivision of the time interval [0, +∞), Un
irepresents an approximation of the average of U on Ci at time tn:

Un
i ≈

1

|Ci|r

∫

Ci

U(r, x, tn) r dr dx, (7)where we have introdu
ed the weighted measures (
ell and edge) :
|Ci| =

∫

Ci

dr dx, |Ci|r =
∫

Ci

r dr dx, |Sij|r =
∫

Sij

r dσ.In the same way, we de�ne the approximation of the �ux a
ross the interfa
e
Sij during the time interval [tn, tn+1] by

F n
ij = F(Un

i , Un
j ,nij) ≈

1

|Sij|r

∫

Sij

(Fr(U) nij,r + Fx(U) nij,x) r dσ,5



and the right-hand side 
ontribution is approximated by
Gn

i = G(Un
i ) ≈

1

|Ci|

∫

Ci

G(U) dr dx.A general �nite volume s
heme 
an be written as:
|Ci|rU

n+1
i = |Ci|rU

n
i − ∆t

∑

j∈ν(i)

|Sij|rF(Un
i , Un

j ,nij) + ∆t |Ci|G(Un
i ). (8)In the present study, we use the Rusanov �ux 
ombined with the multislopeMUSCL te
hnique on triangles developed in [7,9℄ to redu
e the di�usion e�e
t(see also [12℄ for a detailed des
ription). An important remark is that thes
heme has been designed to respe
t a 
ru
ial well-balan
ed property: an initialstate at rest remains a steady-state at rest.2.2 Non
onservative Euler systemWe now deal with the one-dimensional non
onservative Euler system des
rib-ing the evolution of a perfe
t gas in a du
t with variable 
ross-se
tional area

S(x) following [3℄. Let us denote by φ(x) = S(x)
Sref

the ratio between the se
tionarea and a referen
e se
tion, the equations then write:
∂

∂t
(φρ) +

∂

∂x
(φρu) = 0, (9)

∂

∂t
(φρu) +

∂

∂x
(φρu2 + φP ) = P

∂φ

∂x
, (10)

∂

∂t
(φE) +

∂

∂x
(φu(E + P )) = 0, (11)and we assume that φ(x) only depends on x, i.e. ∂φ

∂t
= 0.The system 
ast in the following non
onservative form:

∂U

∂t
+

∂F (U)

∂x
= G(U)

∂φ

∂x
, (12)where 
onservative quantities are represented by ve
tor U = (φρ, φρu, φE)and the �ux ve
tor by F (U) = (φρu, φρu2 + φP, φu(E + P )) while the non-
onservative term writes G(U) = (0, P, 0).To provide a numeri
al approximation of the solution of system (12), we �rstdis
retize domain [a, b] with uniformly 
ells Ci = [xi−1/2, xi+1/2], i = 1, ..., I−16



of length ∆x =
b − a

I
where we set xi−1/2 = i∆x and xi = xi−1/2 +

∆x

2
is the
ell 
enter.Like in the previous subse
tion, Un

i is an approximation of the mean valueof U on 
ell Ci at time tn and we denote by V n
i the asso
iated ve
tor usingthe physi
al variables, V = (φ, ρ, u, P ). We 
onsider a generi
 well-balan
eds
heme of the form:

Un+1
i = Un

i −
∆t

∆x

(

Fi+1/2 + G−

i+1/2 − Fi−1/2 − G+
i−1/2

) (13)where Fi+1/2 = F(Vi, Vi+1) and Fi−1/2 = F(Vi−1, Vi) represent the 
onservativenumeri
al �ux a
ross interfa
e xi+1/2 and xi−1/2 while G−

i+1/2 = G−(Vi, Vi+1)and G+
i−1/2 = G+(Vi−1, Vi) represent the non
onservative 
ontribution a
rossthe interfa
e 
onse
utive to the φ spa
e variation.To 
ompute the 
onservative �uxes we use the modi�ed version of the Rusanovs
heme

F(Vi, Vi+1) =
F (Vi) + F (Vi+1)

2
− V(Vi, Vi+1), (14)with

V(Vi, Vi+1) = λφi+ 1
2















ρi+1 − ρi

ρi+1ui+1 − ρiui

Ei+1 − Ei















, φi+ 1
2

= max(φi, φi+1),whereas the non
onservative �uxes given by
G−(Vi, Vi+1) = −

φi+1 − φi

2















0

Pi

0















, G+(Vi−1, Vi) = +
φi − φi−1

2















0

Pi

0















(15)
are designed to satisfy the well-balan
ed property to preserve steady-statessolutions (see [11℄ for a detailed 
onstru
tion of non
onservative s
hemes).MUSCL re
onstru
tion method is employed to provide a better a

ura
y of thenumeri
al approximation and redu
e the numeri
al di�usion. Due to the non-
onservative term, one have to pay 
aution to design the higher-order s
heme.We have developed a se
ond-order re
onstru
tion based on the splitting ofthe φ fun
tion into a regular part φr (say C1) and a dis
ontinuous pie
ewise7




onstant one φd

φ(x) = φd(x) + φr(x).The main idea is that the regular part is treated as a 
lassi
al volume sour
eterm whereas the dis
ontinuous part is treated with the help of the non
on-servative �uxes. We obtain a new generi
 �nite volume s
heme
Un+1

i = Un
i −

∆t

∆x

[ {

F(V n,−
i+1/2, V

n,+
i+1/2) + G−(V n,−

i+1/2, V
n,+
i+1/2)

}

−
{

F(V n,−
i−1/2, V

n,+
i−1/2) + G+(V n,−

i−1/2, V
n,+
i−1/2)

}

+ S(V n,−
i+1/2, V

n,+
i−1/2)

]where the term S 
orresponds to the 
ontribution of the regular part P
∂φr

∂xgiven by
S(V n,−

i+1/2, V
n,+
i−1/2) =

















0

P+
i−1/2 + P−

i+1/2

2
(φ−

i+1/2 − φ+
i−1/2)

0

















. (16)
3 Riemann problem for the non
onservative Euler systemThe �nite volume method is based on the solution of a lo
al Riemann problemon every edges of the mesh. Therefore, from a 
omputational point of view,the theoreti
al analysis of the Riemman problem is of 
ru
ial importan
e. Adetailed study in the framework of the non
onservative Euler system has been
arried out by Clain and Ro
hette in [11℄. We re
all here the main results.The Riemann problem 
onsists in solving the non
onservative hyperboli
 sys-tem (12) on R × R

+ with the following initial 
ondition:
(U, φ)(x, 0) =











(UL, φL), x < 0,

(UR, φR), x > 0,
(17)where (UL, φL) and (UR, φR) are two given 
onstant states.The solution is 
onstituted by a su

ession of simple waves (rarefa
tion, sho
k,
onta
t dis
ontinuity, stationary 
onta
t dis
ontinuity) separated by 
onstantstates named 
on�guration. The simple waves 
orrespond to a 
hange of stateparameterised by the eigenvalues λ0 = 0, λ1 = u − c, λ2 = u, and λ3 = u + c.8



