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We study Anderson localization in a disordered potential combined with a harmonic trap. We
show that the spectrum displays both localized and extended states, which coexist at intermediate
energies. In the region of coexistence, we find that the extended states result from confinement by
the trap and are weakly affected by the disorder. Conversely, the localized states correspond to
eigenstates of the disordered potential, which are only affected by the trap via an inhomogeneous
energy shift. These results are directly relevant to disordered quantum gases and we propose a
realistic scheme to observe the coexistence of localized and extended states in these systems.
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Disorder underlies many fields in physics, such as elec-
tronics, superfluid helium, and optics [1–3]. Understand-
ing the effects of disorder poses challenging questions, re-
garding quantum transport [4] and the interplay of disor-
der and interactions [5], for instance. In this respect, ul-
tracold quantum gases offer exceptionally-well controlled
simulators for condensed-matter physics [6] and are par-
ticularly promising for disordered systems [7]. They re-
cently paved the way to the direct observation of the
Anderson localization of matter-waves [8–11].

Ultracold atoms do not only mimic standard models
of condensed-matter physics, but also raise new issues
which require special analysis in its own right. Most im-
portantly, ultracold atoms are almost always confined in
spatial traps, which has significant consequences. On one
hand, retrieving information about bulk properties re-
quires specific algorithms [12]. On the other hand, trap-
ping induces novel effects, for instance the existence of
Bose-Einstein condensates in low dimensions [13], and
the appearance of localized single-particle states in opti-
cal lattices due to suppression of quantum tunneling [14–
16].

Consider the problem of Anderson localization
(AL) [17]. In homogeneous disorder, linear waves can lo-
calize owing to coherent multiple scattering, with prop-
erties depending on the system dimension and the dis-
order strength [1]. A paradigm of AL is that localized
and extended states generally do not coexist in energy.
This relies on Mott’s reductio ad absurbum [1]: Should
there exist a localized state and an extended state with
infinitely close energies for a given configuration of dis-
order, an infinitesimal change of the configuration would
hybridize them, forming two extended states. Hence, for
a given energy, almost all states should be either local-
ized or extended. This statement holds for most models
of homogeneous disorder, except for peculiar ones, such
as binary alloys [18] or binary off-diagonal disorder [19],
which both display strong local symmetries, and multi-
channel systems [20]. Then, a question arises: Can inho-
mogeneous trapping modify this picture so that localized

and extended states coexist in energy ?
In this Letter, we study localization in a disordered

potential combined with a harmonic trap. The latter is
not only generic for inhomogeneous trapping, but also di-
rectly relevant to disordered systems of ultracold atoms
[11, 21–24]. As can be expected, we find that the lowest-
energy states are strongly localized near the trap center,
owing to the confinement. Conversely, the highest-energy
states extend over the full (energy-dependent) classically-
allowed region, similarly as in a homogeneous system of
finite size. The central result of this work is that localized
and extended states do coexist at intermediate energies.
We give numerical evidence of this effect and show that
while the extended states are confined by the trap and
weakly affected by the disorder, the localized states cor-
respond to eigenstates of the disordered potential, which
are only affected by the trap via an inhomogeneous en-
ergy shift. Finally, we propose a realistic scheme based
on energy-selective time-of-flight techniques to observe
the coexistence of localized and extended states with ul-
tracold Fermi gases.
Let us consider a d-dimensional gas of non-interacting

particles of mass m, confined into a spatial trap VT(r)
and subjected to a homogeneous disordered potential
V (r) of zero average (〈V 〉 = 0), amplitude VR, and
correlation length σR. Hereafter, we use so-called ‘red-
detuned’ speckle potentials (VR < 0), similar to those
used for disordered quantum gases [7, 25]. The trap is
either a homogeneous box of linear length L (VT(r) = 0
for |rj | < L with j ∈ {x, y, z}, and VT(r) = +∞ other-
wise) or a harmonic trap of angular frequency ω (VT(r) =
mω2|r|2/2). We numerically compute the eigenstates
|ψn〉 and eigenenergies En of the Hamiltonian

Ĥ = −~
2
∇

2/2m+ V (r) + VT(r) (1)

and characterize the eigenstates by their center of mass,
rn ≡ 〈ψn|r̂|ψn〉, and their spatial extension (rms size),

