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Abstract

We study Anderson localization in a disordered potential combined with a harmonic trap. We

show that the spectrum displays both localized and extended states, which coexist at intermediate

energies. In the region of coexistence, we find that the extended states result from confinement by

the trap and are weakly affected by the disorder. Conversely, the localized states correspond to

eigenstates of the disordered potential, which are only affected by the trap via an inhomogeneous

energy shift. These results are directly relevant to disordered quantum gases and we propose a

realistic scheme to observe the coexistence of localized and extended states in these systems.
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Disorder underlies many fields in physics, such as electronics, superfluid helium, and op-

tics [1–3]. Understanding the effects of disorder poses challenging questions, regarding quan-

tum transport [4] and the interplay of disorder and interactions [5], for instance. In this re-

spect, ultracold quantum gases offer exceptionally-well controlled simulators for condensed-

matter physics [6] and are particularly promising for disordered systems [7]. They recently

paved the way to the direct observation of the Anderson localization of matter-waves [8–11].

Ultracold atoms do not only mimic standard models of condensed-matter physics, but also

raise new issues which require special analysis in its own right. Most importantly, ultracold

atoms are almost always confined in spatial traps, which has significant consequences. On

one hand, retrieving information about bulk properties requires specific algorithms [12]. On

the other hand, trapping induces novel effects, for instance the existence of Bose-Einstein

condensates in low dimensions [13], and the appearance of localized single-particle states in

optical lattices due to suppression of quantum tunneling [14–16].

Consider the problem of Anderson localization (AL) [17]. In homogeneous disorder,

linear waves can localize owing to coherent multiple scattering, with properties depending

on the system dimension and the disorder strength [1]. A paradigm of AL is that localized

and extended states generally do not coexist in energy. This relies on Mott’s reductio ad

absurbum [1]: Should there exist a localized state and an extended state with infinitely close

energies for a given configuration of disorder, an infinitesimal change of the configuration

would hybridize them, forming two extended states. Hence, for a given energy, almost

all states should be either localized or extended. This statement holds for most models

of homogeneous disorder, except for peculiar ones, such as binary alloys [18] or binary

off-diagonal disorder [19], which both display strong local symmetries, and multi-channel

systems [20]. Then, a question arises: Can inhomogeneous trapping modify this picture so

that localized and extended states coexist in energy ?

In this Letter, we study localization in a disordered potential combined with a harmonic

trap. The latter is not only generic for inhomogeneous trapping, but also directly relevant

to disordered systems of ultracold atoms [11, 21–24]. As can be expected, we find that the

lowest-energy states are strongly localized near the trap center, owing to the confinement.

Conversely, the highest-energy states extend over the full (energy-dependent) classically-

allowed region, similarly as in a homogeneous system of finite size. The central result of

this work is that localized and extended states do coexist at intermediate energies. We give
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numerical evidence of this effect and show that while the extended states are confined by the

trap and weakly affected by the disorder, the localized states correspond to eigenstates of the

disordered potential, which are only affected by the trap via an inhomogeneous energy shift.

Finally, we propose a realistic scheme based on energy-selective time-of-flight techniques to

observe the coexistence of localized and extended states with ultracold Fermi gases.

Let us consider a d-dimensional gas of non-interacting particles of mass m, confined into

a spatial trap VT(r) and subjected to a homogeneous disordered potential V (r) of zero

average (〈V 〉 = 0), amplitude VR, and correlation length σR. Hereafter, we use so-called

‘red-detuned’ speckle potentials (VR < 0), similar to those used for disordered quantum

gases [7, 25]. The trap is either a homogeneous box of linear length L (VT(r)=0 for |rj|<L
with j ∈ {x, y, z}, and VT(r) = +∞ otherwise) or a harmonic trap of angular frequency ω

(VT(r) = mω2|r|2/2). We numerically compute the eigenstates |ψn〉 and eigenenergies En of

the Hamiltonian

Ĥ = −~
2
∇

2/2m+ V (r) + VT(r) (1)

and characterize the eigenstates by their center of mass, rn ≡ 〈ψn|r̂|ψn〉, and their spatial

extension (rms size), ∆rn ≡
(

〈ψn|r̂2|ψn〉−r
2
n

)1/2
. The quantity ∆rn quantifies localization:

the smaller, the more localized [26].

