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INFINITE PRODUCTS OF NONNEGATIVE 2 × 2 MATRICES BY NONNEGATIVE VECTORS

Keywords: 

Given a finite set {M 0 , . . . , M d-1 } of nonnegative 2 × 2 matrices and a nonnegative column-vector V , we associate to each (ω n ) ∈ {0, . . . , d -1} N the sequence of the column-vectors M ω1 . . . M ωn V M ω1 . . . M ωn V . We give the necessary and sufficient condition on the matrices M k and the vector V for this sequence to converge for all (ω n ) ∈ {0, . . .

Introduction

Let M = {M 0 , . . . , M d-1 } be a finite set of nonnegative 2×2 matrices and V = v 1 v 2 a nonnegative column-vector. We use the notation Y n = Y ω n := M ω 1 . . . M ωn and give the necessary and sufficient condition for the pointwise convergence of

Y n V Y n V , (ω n ) ∈ {0, . . . , d -1} N
such that Y n V = 0 0 for any n, where • is the norm-sum. The idea of the proof is that, if the conditions are satisfied, either both columns of Y n tends to the same limit, or they tend to different limits with different orders of growth, so in case V is positive the limit points of Y n V Y n V only depend on the limit of the dominant column. This problem is obviously very different from the one of the convergence of Y n Y n , or the convegence of the Y n itselves, see the intoduction of [START_REF] Olivier | Asymptotic properties of the columns in the products of nonnegative matrices[END_REF] for some counterexamples and [8, Proposition 1.2] for the infinite products of 2 × 2 stochastic matrices.

The conditions for the pointwise convergence of Y n V Y n V also differ from the conditions for its uniform convergence, see [START_REF] Olivier | Infinite products of 2 × 2 matrices and the Gibbs properties of Bernoulli convolutions[END_REF]. The uniform convergence can be used for the multifractal analysis of some continuous singular measures called Bernoulli convolutions (see [START_REF] Peres | Sixty years of Bernoulli convolutions[END_REF] for the Bernoulli convolutions and [START_REF] Feng | Multifractal analysis of weak Gibbs measures and phase transition -application to some Bernoulli convolutions[END_REF] for their multifractal analysis). We study such measures in [START_REF] Olivier | Infinite products of 2 × 2 matrices and the Gibbs properties of Bernoulli convolutions[END_REF], [START_REF] Olivier | Infinite Convolution of Bernoulli Measures, PV numbers and related problems in the dynamics of Fractal Geometry[END_REF] and [START_REF] Olivier | How to prove that some Bernoulli convolution is weak Gibbs[END_REF]. The Birkhoff's contraction coefficient [START_REF] Seneta | Non-negative matrices and Markov chains[END_REF]Chapter 3] that we use in [START_REF] Olivier | Infinite Convolution of Bernoulli Measures, PV numbers and related problems in the dynamics of Fractal Geometry[END_REF] and [START_REF] Olivier | Asymptotic properties of the columns in the products of nonnegative matrices[END_REF] but not here, is really not of great help to solve the main difficulties. Moreover the theorem that gives the value of this coefficient is difficult to prove (see [7, §3.4]) even in the case of 2 × 2 matrices. In [START_REF] Olivier | Infinite products of 2 × 2 matrices and the Gibbs properties of Bernoulli convolutions[END_REF] we use some other contraction coefficient quite more easy to compute ([2, Proposition 1.3]). 

Condition for the pointwise convergence of

Y n V Y n V Proposition 1.1. The sequence Y n V Y n V converges for any ω ∈ {0, . . . , d -1} N such that ∀n, Y n V = 0 0 , if
A n = A ω n :=          M ωn if det Y n-1 > 0 (or n = 1) and det M ωn > 0 M ωn ∆ if det Y n-1 > 0 (or n = 1) and det M ωn < 0 ∆M ωn if det Y n-1 < 0 and det M ωn < 0 ∆M ωn ∆ if det Y n-1 < 0 and det M ωn > 0.
We set also

a n b n c n d n := A n and p n q n r n s n := A 1 . . . A n = Y n if det Y n > 0 Y n ∆ if det Y n < 0.
The matrices A n belong to the set

M + := {M ; ∃i, j, k, M = ∆ i M k ∆ j and det M > 0}.
Since det A n > 0 we have a n d n p n s n = 0. If {n; A n not diagonal} is infinite we index this set by an increasing sequence n 1 < n 2 < . . . . We have b n 1 = 0 or c n 1 = 0; both cases are equivalent because, using the set of matrices M ′ = ∆M∆ and defining similarly Y ′ n and