The three last eigenvalues 
orrespond to the 
lassi
al Euler system while the�rst eigenvalue λ0 
hara
terises the brutal 
hange of 
ross-se
tion. We re
allthat the 
hara
teristi
 �elds (or simple waves) asso
iated to eigenvalues λ1and λ3 are genuinely nonlinear providing rarefa
tion (noted 1 − r or 3 − r)or sho
k (noted 1 − s or 3− s) while the 
hara
teristi
 �elds asso
iated to λ0and λ2 are linearly degenerated (noted 0 − w or 2 − w). We also say that astate V = (φ, ρ, u, P ) is a subsoni
, soni
 or supersoni
 state whether we have
u2 < c2, u2 = c2 or u2 > c2 where c stands for the sound velo
ity.Sin
e the system (12) is not stri
tly hyperboli
, simple waves 
an be distin
tor superposed indu
ing a large number of 
on�gurations. To sele
t the ad-missible 
on�guration, we have introdu
ed several 
riteria: the 
on�gurationstability, the sign and the Ma
h 
riteria (see [11,19℄) leading to the following
lassi�
ation in four groups we shall pre
ise in the next subse
tions:(1) the 
lassi
al wave 
on�gurations 
orrespond to the situation where the foursimple waves are separated by 
onstant states (see �gure 3).(2) the splitting wave 
on�gurations 
orrespond to a situation where a genuinelynonlinear wave is splitted by the 0 − w wave (see �gure 4).(3) the resonant wave 
on�gurations 
orrespond to the situation when a genuinelynonlinear wave splits the 0 − w wave (see �gure 5).(4) the resonant and splitting wave 
on�gurations is the more 
omplex 
ase: agenuinely nonlinear wave is splitted by the 0 − w wave where one of the partof the wave merges with the 0 − w wave (see �gure 6).3.1 Classi
al 
on�gurationsThe 
lassi
al 
on�gurations represent the situations where the eigenvalues λkare distin
t 
orresponding to the Riemann problem for the 
onservative Eulersystem augmented of the stationary wave lo
ated at the interfa
e x = 0. We
an list four distin
t 
on�gurations in fun
tion of the simple waves positionwith respe
t to the interfa
e i.e. the 0−w wave. If all the waves are on the leftside (
on�guration A) or on the right side (
on�guration D ) of the interfa
e,we deal with a supersoni
 �ow where all the states are supersoni
. The twolast 
on�gurations 
orrespond to a subsoni
 �ow whether the velo
ity at theinterfa
e is negative (
on�guration B) or positive (
on�guration C). As anexample, �gure 3 represents the B 
on�guration where the gas velo
ity at theinterfa
e is negative. Note that the 1 −w simple wave is on the left while the
3 − w simple wave is on the right. 9



Fig. 3. Example of 
lassi
al 
on�gurations: the B 
on�guration. The genuinely non-linear simple waves 1−w and 3−w waves are rarefa
tion or sho
k waves whereas the
2−w wave is the λ2 = u 
onta
t dis
ontinuity and the 0−w wave is the stationary
onta
t dis
ontinuity wave 
orresponding to the 
ross-se
tion dis
ontinuity.3.2 Splitting 
on�gurationsThe 
on�guration where one of the genuinely nonlinear 1−w or 3−w wavesis splitted into two waves by the 0 − w stationary wave on both side of theinterfa
e is a splitting 
on�guration. It is proved that a rarefa
tion always takespla
e on the side 
orresponding to the lower φL or φR. Moreover the fan musttou
h the interfa
e whi
h 
orresponds to a soni
 state. Consequently, there isfour distin
t 
on�gurations in fun
tion of the values of φ and the genuinelynonlinear waves whi
h are splitted. Con�guration LR1 (Left Rarefa
tion withthe 1 − w as shown in �gure 4) 
orresponds to a rarefa
tion with a 1 − w onthe left side. Note that the se
ond part of the 1 − w is situated on the otherside of the interfa
e and 
an be an other rarefa
tion or a sho
k. In a similarway, we use the notations: RR1 is a Right Rarefa
tion with the 1 − w wavewhile LR3 and RR3 represent the Left Rarefa
tion and Right Rarefa
tion forthe 3 − w wave respe
tively.

Fig. 4. Example of the splitting 
on�gurations: the LR1 
on�guration. The 1−w issplitted into two parts, a rarefa
tion wave on the left side whom the fan rea
hes theinterfa
e and a rarefa
tion or a sho
k wave on the right side of the 0−w stationarywave due to the 
ross-se
tion dis
ontinuity.
10



3.3 Resonant wave 
on�gurationsWe now 
onsider the symmetri
 
ase where a genuinely nonlinear 1 − w or
3 − w wave splits the stationary wave into two parts named the resonant
on�guration (see [19℄ p.892 
ase 1a (C) for example and [11℄). For su
h a sit-uation, the genuinely nonlinear wave is also a stationary sho
k 
orrespondingto a subsoni
-supersoni
 transition whi
h takes pla
e at an intermediate valueof φs ∈ [φL, φR]. These two situations are referen
ed by R1 (see �gure 5 forinstan
e) or R3 whether the resonant 
on�guration is obtained with the �rstor the third eigenvalue.
Fig. 5. Example of the resonant 
on�gurations: the R1 
on�guration. The 1− s is astationary sho
k wave superposed to the 0 − w wave. From left to right, we have a�rst 0 − w wave transition from φL to an intermediate value φs. Then a stationary
1 − s sho
k wave o

urs followed by an other 0 − w wave transition from φs to φR.The two other 2 − w and 3 − w waves are the 
lassi
al ones.3.4 Resonant and splitting wave 
on�gurationsThe last group is the most 
ompli
ated one sin
e we 
ombine a resonantsituation with a splitting situation. A genuinely nonlinear 1−w or 3−w waveis splitted into two pie
es where the part situated on the lower 
ross-se
tion isa rarefa
tion whi
h tou
hes the interfa
e. The other part is a stationary sho
ksharing the 0 − w wave in another two parts leading to a resonant situation.This 
on�guration has been introdu
ed in [19,10,11℄. For example, as shown in�gure 6, the 1−w is splitted into a rarefa
tion on the left side of the interfa
e.The �rst 0−w wave takes pla
e 
orresponding to a transition from φL to theintermediate value φs followed by the se
ond part of the stationary 1−s sho
k.At last, a se
ond transition with the 0−w o

urs from φs to φR. The two otherwaves are the 
lassi
al ones. The notation LRR1 means that we deal with aLeft Rarefa
tion and Resonant 
on�guration with the 1−w simple wave while
RRR1 
orresponds to the Right Rarefa
tion and Resonant 
on�guration. Inthe same way, we have the LRR3 and the RRR3 
on�gurations.11



Fig. 6. Example of resonant splitting 
on�gurations: LRR1 
on�guration. The �rstpart of the 1−w wave is a 1− r rarefa
tion wave taking pla
e on the left side of theinterfa
e and the se
ond part is a 1 − s stationary sho
k superposed to the 0 − wstationary for an intermediate value φs.4 Comparisons between the two modelsThe aim of the 
urrent se
tion is to draw 
omparisons between numeri
al so-lution of the Riemann problems presented in the previous se
tion of the twomodels and the exa
t solution obtained with the inverse Riemann method(see [11℄). A similar work has already been 
arried out by [3℄ using a two-dimensional model to 
ompare the solutions but only for the 
lassi
al 
on�g-urations. We propose here a systemati
 
omparison of all the 
on�gurations.For the non
onservative Euler model, we 
onsider a sho
k tube of length
x = [0 : 2] where the initial dis
ontinuity is lo
ated at x = 0.8 and weuse a subdivision of 1000 mesh 
ells and an adapted time step to provide thestability. For the axisymmetri
 model, we 
onsider a 
ylindri
al sho
k tubeof x = [0 : 2] length and the referen
e radius is arbitrarily 
hosen equal to
Rref = 0.05 
orresponding to φ = 1. Like in the previous 
ase, the initial
ross-se
tion dis
ontinuity is lo
ated at x = 0.8. We use a 46000 triangle 
ellsmesh and the time step is 
ontrolled to provide a stable solution. The twomodels are relied by the du
t 
ross-se
tion ratio with respe
t to the referen
eradius and we set :