Numerical results for the one-dimensional (1D, d = 1) case are reported in Fig. 1. In

infinite, homogeneous disorder, all states |ψn〉 are localized, they are uniformly distributed in

space, and their extension ∆zn monotonically increases with the energy [28]. As Figs. 1(a)-

(c) show, finite-size effects have only a trivial effect: For a finite box of length L, the states

of energy low enough that ∆zn ≪ L are not affected by the finite size of the box. For larger

energies however, boundary effects come into the picture: The states are centered closer to

the box center and their extension saturates to ∆z ≃ L/2
√
3, that is the value found for

extended plane waves. An important outcome of these results is that the curve giving ∆zn

versus E displays a single branch. In particular, there is no energy region where localized

and extend states coexist. This finding is in agreement with Mott’s statement [1] and holds

independently of the size of the box.

For a harmonic potential, we find a completely different behavior. The curves giving ∆zn

and zn versus E now display two clearly separated branches [Figs. 1(b)-(d)]. For low energies,

the states are strongly localized and, for E > 0, they are roughly uniformly distributed in a

region bounded by the (energy-dependent) classical turning points, zcl(E) = ±
√

2E/mω2.
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Figure 1: Extension (a)-(b), center of mass (c)-(d) and DOS (e)-(f) versus energy in a 1D disordered

trap. The plots result from accumulation of numerical data over 500 realizations of a red-detuned

speckle potential withmσ2
R
|VR|/~2=0.256. Panels (a)-(c)-(e) refer to a flat box of length L=500σR;

the curved line in (a) corresponds to an infinite system [27] and the horizontal line is ∆z=L/2
√
3.

Panels (b)-(d)-(f) refer to a harmonic trap with ω = 0.025|VR|/~; the solid lines correspond to

the non-disordered case. Panels (e)-(f) show the full DOS ρ(E) (solid black line), as well as the

DOS restricted to localized (ρ<) and extended (ρ>) states. The dot-dashed green lines are the

high-energy limits: ρ(E)=
√

mL2/2π2~2E for the box, and ρ(E)=1/~ω for the harmonic trap.

For higher energies, the states corresponding to the upper branch in Fig. 1(b) are less

localized, their extension grows and eventually saturates to that of the eigenstates of the

non-disordered trap, ∆z ≃
√

E/mω2. The centers of mass of these states approach the

trap center and form the horizontal branch in Fig. 1(d) [29]. This branch, corresponding to
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extended states, is hence easily interpreted in terms of finite-size effects, similarly as for a

finite, flat box. The lower branch in Fig. 1(b) is more surprizing and has no equivalent in

the homogeneous box (even of finite size). It corresponds to strongly-localized states with

relatively large energies. We find that these states are located close to the classical turning

points zcl(E) and thus correspond to the outer branches in Fig. 1(d) [29].

These results show that localized and extended states coexist in energy in the disordered

trap, while they do not in the homogeneous disorder. This is confirmed more quantitatively

in Figs. 1(e)-(f) which show the full densities of states (DOS, solid black line), as well as

the densities of localized (ρ<, solid red line) and extended (ρ>, dashed blue line) states [30].

For the flat box [Fig. 1(e)], the crossover from localized to extended states is very sharp

and solely due to the width of the statistical distribution of ∆z. For the harmonic trap

[Fig. 1(f)], the crossover is much smoother and the density of localized states displays a

long tail at high energies, due to the branch of localized states. For instance, we find that

ρ</ρ ≃ 12% of the states are localized for E ≃ 4|VR|.
Figure 2(a) shows the spatial density |ψn(z)|2 of all states found for a single realization of

the disorder, in a narrow slice of the spectrum around E ∼ 4|VR|. We can clearly distinguish

localized (thick red lined) and extended (thin blue lines) states, which shows that they

coexist in energy for each realization of the disorder. Here, finite energy separation and

weak spatial overlap between localized and extended states suppresses hybridation. The

localized states are very narrow and present no node (e.g. states A and E) or a few nodes