A ′ n = a ′ n b ′ n c ′ n d ′ n from this set, we have Y ′ n = ∆Y n ∆, A ′ n = ∆A n ∆ and b ′ n 1 = c n 1 .
So we can suppose b n 1 = 0; we deduce q n = 0 by induction on n ≥ n 1 . The sequences defined for any n ≥ n 1 by

u n = r n p n , v n = s n q n , w n = q n p n , x n = v 2 /v 1 if det Y n > 0 v 1 /v 2 if not and λ n = (1 + w n x n ) -1 satisfy 0 ≤ u n < v n < ∞, 0 < w n < ∞ and if the entries of V are positive, 0 < x n < ∞ and 0 < λ n < 1 if not, x n ∈ {0, ∞} and λ n ∈ {0, 1} according to the sign of det Y n .
Since we have assumed that

Y n V = 0 0 , the ratio (Y n V ) 2 (Y n V ) 1
exists in [0, ∞] and we have to prove that it has a finite or infinite limit when n → ∞.

If A n is not eventually diagonal we have for n ≥ n 1 (1) (Y n V ) 2 (Y n V ) 1 = λ n u n + (1 -λ n )v n ∈ I n := [u n , v n ] and I n ⊇ I n+1 .
An immediate consequence is the following lemma:

Lemma 1.1. Suppose A n is not eventually diagonal, then (i) the sequences (u n ) and (v n ) converge in R and the sequence (Y n V ) 2 (Y n V ) 1 is bounded; (ii) (Y n V ) 2 (Y n V ) 1 converges if lim n→∞ |I n | = 0; (iii) if V has positive entries, (Y n V ) 2 (Y n V ) 1 converges if w n has limit 0 or ∞;
(iv) if V has a null entry, the necessary and sufficient condition for the convergence of

(Y n V ) 2 (Y n V ) 1 is that lim n→∞ |I n | = 0 or the sign of det Y n is eventually constant.
We also define for n > n 1

α n = 1 + c n a n w n-1 -1 , β n = 1 + b n d n (w n-1 ) -1 -1 , γ n = 1 - c n a n b n d n
that belong to ]0, 1] and satisfy

(2) 

|I n | = α n β n γ n |I n-1 | w n = d n a n α n β n w n-1 so n>n 1 α n β n γ n = lim n→∞ |I n | |I n 1 | is positive if
|I n | > 0 ⇔ c n a n w n-1 < ∞, b n d n (w n-1 ) -1 < ∞ and c n a n b n d n < ∞.
The set of indexes {n; A n not diagonal} is the union of

L ω = {n; c n = 0} and U ω = {n; b n = 0}.
Moreover, since A n belongs to the finite set M + there exists K > 0 such that

L ω = n; 1 K ≤ c n a n ≤ K and U ω = n; 1 K ≤ b n d n ≤ K .
We deduce a simpler formulation of (3):

(4) lim n→∞ |I n | > 0 ⇔ n∈L ω w n-1 < ∞, n∈U ω (w n-1 ) -1 < ∞ and L ω ∩ U ω is finite.
In view of Lemma 1.1 we may suppose from now that lim 

n→∞ |I n | > 0. Since L ω ∩ U ω = {n ; A n positive} is finite, for n large enough the matrix A n is lower triangular if n ∈ L ω , upper triangular if n ∈ U ω , diagonal if n ∈ L ω ∪ U ω . When A n is diagonal
w n w n i = n i <j≤n d j a j .
Moreover if L ω is infinite, (4) implies that w n-1 has limit to 0 when L ω ∋ n → ∞, and

w n also has limit 0 because w n = d n w n-1 a n + c n w n-1
for any n ∈ L ω \ U ω . We have a similar

property if U ω is infinite, so (6) if L ω is infinite, w n-1 → 0 and w n → 0 for L ω ∋ n → ∞; if U ω is infinite, w n-1 → ∞ and w n → ∞ for U ω ∋ n → ∞.
First case: Suppose that (i) holds. Then the diagonal matrices of M are collinear to the unit matrix. If at least one matrix of M has the form

M k = 0 b c 0 with bc = 0, its nonnegative eigenvalue -namely √ b √ c -is collinear to V = v 1 v 2 hence there exists λ ∈ R such that M k = λ 0 v 2 1 v 2 2 0 .
Notice that if A n is diagonal from a rank N, the matrix M ωn has the form a 0 0 d or 0 b c 0 hence it has V as eigenvector; consequently