φL =
πR2

L

πR2
ref

, φR =
πR2

R

πR2
ref

, (18)where RL and RR are respe
tively the 
ross-se
tion du
t radius on the leftand right side of the interfa
e.We now give a detailed 
omparison of all the 
on�gurations. For a given leftand right side, we report in the table the exa
t solutions (note that we 
anhave several solutions) obtained by the inverse Riemann problem where we listthe su

essive 
onstant states from left to right. Then we print out the densityand velo
ity of the gas for the one-dimensional non
onservative problem at arepresentative time tr and the graph of the same quantities in fun
tion of xfollowing the axis r = 0 for the three-dimensional axisymmetri
 Euler 
ase.We �nally plot a 
ut of the plane Orx to provide the density map for theaxisymmetri
 problem at the same time tr.12



4.1 Classi
al wave 
on�gurations4.1.1 Con�guration ATable 1Con�guration of type A = {1 − r, 2 − w, 3 − s, 0 − w}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 1.0 1 -1000 400000 1.336306
Va 1.0 0.714825 -757.020985 250000 1.081867
Vb 1.0 0.5 -757.020985 250000 0.904813
Vl 1.0 0.177419 -1609.823851 50000 2.562889
VR 0.5 0.432066 -1322.085708 173835.409095 1.761576
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Fig. 7. Con�guration of type A = {1 − r, 2 − w, 3 − s, 0 − w} at time 3.10−4 s.
Fig. 8. 50 isodensity from 1 to 0.09 at time 3.10−4 s.Comments. Table 1 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 7 and 8 show respe
tively the 
omparison betweenthe exa
t solution and the numeri
al approximations for the density and velo
-ity with the two s
hemes. We note that the 1D-solutions (exa
t or numeri
al)roughly 
orrespond to the axisymmetri
 
ase. Indeed, the one-dimensional 
ase
orresponds to stri
t longitudinal waves following the axial dire
tion while thenumeri
al solution of the axisymmetri
 
ase provides oblique sho
ks leadingto a more 
omplex density distribution and a smoothing e�e
t for the sho
ks.However, the axisymmetri
 numeri
al solution 
learly 
at
hes the 
on�gura-tion A in 
omparison with the exa
t solution.13



4.1.2 Con�guration BTable 2Con�guration of type B = {1 − r, 2 − w, 0 − w, 3 − s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 1.0 3.6 -100 400000 0.253546
Va 1.0 2.931302 -20.597552 300000 0.054415
Vl 1.0 4 -20.597552 300000 0.063565
Vr 0.5 3.975401 -41.450012 297420.273072 0.128075
VR 0.5 1.597881 -329.977019 75000 1.287245
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Fig. 9. Con�guration of type B = {1 − r, 2 − w, 0 − w, 3 − s} at time 12.10−4 s.
Fig. 10. 50 isodensity from 1.5 to 4 at time 12.10−4 s.Comments. Table 2 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 9 and 10 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the densityand velo
ity with the two s
hemes. For this 
on�guration, we observe that the1D-solutions (exa
t or numeri
al) perfe
tly �t with the axisymmetri
 solutionsin
e the sho
k waves are prin
ipally longitudinal redu
ing the smoothing ef-fe
t. 14



4.1.3 Con�guration CTable 3Con�guration of type C = {1 − r, 0 − w, 2 − w, 3 − s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 0.9 3.6 100 300000 0.292770
Vl 0.9 2.694778 196.112884 200000 0.608399
Vr 1.0 2.828882 168.134511 214071.314011 0.516560
Va 1.0 3.4 168.134511 214071.314011 0.566308
VR 1.0 3.238852 153.784754 200000 0.523034
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Fig. 11. Con�guration of type C = {1 − r, 0 − w, 2 − w, 3 − s} at time 12.10−4 s.
Fig. 12. 50 isodensity from 2.3 to 3.6 at time 12.10−4 s.Comments. Table 3 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 11 and 12 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the densityand velo
ity with the two s
hemes. In the vi
inity of the 
ross-se
tion dis
on-tinuity, we note di�eren
es between the solutions of the axisymmetri
 problemand the non
onservative one. The very small jump of 
ross-se
tion seems to besmoothed in the three-dimensional 
ontext while the one-dimensional modelpreserves the stationary sho
k. However, the other waves �t well with theexa
t solution. 15



4.1.4 Con�guration DTable 4Con�guration of type D = {0 − w, 1 − s, 2 − w, 3 − s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 0.7 1 800 80000 2.390457
Vr 1.0 0.656948 852.426066 44425.652469 2.770393
Va 1.0 1.154958 661.437525 100000 1.899800
Vb 1.0 4 661.437525 100000 3.535532
VR 1.0 3.259259 623.748607 75000 3.475157
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Fig. 13. Con�guration of type D = {0 − w, 1 − s, 2 − w, 3 − s} at time 12.10−4 s.
Fig. 14. 50 isodensity from 0.06 to 4.3 at time 12.10−4 s.Comments. Table 4 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 13 and 14 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the density andvelo
ity with the two s
hemes. The pro�les are roughly respe
ted in the sho
ktube but we note important os
illations of the axisymmetri
 solution (essen-tially on the �rst left plateau). Like 
on�guration A, we observe slanted wavesstemming from the three-dimensional 
ontext (radial waves are generated atthe interfa
e). 16



4.2 Splitting wave 
on�gurations4.2.1 Con�guration LR1 with rarefa
tionTable 5Con�guration of type LR1 with rarefa
tion LR1_rar = {1−r, 0−w, 1−r, 2−w, 3−r}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 0.8 5 250 400000 0.747018
Vl 0.8 4.031127 320.553342 295868.736587 1.0
Vr 1.0 2.262737 456.859511 131822.563570 1.599708
Va 1.0 1.583820 555.189919 80000 2.087783
Vb 1.0 1.68 555.189919 80000 2.150241
VR 1.0 2.376396 647.909308 130000 2.341197
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Fig. 15. Con�guration of type LR1_rar = {1 − r, 0−w, 1 − r, 2 −w, 3− r} at time
12.10−4 s.