(e.g. states C and H). They may be identified as bound states of the local deep wells of the

disordered potential, similarly as the lowest-energy states creating the Lifshits tail in bare

disordered potentials [28]. Let us decompose the eigenstates |ψn〉 of the disordered trap onto

the basis of the eigenstates |χp〉 of the bare disordered potential [i.e. Hamiltonian (1) with

VT ≡ 0], associated to the eigenenergies ǫp. Figure 2(b) shows |〈χp|ψn〉|2 as a function of

ǫ′p = ǫp+〈χp|VT(z)|χp〉, i.e. the eigenenergy of |χp〉 shifted by the potential energy associated

to the harmonic trap, for states C and D of Fig. 2(a). It is characteristic of a general

behavior: For the localized state (C, thick red line), the plot displays a single peak with

amplitude of the order of unity at energy ǫ′p ≃ En. A localized state |ψn〉 of the disordered

trap thus corresponds to a strongly-localized state |χp〉 of the bare disordered potential,

which is affected by the trap by just the energy shift 〈χp|VT(z)|χp〉. We generally find that

|ǫp| ≪ 〈χp|VT(z)|χp〉 ≃ 〈ψn|VT(z)|ψn〉, and, due to the reduced spatial extension of |ψn〉, we
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Figure 2: Eigenstates for a single realization of a 1D disordered trap. a) Non-normalized spatial

densities, |ψn(z)|2, vertically displaced at their eigenenergies En. Thick red lines correspond to

localized states, and blue lines to extended states [30]. Note that extended and localized states

may occupy almost-degenerate energy levels (e.g. H and I). The states C and D are projected: b)

over the eigenstates of the disordered potential, |χp〉, and c) over those of the harmonic trap, |ψ0
p〉.

The parameters are as in Fig. 1.

get En ≃ mω2z2n/2. This explains that the localized states are located close to the classical

turning points, as observed in Figs 1(d) and 2(a). Conversely, the same decomposition for

the extended state (D, thin blue line) shows a broad distribution of amplitude much smaller

than unity. An extended state is thus not associated to an eigenstate of the bare disordered

potential.
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Hence, strongly bound states of the disordered potential can ‘survive’ in the trap. For

more weakly bound states, the trap may promote tunneling through the barriers of the dis-

ordered potential and lead to extended states with a pronounced peak, a long tail and many

nodes (e.g. states B, F and G). Fully extended states occupy the whole classically-allowed

region [|z| . zcl(E)], similarly as in the bare harmonic trap. Let us now decompose the

states |ψn〉 of the disordered trap onto the basis of the eigenstates |ψ0
p〉 of the bare harmonic

trap [i.e. Hamiltonian (1) with V = 0], associated to the eigenenergy E0
p . Figure 2(c) shows

|〈ψ0
p|ψn〉|2 as a function of E0

p for states C and D. It exemplifies a characteristic behavior:

For the extended state (D, thin blue line), the distribution is sharp and peaks at E0
p ≃ En to

a value equal to a fraction of unity. This state may be seen as reminiscent of a harmonic os-

cillator eigenstate, which is weakly affected by the disorder. Still, the main peak in Fig. 2(c)

is markedly smaller than one. Inspection of the equations of standard perturbation theory

shows that only for significantly higher energy, the extended states |ψn〉 result from weak

perturbations of those of the non-disordered trap and display a main peak of the order of

unity. Conversely, the localized state (C, thick red line) shows a much broader distribution,

and is not related to a particular eigenstate of the non-disordered trap.

We now discuss a possible scheme to observe the coexistence of localized and extended

states in a disordered trap. Consider a gas of non-interacting ultracold fermions prepared

in a given internal state, at temperature T and chemical potential µ. A class of energies

|En −E| . ∆ [see Fig. 3(a)] deep in the Fermi sea (i.e. with µ−E ≪ kBT ) can be selected

by applying a spin-changing radio-frequency (rf) field of frequency ν = E/h and duration

τ ∼ h/∆ (with h the Planck constant) [16, 31, 32]. The rf field transfers the atoms of

corresponding energies to another internal state, which can be chosen insensitive to the

disordered trap. Then, the transfered atoms expand freely, which provides their momentum

distribution [time-of-flight (TOF) technique]:

DE,∆(k) =
∑

|En−E|.∆

|ψ̂n(k)|2, (2)

where ψ̂n(k) is the Fourier transform of ψn(z). In the coexistence region, DE,∆(k) has two

significantly different kinds of contributions: For localized states, |ψ̂n(k)|2 is centered around

k ≃ 0 with tails of width ∆kn ∼ ∆z−1
n . Conversely, for extended states, |ψ̂n(k)|2 is peaked

at k ≃
√
2mE/~ with long tails towards small momenta. Exhibiting these two peaks would

demonstrate the coexistence of localized and extended states at energy E. We however
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Figure 3: Scheme to observe the coexistence of localized and extended states in disordered traps

(solid red line). a) The atoms occupying the eigenstates of energy E ± ∆ (shadded region) are

transfered to a different internal state via rf coupling. The corresponding momentum distribu-

tion is then measured by TOF. b) Correlation function CE,∆(k) (black solid line) and momentum

distribution 〈DE,∆(k)〉 (dashed green line, arbitrary units), for ∆ = 2~ω. Inset: CE,∆(k) of all

states (solid black line), and separating localized (dashed red line) and extended (dotted blue line)

states [30], for ∆ ≪ ~ω. Here E = 4|VR| and the other parameters are as in Fig. 1.

found that averaging over realizations of the disorder blurs the central peak associated to

the localized states, and 〈DE,∆(k)〉 only displays the peak at k ≃
√
2mE/~ corresponding

to the extended states [see dashed green line in Fig. 3(b)]. In order to overcome this effect,

we propose to measure the correlation function CE,∆(k) ≡ 〈DE,∆(k)×DE,∆(0)〉/〈DE,∆(0)
2〉.

The function CE,∆(k) enhances the contribution of the localized states, which have a strong

component at k = 0. As shown in Fig. 3(b), CE,∆(k) indeed displays two distinct peaks

(solid black line) for a rf pulse of realistic duration (∆ = 2~ω). The peak at k = 0 is more

pronounced for narrower pulses. The clearest case is for ∆ ≪ ~ω. As shown in the inset of

Fig. 3(b), selecting only the localized states on one hand, and only the extended states on

the other hand [30], confirms that the central peak corresponds to the localized states and

the side peak to the extended states.

Finally, can localized and extended states coexist in energy in disordered traps of higher

dimensions ? In order to address this question, we have performed similar calculations as

above in two dimensions (2D). Figure 4(a) shows the centers of mass rn of the eigenstates

with En ≃ 4|VR|, the color scale giving ∆rn. Figure 4(b) shows a density plot of ∆rn versus
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Figure 4: Coexistence of localized and extended states in a 2D disordered trap at energy E ≃

(4 ± 0.0003)|VR|. The figure results from accumulation of data from 2 × 104 realizations of the

disorder, with mσ2
R
|VR|/~2 = 0.8 and ω = 0.05|VR|/~. a) Centers of mass rn of the eigenstates and

corresponding values of ∆rn/σR in color scale. The solid black line corresponds to the classical

turning points, rcl(E) =
√

2E/mω2 ≃ 63.2σR. b) Extension ∆rn versus distance from the trap

center, |rn|.

|rn| for the same data. Again, the eigenstates clearly separate into two classes: Some states

are extended (large ∆rn) and centered nearby the trap center (small |rn|). The other states
are strongly localized (small ∆rn) and located nearby the line of classical turning points

(|rn| ≃ rcl(E) =
√

2E/mω2). These results show that localized and extended states coexist

at intermediate energies in 2D disordered traps. We expect analogous results in higher

dimensions.

In conclusion, we have shown that localized and extended states can coexist in energy

in disordered potentials combined with harmonic traps. The localized states correspond to

eigenstates of the disordered potential, which are only affected by the trap via an inhomo-

geneous energy shift. Conversely, the extended states extend over the classically-allowed

region of the trap and are weakly affected by the disorder. This effect is directly relevant

to present-day experiments with disordered quantum gases, which are most often created

in harmonic traps, and we have proposed a realistic scheme to observe it in these systems.

We expect these results hold in any dimension and for disordered potentials combined with

other kinds of traps or with smooth potentials. The latter case may model certain systems

with inhomogeneous disorder.
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