(Y n V ) 2 (Y n V ) 1 converges because it is (Y N V ) 2 (Y N V ) 1 for any n ≥ N.
Suppose now A n is non-diagonal for infinitely many n. We apply (5) on each interval ]n i , n i+1 [ (if non empty), for i large enough. Among the integers n ∈]n i , n i+1 [ we consider the ones for which det M ωn < 0. For such n the matrix A n is alternately M ωn ∆ and ∆M ωn , hence alternately proportional to

v 2 1 0 0 v 2 2 and to v 2 2 0 0 v 2 1
and, according to ( 5), ( 7)

n i ≤ n < n i+1 ⇒ w n w n i ∈ v 2 1 v 2 2 , v 2 2 v 2 1 , 1 .
In particular this relation holds for n = n i+1 -1. One deduce -according to (6) -that there do not exist infinitely many i such that n i ∈ L ω and n i+1 ∈ U ω . Thus n i ∈ L ω for i large enough (resp. n i ∈ U ω for i large enough) and, according to ( 6) and ( 7), lim

n→∞ w n = 0 (resp. lim n→∞ w n = ∞). In view of Lemma 1.1(iii), (Y n V ) 2 (Y n V ) 1 converges.
Second case: Suppose that (ii) holds (if (iii) holds the proof is similar). Suppose first the M ωn are diagonal from a rank N. From the hypothesis (ii) there exists

δ n , δ ′ n such that M ω N . . . M ωn V = δ n v 1 δ ′ n v 2 and δ n ≥ δ ′ n .
Since the M ω i belong to a finite set we have lim

n→∞ δ n δ ′ n = ∞, or δ n δ ′
n is eventually constant in case M ωn is eventually the unit matrix, or δ ′ n = 0 = δ n for n large enough. Denoting by

p q r s the matrix M ω 1 . . . M ω N-1 , we have (Y n V ) 2 (Y n V ) 1 = rδ n v 1 + sδ ′ n v 2 pδ n v 1 + qδ ′ n v 2 hence (Y n V ) 2 (Y n V ) 1
converges in all the cases.

Suppose now M ωn is non-diagonal for infinitely many n. There exists from [START_REF] Peres | Sixty years of Bernoulli convolutions[END_REF] an integer κ such that

(8) i ≥ κ ⇒ w n i -1 < 1 and w n i < 1 if n i ∈ L ω w n i -1 > 1 and w n i > 1 if n i ∈ U ω
and such that the A n are diagonal for n ∈]n i , n i+1 [, i ≥ κ. According to (ii), for such values of n the matrix M ωn is diagonal and

A n = M ωn with a n ≥ d n , or A n = ∆M ωn ∆ with a n ≤ d n .
If there exists i ≥ κ such that n i ∈ L ω and n i+1 ∈ U ω , det Y n i is necessarily negative:

otherwise A n should be equal to M ωn for n ∈]n i , n i+1 [, d n a n ≤ 1 and, by ( 5), w n i+1 -1 ≤ w n i < 1 in contradiction with [START_REF] Thomas | Can an infinite left-product of nonnegative matrices be expressed in terms of infinite left-products of stochastic ones?[END_REF]. Now M ωn i+1 has positive determinant, otherwise it should have the form a b c 0 and

A n i+1 = ∆M ωn i+1 = c 0 a b in contradiction with n i+1 ∈ U ω .
We have again

d n a n ≥ 1 for n ∈]n i+1 , n i+2 [ and consequently w n i+2 -1 ≥ w n i+1 > 1; so, by
induction, n j ∈ U ω and det Y n j < 0 for any j ≥ i + 1. From [START_REF] Olivier | Asymptotic properties of the columns in the products of nonnegative matrices[END_REF] w n lies between w n j and w n j+1 -1 for any n ∈]n j , n j+1 [ and j large enough, and from (6) its limit is infinite. Distinguishing the cases where V has positive entries or V has a null entry,

(Y n V ) 2 (Y n V ) 1 converges by Lemma 1.1.
The conclusion is the same if there do not exist i ≥ κ such that n i ∈ L ω and n i+1 ∈ U ω , because in this case n i ∈ L ω for i large enough, or n i ∈ U ω for any i ≥ κ.

Third case: Suppose (iv) holds. As we have seen, from (4) A n is eventually triangular or diagonal, and M ωn also is because -by (iv) -M do not contain invertible matrices of the form 0 b c d or a b c 0 . We deduce that the sign of det Y n is eventually constant. If

A n is not eventually diagonal the sequence (Y n V ) 2 (Y n V ) 1
converges by Lemma 1.1(iv) and, if

A n is, the sequence (Y n V ) 2 (Y n V ) 1 is eventually constant.
Fourth case: Suppose that the set M do not satisfy (i), (ii), (iii) nor (iv), and that at least one matrix of this set, let M k , has the form

M k = 0 b c 0 with bc = 0; let us prove that (Y n V ) 2 (Y n V ) 1 diverges.
Suppose first there exists a matrix M k of this form that do not have V as eigenvector;

we chose as counterexample the constant sequence defined by ω n = k for any n: Y 2n is collinear to the unit matrix, hence

Y 2n V is collinear to V and Y 2n+1 V to M k V , so (Y n V ) 2 (Y n V ) 1 diverges.
Suppose now that all the matrices of M of the form 0 b c 0 with bc = 0 have V as

eigenvector that is, V is collinear to √ b √ c
for all such matrix. Since (i) do not hold, at least one matrix M h of M is diagonal with nonnull and distinct diagonal entries. In this case M h M k has the form 0 b c 0 but do not have V as eigenvector. We recover the previous case; more precisely the counterexample is defined by ω 2n-1 = h and ω 2n = k for any n ∈ N.