Fig. 16. 50 isodensity from 1 to 5 at time 12.10−4 s.Comments. Table 5 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 15 and 16 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the densityand velo
ity with the two s
hemes. We �rst remark that both the 1D-modeland the 3D-model present left rarefa
tion whi
h spreads out from the leftsubsoni
 state so far to a soni
 state at the interfa
e as stated by the theoryin [11℄. The 
urves �t well despite some os
illations of the Vr state for thethree-dimensional 
on�guration 
onse
utive to oblique sho
ks. Thanks to ourexperien
e and after a lot of numeri
al experiments, it appears that this par-ti
ular state (just before or just after a rarefa
tion rea
hing the soni
 point)is always di�
ult to a

urately approximate. It is one of the most sensitivestate. 17



4.2.2 Con�guration LR1 with sho
kTable 6Con�guration of type LR1 with sho
k LR1_sck = {1− r, 0−w, 1− s, 2−w, 3− s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 0.8 5 200 300000 0.690066
Vl 0.8 3.835307 274.856279 206958.559906 1.0
Vr 1.0 2.152820 391.731075 92209.160840 1.599708
Va 1.0 3.037373 303.313516 150000 1.153536
Vb 1.0 1.68 303.313516 150000 0.857900
VR 1.0 1.033846 136.275239 75000 0.427612
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Fig. 17. Con�guration of type LR1_sck = {1 − r, 0−w, 1 − s, 2−w, 3− s} at time
12.10−4 s.

Fig. 18. 50 isodensity from 1 to 5 at time 12.10−4 s.Comments. Table 6 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 17 and 18 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the density andvelo
ity with the two s
hemes. The previous 
omments apply to this 
on�gura-tion: the intermediate state Vr for the 3D-solution presents strong os
illationsand we observe that the 1 − s sho
k 
omputed with the 1D-model partingthe Vr and Va states is smoothed. However, the axisymmetri
 solution 
learly
oin
ides well with the one-dimensional solutions.18



4.2.3 Con�guration LR3 with rarefa
tionTable 7Con�guration of type LR3 with rarefa
tion LR3_rar = {1−s, 2−w, 3−r, 0−w, 3−r}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 0.5 2 -200 400000 0.377964
Va 0.5 2.666667 -358.113883 600000 0.638066
Vb 0.5 10.0 -358.113883 600000 1.235610
Vl 0.5 12.123795 -301.208593 785679.190499 1.0
Vr 1.0 18.258264 -100.003790 1393780.920329 0.305904
VR 1.0 26.112017 21.244529 2300000.0 0.060498
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Fig. 19. Con�guration of type LR3_rar = {1− s, 2−w, 3 − r, 0 −w, 3 − r} at time
8.10−4 s.

Fig. 20. 50 isodensity from 2 to 27 at time 8.10−4 s.Comments. Table 7 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 19 and 20 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the densityand velo
ity with the two s
hemes. The theoreti
al small 3 − r rarefa
tionwhi
h takes pla
e from state Vb to the soni
 point Vl predi
ted by the one-dimensional model is not well reprodu
ed by the three-dimensional model. Onemore time, small os
illations 
onse
utive to oblique waves before and after the
ross-se
tion 
hange appear. Nevertheless, the intermediate states 
orrespondand the three simulations provide a LR3 
on�guration.19



4.2.4 Con�guration LR3 with sho
kTable 8Con�guration of type LR3 with sho
k LR3_sck = {1− s, 2−w, 3− r, 0−w, 3− s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 0.5 5 -250 400000 0.747018
Va 0.5 6.666667 -350 600000 0.986013
Vb 0.5 10.0 -350 600000 1.207615
Vl 0.5 11.854071 -299.856279 761317.446137 1.0
Vr 1.0 17.852064 -99.554810 1350563.618802 0.305904
VR 1.0 4.619603 -542.096262 130000.0 2.731134
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Fig. 21. Con�guration of type LR3_sck = {1 − s, 2−w, 3 − r, 0 −w, 3− s} at time
8.10−4 s.

Fig. 22. 50 isodensity from 3 to 19 at time 8.10−4 s.Comments. Table 8 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 21 and 22 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the density andvelo
ity with the two s
hemes. The present simulation is very similar to theformer one but we have, in this 
ase, a 3−s sho
k to link Vr to VR on the rightside of the interfa
e while we have a 3− r rarefa
tion to link the states in theprevious 
ase. Comments and remarks are very similar, the three simulationsprovide the same 
on�guration but os
illations due to oblique sho
ks appearwith the three-dimensional model. 20



4.2.5 Con�guration RR1 with rarefa
tionTable 9Con�guration of type RR1 with rarefa
tion RR1_rar = {1−r, 0−w, 1−r, 2−w, 3−s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 1.0 3.6 0.0 400000 0.0
Vl 1.0 2.501047 138.544575 240218.917576 0.377818
Vr 0.6 1.701108 339.491071 140042.899031 0.999999
Va 0.6 1.337395 419.224375 100000 1.295723
Vb 0.6 0.7 419.224375 100000 0.937414
VR 0.6 0.570370 329.130629 75000 0.767100

0 0.4 0.8 1.2 1.6 2
Domain (m)

0

1

2

3

4

D
en

si
ty

 (
kg

.m
−

3 )

Exact
1D
2D axi

0 0.4 0.8 1.2 1.6 2
Domain (m)

0

100

200

300

400

500
V

el
oc

ity
 (

m
.s

−
1 )

Exact
1D
2D axi

Fig. 23. Con�guration of type RR1_rar = {1− r, 0−w, 1− r, 2 −w, 3− s} at time
12.10−4 s.

Fig. 24. 50 isodensity from 0.5 to 3.6 at time 12.10−4 s.Comments. Table 9 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 23 and 24 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the density andvelo
ity with the two s
hemes. We now 
onsider situations when the lowest
ross-se
tion is on the right side leading this time to a right rarefa
tion. Weobserve that for this parti
ular 
on�guration the three 
urves suit well.21



4.2.6 Con�guration RR1 with sho
kTable 10Con�guration of type RR1 with sho
k RR1_sck = {1− s, 0−w, 1− r, 2−w, 3− s}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 1.0 3 100 200000 0.327327
Vl 1.0 3.259671 74.409093 224662.868292 0.239543
Vr 0.4 2.126227 285.187189 123521.258857 1.0
Va 0.4 1.559044 370.984366 80000.0 1.384127
Vb 0.4 1.0 370.984366 80000.0 1.108528
VR 0.4 0.862385 322.059761 65000.0 0.991440
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Fig. 25. Con�guration of type RR1_sck = {1− s, 0−w, 1− r, 2−w, 3− s} at time
12.10−4 s.

Fig. 26. 50 isodensity from 0.8 to 3.6 at time 12.10−4 s.Comments. Table 10 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 25 and 26 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the densityand velo
ity with the two s
hemes. In 
ontrast with the previous 
ase, these
ond part of the 1−w wave whi
h shares the states VL and Vl is a sho
k (ararefa
tion in the former 
ase). Note that despite the large 
ross-se
tion ratio,we obtain the same 
on�guration between the "real" three-dimensional modeland the "homogenised" one-dimensional model.22



4.2.7 Con�guration RR3 with rarefa
tionTable 11Con�guration of type RR3 with rarefa
tion RR3_rar = {1−s, 2−w, 3−r, 0−w, 3−r}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 1.0 5 -250 100000 1.494036
Va 1.0 6.666667 -300 150000 1.690309
Vb 1.0 8 -300 150000 1.851640
Vl 1.0 9.648037 -269.076202 194975.414173 1.599708
Vr 0.8 17.188238 -188.796060 437611.952725 1.0
VR 0.8 22.801474 133.905733 650000 0.670286
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Fig. 27. Con�guration of type RR3_rar = {1− s, 2−w, 3− r, 0−w, 3− r} at time
12.10−4 s.