∆rn≡
(

〈ψn|r̂2|ψn〉−r
2
n

)1/2
. The quantity ∆rn quantifies

localization: the smaller, the more localized [26].
Numerical results for the one-dimensional (1D, d = 1)
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Figure 1: Extension (a)-(b), center of mass (c)-(d) and DOS
(e)-(f) versus energy in a 1D disordered trap. The plots result
from accumulation of numerical data over 500 realizations
of a red-detuned speckle potential with mσ2

R|VR|/~2 =0.256.
Panels (a)-(c)-(e) refer to a flat box of length L = 500σR;
the curved line in (a) corresponds to an infinite system [27]
and the horizontal line is ∆z = L/2

√
3. Panels (b)-(d)-(f)

refer to a harmonic trap with ω=0.025|VR |/~; the solid lines
correspond to the non-disordered case. Panels (e)-(f) show the
full DOS ρ(E) (solid black line), as well as the DOS restricted
to localized (ρ<) and extended (ρ>) states. The dot-dashed

green lines are the high-energy limits: ρ(E)=
√

mL2/2π2~2E
for the box, and ρ(E)=1/~ω for the harmonic trap.

case are reported in Fig. 1. In infinite, homogeneous dis-
order, all states |ψn〉 are localized, they are uniformly
distributed in space, and their extension ∆zn monoton-
ically increases with the energy [28]. As Figs. 1(a)-(c)
show, finite-size effects have only a trivial effect: For a fi-
nite box of length L, the states of energy low enough that
∆zn ≪ L are not affected by the finite size of the box.
For larger energies however, boundary effects come into
the picture: The states are centered closer to the box cen-
ter and their extension saturates to ∆z≃L/2

√
3, that is

the value found for extended plane waves. An important
outcome of these results is that the curve giving ∆zn ver-
sus E displays a single branch. In particular, there is no
energy region where localized and extend states coexist.
This finding is in agreement with Mott’s statement [1]
and holds independently of the size of the box.

For a harmonic potential, we find a completely differ-
ent behavior. The curves giving ∆zn and zn versus E
now display two clearly separated branches [Figs. 1(b)-
(d)]. For low energies, the states are strongly localized
and, for E > 0, they are roughly uniformly distributed
in a region bounded by the (energy-dependent) classi-
cal turning points, zcl(E) = ±

√

2E/mω2. For higher
energies, the states corresponding to the upper branch

in Fig. 1(b) are less localized, their extension grows and
eventually saturates to that of the eigenstates of the non-
disordered trap, ∆z ≃

√

E/mω2. The centers of mass
of these states approach the trap center and form the
horizontal branch in Fig. 1(d) [29]. This branch, corre-
sponding to extended states, is hence easily interpreted
in terms of finite-size effects, similarly as for a finite, flat
box. The lower branch in Fig. 1(b) is more surprizing
and has no equivalent in the homogeneous box (even of
finite size). It corresponds to strongly-localized states
with relatively large energies. We find that these states
are located close to the classical turning points zcl(E) and
thus correspond to the outer branches in Fig. 1(d) [29].

These results show that localized and extended states
coexist in energy in the disordered trap, while they do
not in the homogeneous disorder. This is confirmed more
quantitatively in Figs. 1(e)-(f) which show the full densi-
ties of states (DOS, solid black line), as well as the den-
sities of localized (ρ<, solid red line) and extended (ρ>,
dashed blue line) states [30]. For the flat box [Fig. 1(e)],
the crossover from localized to extended states is very
sharp and solely due to the width of the statistical dis-
tribution of ∆z. For the harmonic trap [Fig. 1(f)], the
crossover is much smoother and the density of localized
states displays a long tail at high energies, due to the
branch of localized states. For instance, we find that
ρ</ρ ≃ 12% of the states are localized for E ≃ 4|VR|.
Figure 2(a) shows the spatial density |ψn(z)|2 of all