Fifth case: Suppose that M do not satisfy (i), (ii), (iii) nor (iv), and that no matrix of the form 0 b c 0 with bc = 0 belongs to M. Since (i) do not hold, at least one matrix of this set has the form M k = a 0 0 d with ad = 0 and a = d. We suppose that a > d and we use the negation of (ii) (in case a < d we use similarly the negation of (iii)). According to the negation of (ii) there exists in M at least one matrix of the form M h = 0 β γ δ with βγδ = 0, or one of the form M ℓ = α 0 0 δ with 0 < α < δ.

Consider first the case where M contains some matrices M k and M h as above. Let (n i ) i∈N be an increasing sequence of positive integers with n 1 = 1, and ω the sequence defined by ω n = h for n ∈ {n 1 , n 2 , . . . } and ω n = k otherwise.

For i odd,

A n i is lower-triangular and ∀n ∈]n i , n i+1 [, A n = d 0 0 a , a n = d and d n = a.
For i even, A n i is upper-triangular and ∀n ∈]n i , n i+1 [, A n = a 0 0 d , a n = a and d n = d.

Using [START_REF] Olivier | Asymptotic properties of the columns in the products of nonnegative matrices[END_REF] for n = n i+1 -1 and choosing n i+1 -n i large enough one has w n i+1 -1 ≥ 2 i if i is odd, w n i+1 -1 ≤ 2 -i if i is even, so the three conditions in (4) are satisfied and the interval ∩I n is not reduced to one point. If the entries of V are positive, the first relation in [START_REF] Feng | Multifractal analysis of weak Gibbs measures and phase transition -application to some Bernoulli convolutions[END_REF] and the definition of λ n imply that lim inf In case M contains some matrices M k and M ℓ as above, one defines ω from a sequence i 1 = 1 < i 2 < i 3 < . . . by setting, for j ≥ 1 and i j ≤ n < i j+1 ,

n→∞ (Y n V ) 2 (Y n V ) 1 is
ω n = k if j even ℓ if j odd.
The diagonal matrix Y n can be easily computed, and (Y n V ) 2 (Y n V ) 1 obviously diverges if one choose the i j+1 -i j large enough.

If V has a null entry, since (iv) do not hold M contains at least one matrix of the form M h = 0 β γ δ , βγδ = 0 or M h ′ = α β γ 0 , αβγ = 0, or M h ′′ = 0 β γ 0 , βγ = 0. We already know that (Y n V ) 2 (Y n V ) 1 diverges if M contains M k and M h . Similarly it diverges if M contains M ℓ and M h ′ . If M contains M k and M h ′′ the counterexample is given -from a sequence i 1 = 1 < i 2 < i 3 < . . . -by ω i j = h ′′ and ω n = k for n ∈]i j , i j+1 [, j ∈ N:

(Y n V ) 2 (Y n V ) 1
is alternately 0 and ∞ because Y i j has the form 0 q r 0 for j odd and p 0 0 s for j even.

  and only if at least one of the following conditions holds: (i) V has positive entries and it is an eigenvector of any invertible matrix of the form a 0 0 d or 0 b c 0 that belongs to M. (ii) Any invertible matrix a b c d ∈ M satisfies a > 0 and, if b = c = 0, a ≥ d. (iii) Any invertible matrix a b c d ∈ M satisfies d > 0 and, if b = c = 0, d ≥ a. (iv) V has a null entry and all the invertible matrices a b c d ∈ M satisfy ad > 0. Proof. Let ω ∈ {0, . . . , d-1} N . If there exists N such that det M ω N = 0, the column-vectors Y N V, Y N +1 V, . . . are collinear and Y n V Y n V is constant for n ≥ N. So we look only at the ω ∈ {0, . . . , d -1} N such that ∀n, det M ωn = 0. In order to use only matrices with positive determinant we set ∆ :

  and only if lim n→∞ |I n | > 0. Using the equivalents of log α n , log β n and log γ n ,

	(3)	lim n→∞

  (Y n V ) 1 its upper bound, so the sequence (Y n V ) 2 (Y n V ) 1 diverges. If V has a null entry, the divergence of (Y n V ) 2 (Y n V ) 1results from Lemma 1.1(iv).

the lower bound of this interval and lim sup n→∞ (Y n V ) 2