Fig. 28. 50 isodensity from 4 to 23 at time 12.10−4 s.Comments. Table 11 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 27 and 28 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the density andvelo
ity with the two s
hemes. The present simulation shows 
learly the os
il-lations origin. Strong slanted sho
ks propagate and the ni
e plateau (
onstantsolution) obtained with the one-dimensional is poorly reprodu
ed by the ax-isymmetri
 solution. Nevertheless, the theoreti
al 
on�guration predi
ted bythe 1D-model is 
on�rmed by the 3D-simulation whi
h indi
ates the adequa
yof the homogenised model with the "real" one.. 23



4.2.8 Con�guration RR3 with sho
kTable 12Con�guration of type RR3 with sho
k RR3_sck = {1− s, 2−w, 3− s, 0−w, 3− r}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 1.0 3 -400 50000 2.618615
Va 1.0 4.875 -480.064077 100000.0 2.832843
Vb 1.0 1.0 -480.064077 100000.0 1.283025
Vl 1.0 0.783632 -569.600910 70964.939235 1.599708
Vr 0.8 1.396062 -399.657818 159277.033801 1.0
VR 0.8 1.642596 -333.595729 200000.0 0.807992
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Fig. 29. Con�guration of type RR3_sck = {1− s, 2−w, 3− s, 0−w, 3− r} at time
12.10−4 s.

Fig. 30. 50 isodensity from 0.4 to 5 at time 12.10−4 s.Comments. Table 12 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 29 and 30 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the densityand velo
ity with the two s
hemes. With this last 
on�guration of the RRgroup, we observe that the density 
urve of the 3D-solution �ts rather wellwith the theoreti
al density 
urve but the velo
ity are very poorly approxi-mated. The origin of su
h a di�eren
e seems to be the 
onta
t dis
ontinuitywhi
h is 
learly not preserved by the axisymmetri
 solution. In this 
ase, itbe
omes di�
ult to draw 
omparisons between the two models although the
on�gurations are really similar. 24



4.3 Resonant wave 
on�gurations4.3.1 Con�guration R1Table 13Con�guration of type R1 = {0 − w, 1 − s, 0 − w, 2 − w, 3 − r}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 1.0 1 500 100000 1.336306
Vs,l 0.979139 1.051791 485.507722 107325.116343 1.284536
Vs,r 0.979139 1.565848 326.119084 188717.365256 0.793928
Vr 0.95 1.453274 362.158786 170000.000005 0.894920
Va 0.95 1.2 362.158786 170000.000005 0.813207
VR 0.95 1.347710 414.461597 200000.0 0.909292
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Fig. 31. Con�guration of type R1 = {0−w, 1−s, 0−w, 2−w, 3−r} at time 12.10−4 s.
Fig. 32. 50 isodensity from 0.8 to 2 at time 12.10−4 s.Comments. Table 13 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 31 and 32 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the densityand velo
ity with the two s
hemes. In the resonant 
on�guration, the transi-tion between the state VL and Vr requires two intermediate states Vs,l and Vs,rwhi
h are superposed with the interfa
e with two di�erent densities (indi
atedby the bla
k box in �gure 31). We indeed observe that the three-dimensionalsimulation presents a peak at the interfa
e whi
h 
orresponds to the higher in-termediate density. It is remarkable to see that the 1D-exa
t solution 
oin
idesvery well with the axisymmetri
 solution.25



4.3.2 Con�guration R3Table 14Con�guration of type R3 = {1 − r, 2 − w, 0 − w, 3 − s, 0 − w}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 0.9 1 -1000 400000 1.336306
Va 0.9 0.909028 -929.300937 350000 1.265747
Vl 0.9 0.3 -929.300937 350000 0.727142

Vs,l 0.947867 0.314418 -841.908993 373773.744392 0.652605
Vs,r 0.947867 0.148077 -1787.656974 123423.468739 1.654876
VR 1.0 0.136386 -1839.710883 110000.000014 1.731309
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Fig. 33. Con�guration of type R3 = {1−r, 2−w, 0−w, 3−s, 0−w} at time 3.10−4 s.
Fig. 34. 50 isodensity from 0.1 to 1 at time 3.10−4 s.Comments. Table 14 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 33 and 34 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the density andvelo
ity with the two s
hemes. We now 
onsider a similar resonant situationbut with the 3 − s stationary sho
k inside the interfa
e. The three solutions�t ni
ely and no peak is observed sin
e the intermediate state density Vs,l,

Vs,r belongs to the density of Vl and VL. This point seems to 
on�rm thatthe peak in the previous 3D approximation is not a numeri
al artefa
t but anapproximation of the intermediate state densities.26



4.4 Resonant and splitting wave 
on�gurations4.4.1 Con�guration LRR1Table 15Con�guration of type LRR1 = {1 − r, 0 − w, 1 − s, 0 − w, 2 − w, 3 − s}

φ ρ u P Ma
h
VL 1.3 1.862000 0.826000 2.458300 0.607559
Vl 1.3 1.327678 1.270616 1.531063 1.0

Vs,l 1.31102 1.214478 1.377370 1.351478 1.103511
Vs,r 1.31102 1.427126 1.172136 1.694791 0.909049
Vr 1.6 1.789307 0.766029 2.326095 0.567819
Va 1.6 2.0 0.766029 2.326095 0.600320
VR 1.6 1.795636 0.629806 2.0 0.504356
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Fig. 35. Con�guration of type LRR1 = {1 − r, 0 − w, 1 − s, 0 − w, 2 − w, 3 − s} attime 0.5 s.
Fig. 36. 50 isodensity from 1.3 to 2 at time 0.5 s.Comments. Table 15 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 35 and 36 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the densityand velo
ity with the two s
hemes. We here deal with the more 
omplex sit-uation where we have both a splitting wave and a resonant situation. Thepositive point is that we obtain the same theoreti
al 
on�guration both withthe one-dimensional and the three-dimensional model whi
h suggest that su
ha 
on�guration is physi
al. The negative point is the very poor approximationof the 1 − r rarefa
tion on the left side of the interfa
e that rea
hes the soni
point. We have performed numeri
al simulations with �ner meshes with theaxisymmetri
 model to see if, possibly, we better 
at
h the rarefa
tion but thetests were negative. 27



4.4.2 Con�guration LRR3Table 16Con�guration of type LRR3 = {1 − s, 2 − w, 3 − r, 0 − w, 3 − s, 0 − w}

φ ρ (kg.m−3) u (m.s−1) P (Pa) Ma
h
VL 0.95 1.6 -200.0 100000 0.676123
Va 0.95 2.6 -355.043418 200000 1.081905
Vb 0.95 3.0 -355.043418 200000 1.162152
Vl 0.95 3.427892 -313.761442 241045.084752 1.0