states found for a single realization of the disorder, in
a narrow slice of the spectrum around E ∼ 4|VR|. We
can clearly distinguish localized (thick red lined) and ex-
tended (thin blue lines) states, which shows that they
coexist in energy for each realization of the disorder.
Here, finite energy separation and weak spatial overlap
between localized and extended states suppresses hybri-
dation. The localized states are very narrow and present
no node (e.g. states A and E) or a few nodes (e.g. states
C and H). They may be identified as bound states of
the local deep wells of the disordered potential, similarly
as the lowest-energy states creating the Lifshits tail in
bare disordered potentials [28]. Let us decompose the
eigenstates |ψn〉 of the disordered trap onto the basis of
the eigenstates |χp〉 of the bare disordered potential [i.e.
Hamiltonian (1) with VT ≡ 0], associated to the eigenen-
ergies ǫp. Figure 2(b) shows |〈χp|ψn〉|2 as a function
of ǫ′p = ǫp + 〈χp|VT(z)|χp〉, i.e. the eigenenergy of |χp〉
shifted by the potential energy associated to the har-
monic trap, for states C and D of Fig. 2(a). It is char-
acteristic of a general behavior: For the localized state
(C, thick red line), the plot displays a single peak with
amplitude of the order of unity at energy ǫ′p ≃ En. A
localized state |ψn〉 of the disordered trap thus corre-
sponds to a strongly-localized state |χp〉 of the bare dis-
ordered potential, which is affected by the trap by just
the energy shift 〈χp|VT(z)|χp〉. We generally find that
|ǫp| ≪ 〈χp|VT(z)|χp〉 ≃ 〈ψn|VT(z)|ψn〉, and, due to the
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Figure 2: Eigenstates for a single realization of a 1D dis-
ordered trap. a) Non-normalized spatial densities, |ψn(z)|2,
vertically displaced at their eigenenergies En. Thick red lines
correspond to localized states, and blue lines to extended
states [30]. Note that extended and localized states may
occupy almost-degenerate energy levels (e.g. H and I). The
states C and D are projected: b) over the eigenstates of the
disordered potential, |χp〉, and c) over those of the harmonic
trap, |ψ0

p〉. The parameters are as in Fig. 1.

reduced spatial extension of |ψn〉, we get En ≃ mω2z2n/2.
This explains that the localized states are located close
to the classical turning points, as observed in Figs 1(d)
and 2(a). Conversely, the same decomposition for the ex-
tended state (D, thin blue line) shows a broad distribu-
tion of amplitude much smaller than unity. An extended
state is thus not associated to an eigenstate of the bare
disordered potential.

Hence, strongly bound states of the disordered poten-
tial can ‘survive’ in the trap. For more weakly bound
states, the trap may promote tunneling through the bar-
riers of the disordered potential and lead to extended
states with a pronounced peak, a long tail and many
nodes (e.g. states B, F and G). Fully extended states oc-
cupy the whole classically-allowed region [|z| . zcl(E)],
similarly as in the bare harmonic trap. Let us now de-
compose the states |ψn〉 of the disordered trap onto the
basis of the eigenstates |ψ0

p〉 of the bare harmonic trap
[i.e. Hamiltonian (1) with V = 0], associated to the
eigenenergy E0

p . Figure 2(c) shows |〈ψ0
p|ψn〉|2 as a func-

tion of E0
p for states C and D. It exemplifies a character-

istic behavior: For the extended state (D, thin blue line),
the distribution is sharp and peaks at E0

p ≃ En to a
value equal to a fraction of unity. This state may be seen
as reminiscent of a harmonic oscillator eigenstate, which
is weakly affected by the disorder. Still, the main peak
in Fig. 2(c) is markedly smaller than one. Inspection of

Figure 3: Scheme to observe the coexistence of localized and
extended states in disordered traps (solid red line). a) The
atoms occupying the eigenstates of energy E±∆ (shadded re-
gion) are transfered to a different internal state via rf coupling.
The corresponding momentum distribution is then measured
by TOF. b) Correlation function CE,∆(k) (black solid line)
and momentum distribution 〈DE,∆(k)〉 (dashed green line,
arbitrary units), for ∆ = 2~ω. Inset: CE,∆(k) of all states
(solid black line), and separating localized (dashed red line)
and extended (dotted blue line) states [30], for ∆ ≪ ~ω. Here
E = 4|VR| and the other parameters are as in Fig. 1.