Vs,l 0.968138 2.987938 -353.216986 198875.088944 1.157106
Vs,r 0.968138 3.786653 -278.713217 277505.646851 0.870133
VR 1.0 4.052357 -252.140550 305143.954267 0.776569
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Fig. 37. Con�guration of type LRR3 = {1 − s, 2 − w, 3 − r, 0 − w, 3 − s, 0 − w} attime 12.10−4 s.
Fig. 38. 50 isodensity from 1.6 to 5.2 at time 12.10−4 s.Comments. Table 16 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 37 and 38 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the density andvelo
ity with the two s
hemes. This test was performed with a small variationof φ so the 3 − r rarefa
tion from Vb to the soni
 state Vs,l is small, neverthe-less, we observe an overshoot for the axisymmetri
 simulation and os
illationswith the 1D-solution whi
h indi
ates that su
h a 
on�guration is really di�-
ult to 
ompute. The positive point is that the three solutions 
orrespond tothe same 
on�guration and state Va is well-approa
hed. Note that the densityof the intermediate state Vs,l is lower than Vl and Vb. We observe that boththe 1D and 3D approximations try to 
at
h the lower density, we think thatsu
h a behaviour of the s
heme is responsible of a wrong evaluation of therarefa
tion up to the soni
 state. 28



4.4.3 Con�guration RRR1Table 17Con�guration of type RRR1 = {0 − w, 1 − s, 0 − w, 1 − r, 2 − w, 3 − r}

φ ρ u P Ma
h
VL 1.0 1.3 2 1 1.927248
Vs,l 0.78177 1.872903 1.775738 1.667250 1.590641
Vs,r 0.78177 3.775791 0.880818 4.643562 0.671275
Vr 0.7 2.969906 1.250641 3.318027 1.0
Va 0.7 0.533582 3.067818 0.3 3.457843
Vb 0.7 1.0 3.067818 0.3 4.733745
VR 0.7 2.363115 3.675948 1.0 4.775818
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Fig. 39. Con�guration of type RRR1 = {0 − w, 1 − s, 0 − w, 1 − r, 2 − w, 3 − r} attime 0.2 s.
Fig. 40. 50 isodensity from 0.3 to 4 at time 0.2 s.Comments. Table 17 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 39 and 40 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the density andvelo
ity with the two s
hemes. We �rst mention that we have drawn a simpleline between Vr and Va for the sake of simpli
ity to represent the rarefa
tionand the real 
urve would be a 
onvex one very similar to the numeri
al approx-imations. For the present 
ase, the intermediate value Vs,r density is higherthan the other density and we �nd again that both the numeri
al approxima-tions try to 
at
h the higher density value.29



4.4.4 Con�guration RRR3Table 18Con�guration of type RRR3 = {1 − s, 2 − w, 0 − w, 3 − s, 0 − w, 3 − r}

φ ρ u P Ma
h
VL 1.0 1.4 -2.0 2.0 1.414214
Va 1.0 2.077419 -2.591083 3.5 1.687118
Vl 1.0 0.3 -2.591083 3.5 0.641127

Vs,l 0.889412 0.258647 -3.379023 2.843740 0.861264
Vs,r 0.889412 0.200487 -4.359267 1.987030 1.170281
Vr 0.87 0.232799 -3.837976 2.449388 1.0
VR 0.87 0.269081 -3.273959 3.0 0.828687
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Fig. 41. Con�guration of type RRR3 = {1 − s, 2 − w, 0 − w, 3 − s, 0 − w, 3 − r} attime 0.15 s.
Fig. 42. 50 isodensity from 0.2 to 2.2 at time 0.15 s.Comments. Table 18 gives the exa
t solution obtained with the inverse Rie-mann problem while �gures 41 and 42 show respe
tively the 
omparison be-tween the exa
t solution and the numeri
al approximations for the density andvelo
ity with the two s
hemes. The 
on�guration RRR3 is similar to the LRR1one (in parti
ular the velo
ity). The 3 − r transition to the 3D soni
 state atthe interfa
e is poorly approximated where this time the s
hemes attempt to
at
h the higher velo
ity between the three states Vs,l, Vs,r and Vr. Densityvariations are too small to 
omment the simulations around the interfa
e butthe other states Va, Vl are well-approximated.30



5 Non uniqueness of the Riemann problem solutionsNon uniqueness of the Riemann problem solutions is well-known for the non-
onservative Euler system [3℄ and the non
onservative shallow-water problem[2℄. The point is that the transition a
ross the interfa
e does not behave in thesame manner whether we deal with a subsoni
 or a supersoni
 �ow. Conse-quently, we 
an exhibit Riemann problems with two distin
t entropy solutions(in the Lax sense) whether we use the subsoni
 bran
h of the interfa
e transi-tion or the supersoni
 one. We propose here several 
ouples of 
on�gurationswhi
h are solutions of the same Riemann problem and we 
ompare the 1D-solution with the numeri
al approximation obtained with the axisymmetri
model.5.1 Non uniqueness between 
on�gurations C and DWe �rst test the 
on�guration proposed by Andrianov and Warne
ke in [3℄.We have listed the densities, velo
ities and pressures obtained by the inverseRiemann problem in table 19.Table 19Con�guration of type C and D

φ ρ u PCon�guration of type C = {1 − s, 0 − w, 2 − w, 3 − s}

VL 0.8 0.2069 3.991 0.07
Vl 0.8 1.1109 0.3377 3.4634
Vr 0.3 1.0019 0.9985 2.9972
Va 0.3 0.6997 0.9985 2.9972
VR 0.3 0.1354 -3.1668 0.0833Con�guration of type D = {0 − w, 1 − s, 2 − w, 3 − s}

VL 0.8 0.2069 3.991 0.07
Vr 0.3 0.5736 3.8387 0.2918
Va 0.3 2.4112 1.6389 3.934
Vb 0.3 0.724 1.6389 3.934
VR 0.3 0.1354 -3.1668 0.0833With the same initial 
onditions, the Riemann problem for the non
onser-vative model has two distin
t entropy solutions in the Lax sense but the31



numeri
al s
heme based on the non
onservative Rusanov �ux [11℄ and thenumeri
al s
heme based on the axisymmetri
 model provide the same 
on�g-uration C. Figures 43 give the theoreti
al density and the entropy using theinverse Riemann problem and the numeri
al approximations obtained with theone-dimensional model and the axisymmetri
 model (at r = 0). We presentin �gure 44 the repartition of the density and entropy at the same time forthe full three-dimensional model. We observe that the sho
k are longitudinalwhi
h guarantees a good 
orresponden
e between the one-dimensional non-
onservative model and the three-dimensional 
onservative one.
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Fig. 43. Distribution of the density and the entropy obtained by the non
onservativeand the axisymmetri
 models and the two solutions of the inverse Riemann problemat time t = 0.35 s.

Fig. 44. 50 isodensity (top) from 0.135 to 1.13 and 50 isoentropy (bottom) from0.635 to 4.92 at time t = 0.35 s.We plot the velo
ity and the Ma
h number in �gure 45 for the theoreti
alsolutions (
on�guration C and D), the one-dimensional approximation andthe axisymmetri
 model solution at r = 0 while we give in �gures 46 the mapof the velo
ity and the Ma
h number using the axisymmetri
 model. Like thedensity map, the velo
ity obtained by the axisymmetri
 model presents verystraight longitudinal sho
ks whi
h legitimate the one-dimensional approa
h.32
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Fig. 45. Distribution of the velo
ity and the Ma
h number obtained by the non
on-servative and the axisymmetri
 models and the two solutions of the inverse Riemannproblem at time t = 0.35 s.

Fig. 46. 50 isovelo
ity (top) from -3.17 to 3.99 and 50 isoma
h (bottom) from 0.0179to 5.8 at time t = 0.35 s.5.2 Non uniqueness between 
on�gurations D and RRR1We proposed here a new non uniqueness 
ase between 
on�gurations D and
RRR1. Densities, velo
ities and pressures for the two 
on�gurations obtainedby the inverse Riemann problem are presented in table 20.With the same initial 
onditions, the Riemann problem for the non
onservativemodel has two distin
t entropy solutions in the Lax sense but the numeri
als
heme based on the non
onservative Rusanov �ux [11℄ sele
ts the D 
on-�guration whereas the numeri
al solution based on the axisymmetri
 model[12℄ 
orresponds to the RRR1 
on�guration. We display in �gure 47 the the-oreti
al density and entropy using the inverse Riemann problem and the twonumeri
al solutions (with the one-dimensional and the axisymmetri
 models).We note that the physi
al solution obtained with the 3D-model 
orresponds33



Table 20Con�guration of type D and RRR1

φ ρ (kg.m−3) u (m.s−1) P (Pa)Con�guration of type D = {0 − w, 1 − s, 2 − w, 3 − s}

VL 1.0 1 650 60000
Vr 0.75 1.4557 595.3377 101502.1874
Va 0.75 0.7469 790.5361 39874.3
Vb 0.75 4.9888 790.5361 39874.3
VR 0.75 9.2747 860.373 95000Con�guration of type RRR1 = {0 − w, 1 − s, 0 − w, 1 − r, 2 − w, 3 − r}

VL 1.0 1 650 60000
Vs,l 0.940495 1.0802 639.7901 66846.4501
Vs,r 0.940495 3.1490 219.4730 357338.2303
Vr 0.75 2.3128 374.7221 231970.8357
Va 0.75 0.6589 790.7742 40000
Vb 0.75 5 790.7742 40000
VR 0.75 9.2747 860.373 95000to the largest global entropy produ
tion (global in the sense that we spatiallyintegrate the entropy on interval [0, 2]). Su
h a 
riterion has been mentionedby Andrianov and Warne
ke [3℄.

0 0.5 1 1.5 2
Domain (m)

0

2

4

6

8

10

D
en

si
ty

 (
kg

.m
−

3 )

Exact_D
Exact_RRR1
2D axi
1D

0 0.5 1 1.5 2
Domain (m)

0

20000

40000

60000

80000

E
nt

ro
py

 (
J.

kg
−

1 )

Exact_D
Exact_RRR1
1D
2D axi

Fig. 47. Distribution of the density and the entropy obtained by the non
onservativeand the axisymmetri
 models and the two solutions of the inverse Riemann problemat time t = 1 ms.We show in �gure 48 the density and the entropy maps obtained with the34



axisymmetri
 model. We observe that the sho
ks are mainly longitudinal whi
hexplains the ni
e �tting between the numeri
al solution and 
on�guration
RRR1.

Fig. 48. 50 isodensity (top) from 0 to 10 and 50 isoentropy (bottom) from 0 to 80000at time t = 1 ms.We plot in �gure 49 the velo
ity and the Ma
h number for the theoreti
alsolutions for 
on�gurations D and RRR1 and the numeri
al approximationusing the 1D-non
onservative model and the 3D-
onservative one. We ob-serve a very good 
orresponden
e between the 1D-model and 
on�guration Dwhereas the approximations obtained with the axisymmetri
 model suit wellwith 
on�guration RRR1.
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Fig. 49. Distribution of the velo
ity and the Ma
h number obtained by the non
on-servative and the axisymmetri
 models and the two solutions of the inverse Riemannproblem at time t = 1 ms.Figure 50 represents the velo
ity and Ma
h number maps at time t = 1 ms.Like the density and the entropy, sho
k waves are longitudinal whi
h guaranteea good 
orresponden
e with the theoreti
al one-dimensional model.35



Fig. 50. 50 isovelo
ity (top) from 0 to 900 and 50 isoma
h (bottom) from 0 to 8 attime t = 1 ms.5.3 Remarks and 
onjun
turesWe propose here some remarks and 
onjun
tures based on our numeri
al ex-perien
e. We do not have 
lear theoreti
al arguments or solid experimentalfa
ts to prove the 
onjun
tures but just some intuitions upon the 
omplexproblem of non uniqueness.
• Sin
e we do not have uniqueness of the solutions with 
on�gurations D and

C but also with 
on�gurations D and RRR1, we should have non unique-ness situations with 
on�gurations A and B but also with 
on�gurations Aand LRR3.
• We also think that they may have many other situations of non unique-ness, for example between 
on�gurations D and RR1 (very similar to Dand RRR1) but also D and LR1. Non uniqueness with three available 
on-�gurations like D, RRR1 and RR1 seems also 
on
eivable.
• When the solutions of the non
onservative problem are not unique, it hasbeen noti
ed that two di�erent numeri
al methods 
an provide two di�er-ent solutions for the one-dimensional problem (see [2℄ for the shallow waterproblem). A �rst 
on
lusion 
ould be that s
heme S1 
hooses the right so-lution while s
heme S2 
hooses the wrong one. We think that the numeri
als
hemes do not behave like that and we propose here an other explanation.Assume that for very large velo
ity uL on the left side, we have a unique su-personi
 solution 
orresponding to 
on�guration D. If we redu
e the velo
ity

uL till a limit velo
ity ulim the non uniqueness situation arises and two 
on-�gurations are now available D and RRR1 for uL < ulim. The axisymmetri
model simulation provides the RRR1 solution but the numeri
al simulationwith a s
heme S1 provides 
on�guration D. We think that s
heme S1 willprovide a D 
on�guration as long as uL is larger to a 
riti
al velo
ity uc:for uL > uc the s
heme S1 provides a D 
on�guration and for uL < uc it36



swit
hes to the "good" 
on�guration RRR1.The value of uc depends on the s
heme S1 and if we 
onsider an other s
heme
S2 for the one-dimensional 
ase, the 
riti
al velo
ity where it swit
hes fromthe wrong 
on�guration to the right 
on�guration may be di�erent. Ourview is the following: some s
hemes have 
riti
al velo
ity 
lose to the limitvelo
ity uc ≈ ulim, hen
e they rapidly behave as the axisymmetri
 modelwhile other s
hemes have a 
riti
al velo
ity far from the limit velo
ity
uc << ulim and they provide the wrong solution for a larger number ofinitial 
onditions.As a 
on
lusion, we think that a numeri
al �ux does not always provide theright or the wrong solution but provides the right or the wrong solutionsfor two distin
t sets of initial 
onditions in the phase spa
e.

37



6 Sho
k wave intera
tion with a 
ross-se
tion redu
tion in a du
tIn numerous engineering appli
ations [5,26℄, pra
ti
al situations do not exa
tly
orrespond to pure Riemann problems for the non
onservative Euler systemwith two de�nitively di�erent states on the left and right side of a 
ross-se
tion dis
ontinuity. Indeed, in many appli
ations, the state dis
ontinuityand the 
ross-se
tion jump are not lo
ated at the same pla
e (see �gure 51).A Riemann problem for the 
onservative Euler system generates travellingwaves (an explosion generated by a high pressure and a low pressure 
hambersseparated by a diaphragm for instan
e) whi
h intera
t with the 
ross-se
tionjump lo
ated after the diaphragm. The in
ident sho
k wave is then separatedinto a transmitted sho
k wave and a re�e
ted sho
k wave in fun
tion of these
tion variation.