the equations of standard perturbation theory shows that
only for significantly higher energy, the extended states
|ψn〉 result from weak perturbations of those of the non-
disordered trap and display a main peak of the order of
unity. Conversely, the localized state (C, thick red line)
shows a much broader distribution, and is not related to
a particular eigenstate of the non-disordered trap.
We now discuss a possible scheme to observe the co-

existence of localized and extended states in a disor-
dered trap. Consider a gas of non-interacting ultracold
fermions prepared in a given internal state, at temper-
ature T and chemical potential µ. A class of energies
|En − E| . ∆ [see Fig. 3(a)] deep in the Fermi sea
(i.e. with µ − E ≪ kBT ) can be selected by applying
a spin-changing radio-frequency (rf) field of frequency
ν = E/h and duration τ ∼ h/∆ (with h the Planck con-
stant) [16, 31, 32]. The rf field transfers the atoms of
corresponding energies to another internal state, which
can be chosen insensitive to the disordered trap. Then,
the transfered atoms expand freely, which provides their
momentum distribution [time-of-flight (TOF) technique]:

DE,∆(k) =
∑

|En−E|.∆

|ψ̂n(k)|2, (2)

where ψ̂n(k) is the Fourier transform of ψn(z). In the co-
existence region, DE,∆(k) has two significantly different

kinds of contributions: For localized states, |ψ̂n(k)|2 is
centered around k ≃ 0 with tails of width ∆kn ∼ ∆z−1

n .

Conversely, for extended states, |ψ̂n(k)|2 is peaked at
k ≃

√
2mE/~ with long tails towards small momenta.

Exhibiting these two peaks would demonstrate the co-
existence of localized and extended states at energy E.
We however found that averaging over realizations of
the disorder blurs the central peak associated to the lo-
calized states, and 〈DE,∆(k)〉 only displays the peak at

k ≃
√
2mE/~ corresponding to the extended states [see
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Figure 4: Coexistence of localized and extended states in a
2D disordered trap at energy E ≃ (4±0.0003)|VR |. The figure
results from accumulation of data from 2×104 realizations of
the disorder, with mσ2

R|VR|/~2 = 0.8 and ω = 0.05|VR|/~. a)
Centers of mass rn of the eigenstates and corresponding val-
ues of ∆rn/σR in color scale. The solid black line corresponds

to the classical turning points, rcl(E) =
√

2E/mω2 ≃ 63.2σR.
b) Extension ∆rn versus distance from the trap center, |rn|.

dashed green line in Fig. 3(b)]. In order to overcome
this effect, we propose to measure the correlation func-
tion CE,∆(k) ≡ 〈DE,∆(k) × DE,∆(0)〉/〈DE,∆(0)

2〉. The
function CE,∆(k) enhances the contribution of the local-
ized states, which have a strong component at k = 0. As
shown in Fig. 3(b), CE,∆(k) indeed displays two distinct
peaks (solid black line) for a rf pulse of realistic duration
(∆ = 2~ω). The peak at k = 0 is more pronounced for
narrower pulses. The clearest case is for ∆ ≪ ~ω. As
shown in the inset of Fig. 3(b), selecting only the local-
ized states on one hand, and only the extended states on
the other hand [30], confirms that the central peak cor-
responds to the localized states and the side peak to the
extended states.

Finally, can localized and extended states coexist in
energy in disordered traps of higher dimensions ? In or-
der to address this question, we have performed similar
calculations as above in two dimensions (2D). Figure 4(a)
shows the centers of mass rn of the eigenstates with En ≃
4|VR|, the color scale giving ∆rn. Figure 4(b) shows a
density plot of ∆rn versus |rn| for the same data. Again,
the eigenstates clearly separate into two classes: Some
states are extended (large ∆rn) and centered nearby the
trap center (small |rn|). The other states are strongly
localized (small ∆rn) and located nearby the line of clas-
sical turning points (|rn| ≃ rcl(E) =

√

2E/mω2). These
results show that localized and extended states coexist at
intermediate energies in 2D disordered traps. We expect
analogous results in higher dimensions.

In conclusion, we have shown that localized and ex-
tended states can coexist in energy in disordered poten-
tials combined with harmonic traps. The localized states
correspond to eigenstates of the disordered potential,
which are only affected by the trap via an inhomogeneous
energy shift. Conversely, the extended states extend over
the classically-allowed region of the trap and are weakly
affected by the disorder. This effect is directly relevant to
present-day experiments with disordered quantum gases,

which are most often created in harmonic traps, and we
have proposed a realistic scheme to observe it in these
systems. We expect these results hold in any dimension
and for disordered potentials combined with other kinds
of traps or with smooth potentials. The latter case may
model certain systems with inhomogeneous disorder.
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