Fig. 51. Sho
k tube geometry for the test 1 (top) and test 2 (bottom).In order to perform numeri
al simulations of su
h a situation, we 
onsider asho
k tube of length x = [0 : 2] equipped with a se
tion redu
tion situated at
x = 1.4 m. The initial dis
ontinuity between the high pressure 
hamber andthe low pressure 
hamber is lo
ated at x = 0.7 m. As in the previous se
tions,we 
ompare the waves evolution between the one-dimensional non
onservativemodel and the three-dimensional axisymmetri
 model. We have 
arried outtwo kinds of simulation whether we use a dis
ontinuous or a smooth transitionbetween the two se
tions as displayed in �gure 51. We sum up here the two
on�gurations we deal with. Note that the 
lassi
al Riemann problem we useto generate the sho
k wave is exa
tly the same in the two situations in order38



to 
ompare the transition e�e
ts.
• A dis
ontinuous 
ross-se
tion redu
tion (test 1), i.e. an abrupt transition from

φ = 1 to φ = 0.4 (respe
tively a 
hange of 
ross-se
tion from R = 0.05 to
R = 0.0316 in the axisymmetri
 
ontext). The initial 
onditions of the sho
ktube are summarised in table 21.Table 21Initial 
onditions of the sho
k tube for the test 1Position (m) φ R (m) ρ (kg.m−3) u (m.s−1) P (Pa)

x = [0 : 0.7] 1 0.05 35.6 0 30 × 105

x = [0.7 : 1.4] 1 0.05 1.1867 0 1 × 105

x = [1.4 : 2] 0.4 0.0316 1.1867 0 1 × 105

• A regular 
ross-se
tion redu
tion (test 2), i.e. 
orresponding to a linear transitionfrom φ = 1 to φ = 0.25 (respe
tively a linear transition of the 
ross-se
tion from
R = 0.05 to R = 0.025). The initial 
onditions of the sho
k tube are summarisedin table 22.Table 22Initial 
onditions of the sho
k tube for the test 2Position (m) φ R (m) ρ (kg.m−3) u (m.s−1) P (Pa)
x = [0 : 0.7] 1 0.05 35.6 0 30 × 105

x = [0.7 : 1.4] 1 0.05 1.1867 0 1 × 105

x = [1.4 : 1.7] 1 → 0.25 0.05 → 0.025 1.1867 0 1 × 105

x = [1.7 : 2] 0.25 0.025 1.1867 0 1 × 105

6.1 The dis
ontinuous transition 
aseWe �rst 
onsider the situation of the abrupt transition. Table 21 gives theinitial 
onditions of the sho
k tube while �gures 52 show respe
tively the
omparison between the one-dimensional model and the axisymmetri
 one (wedisplay the 
ut at r = 0) for the density and Ma
h number at two di�erenttimes t = 1.3 ms (top) and t = 1.7 ms (bottom). At last, �gure 53 gives thedensity isolines for the axisymmetri
 model at time t = 1.7 ms.39
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Fig. 52. Distribution of the density and the Ma
h number obtained by the twomodels at time t = 1.3 ms (top) and t = 1.7 ms (bottom) for the test 1.
Fig. 53. 50 isodensity from 1 to 36 at time t = 1.7 ms.Comments. The in
ident sho
k wave generated by the Riemann problem isparted into a transmitted wave and a re�e
ted wave at time t = 1.3 ms bythe 
ross-se
tion dis
ontinuity lo
ated at x = 1.4 m. Both the models give asimilar behaviour but several di�eren
es 
an be highlighted. We �rst observethat the non
onservative model generates a higher re�e
ted wave density anda lower transmitted wave density with respe
t to the axisymmetri
 model. Thetransition between the 
ross-se
tion dis
ontinuity and the transmitted sho
k(the 3− s sho
k) is also di�erent: we note that the gas velo
ity in
reases justafter the 
ross-se
tion dis
ontinuity for the axisymmetri
 model whereas theone-dimensional model presents a �at 
urve for the velo
ity. Nevertheless, weobtain a very good agreement between the two solutions, in parti
ular the40



3 − s sho
k 
orresponding to the transmitted wave is the same in the twosimulations.6.2 The smooth transition 
aseWe now deal with the smooth transition 
ase where we use the same Riemannproblem to generate the in
ident wave. Table 22 gives the initial 
onditionsof the sho
k tube while �gures 54 show respe
tively the 
omparison betweenthe one-dimensional model and the axisymmetri
 one (we display the 
ut at
r = 0) for the density and Ma
h number at two di�erent times t = 1.45 ms(top) and t = 1.76 ms (bottom). At last, �gure 55 gives the density isolinesfor the axisymmetri
 model at time t = 1.76 ms.
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Fig. 54. Distribution of the density and the Ma
h number obtained by the twomodels at time t = 1.45 ms (top) and t = 1.76 ms (bottom) for the test 2.Comments.With a regular 
ross-se
tion variation, we obtain a perfe
t agree-ment between the two models even in the deli
ate zone situated after the po-sition x = 1.4 m. Transitions between subsoni
 and supersoni
 states are also41



Fig. 55. 50 isodensity from 1 to 36 at time t = 1.76 ms.ni
e and, in this 
ase, the one-dimensional non
onservative model is represen-tative of the fully three-dimensional 
onservative one sin
e there is no obliquewave generated by the 
ross-se
tion variation. It is noti
eable that the solutionfor regular variation situation is di�erent to the abrupt one: the re�e
ted andtransmitted waves are smoothed and the intermediate states are di�erent. Forexample, in the brutal variation 
ase we observe a 
onstant state just afterthe 
onta
t dis
ontinuity 0 − w whereas the density in
reases linearly in thesmooth variation 
ase due to the linear variation of the 
ross-se
tion.
7 Con
lusionA systemati
 
omparison of all the admissible 
on�gurations between the one-dimensional non
onservative model and the axisymmetri
 
onservative Eulersystem has been 
arried out. For the one-dimensional approa
h, we use theRusanov �ux adapted to the non
onservative Euler system proposed by [11℄and the spe
i�
 high-order s
heme for the Euler system with 
ylindri
al 
o-ordinates developed in [12℄. Numeri
al results show a very good 
orrespon-den
e between the two models when the solutions of the axisymmetri
 modelpresent straight longitudinal sho
ks i.e. no noti
eable transversal sho
k per-turbs the solution. Simulations based on the axisymmetri
 model also 
on�rmthe existen
e of 
omplex 
on�gurations su
h as the LR, RR, LRR and RRR
on�gurations introdu
ed in [11℄.We have tested the example of non uniqueness proposed by [3℄ and also pro-posed a new example of non uniqueness based on the D and RRR1 
on�g-urations. Indeed, two entropy solutions in the Lax sense are available andwe show that the numeri
al s
heme for the one-dimensional non
onservativeproblem does not always pi
k up the same solution obtained by the axisym-metri
 model.In the last se
tion, we have proposed a representative situation of engineeringappli
ations where a strong sho
k wave, generated upstream, 
omes to prop-agate in a 
onverging du
t. Numeri
al results have shown a good agreementbetween the two models even if the 
ross-se
tion transition is abrupt.A
knowledgmentThis work was �nan
ially supported by the S
hneider Ele
tri
 
ompany.42
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