
HAL Id: hal-00493614
https://hal.science/hal-00493614

Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SIRIUS XML IR System at INEX 2006: Approximate
Matching of Structure and Textual Content

Eugen Popovici, Gildas Ménier, Pierre-François Marteau

To cite this version:
Eugen Popovici, Gildas Ménier, Pierre-François Marteau. SIRIUS XML IR System at INEX 2006:
Approximate Matching of Structure and Textual Content. INEX: Initiative for the Evaluation of XML
Retrieval (INEX 2006), Dec 2006, Dagstuhl, Germany. pp.185-199, �10.1007/978-3-540-73888-6�. �hal-
00493614�

https://hal.science/hal-00493614
https://hal.archives-ouvertes.fr

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 185–199, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SIRIUS XML IR System at INEX 2006: Approximate
Matching of Structure and Textual Content

Eugen Popovici, Gildas Ménier, and Pierre-François Marteau

VALORIA Laboratory, University of South-Brittany
BP 573, 56017 Vannes Cedex, France

{Eugen.Popovici,Gildas.Menier,
Pierre-Francois.Marteau}@univ-ubs.fr

Abstract. In this paper we report on the retrieval approach taken by the
VALORIA laboratory of the University of South-Brittany while participating at
INEX 2006 ad-hoc track with the SIRIUS XML IR system. SIRIUS retrieves
relevant XML elements by approximate matching both the content and the
structure of the XML documents. A weighted editing distance on XML paths is
used to approximately match the documents structure while the IDF of the
researched terms are used to rank the textual content of the retrieved elements.
We briefly describe the approach and the extensions made to the SIRIUS XML
IR system to address each of the four subtasks of the INEX 2006 ad-hoc track.
Finally we present and analyze the SIRIUS retrieval evaluation results. SIRIUS
runs were ranked on the 1st position out of 77 submitted runs for the Best In
Context task and obtained several top ten results for both the Focused and All
In Context tasks.

1 Introduction

This study reports on the second year of experiments conducted by the VALORIA
laboratory at the University of South-Brittany with the SIRIUS XML IR
system [1] within the framework of the INEX evaluation campaigns.

The main contributions brought relatively to our last year participation are: i) the
evaluation of the retrieval approach against a new collection, a new set of topics and
new tasks, ii) the implementation of the approximate search and indexing process
using a distributed inverted file architecture; and iii) the use of selective indexing
profiles defining how the structure and the content of XML tags should be indexed.
As for the last year we continue to investigate if and how the approximate match of
the structural constraints in the queries may help retrieval and to experiment with
different methods for removing overlapping elements.

The paper is organized as follows. In Section 2 we present the main functionalities
and characteristics of the SIRIUS XML IR system. In Section 3 we introduce our
retrieval approach for the INEX 2006 ad-hoc task. In Section 4 we present and
analyze the SIRIUS retrieval evaluation results for the Thorough, Focused, All In
Context and Best In Context tasks. Finally, in Section 5 we conclude the paper.

186 E. Popovici, G. Ménier, and P.-F. Marteau

2 SIRIUS XML IR System

SIRIUS [2, 3] is a lightweight indexing and search engine for XML documents
developed at the VALORIA laboratory of the University of South-Brittany. The
retrieval approach implemented in SIRIUS is document oriented. It involves an
approximate matching scheme of the structure and textual content. Instead of
managing the matching of whole XML trees, SIRIUS splits the documents object
model in a set of paths. This set is indexed using optimized data structures. In this
view, the request is a path-like expression with conditions on the attribute values. For
instance /document(> date "1994")/chapter(= number 3)/John is a request aiming to
extract the documents (written after 94) with the word John in the chapter number 3.
The matching process takes into account mismatched errors both on the attributes and
on the XML elements. It uses a weighted editing distance on XML paths: this
provides an approximate matching scheme able to manage jointly the request on
textual content and on document structure. The search scheme is extended by a set of
IR retrieval operators, and features a set of thesaurus rewriting rules.

2.1 Indexing Scheme

Each element in an XML document may be composed of a set of possible nested
XML elements, textual pieces of information (TEXT or CDATA), unordered
<attribute, value> pairs, or a mixture of such items. XML documents are generally
represented as rooted, ordered, and labeled trees in which each node corresponds to an
element and each edge represent a parent-child relationship.

XML Context. According to the tree structure, every node n inherits a path p(n)
composed with the nodes that link the root to node n. This path is an ordered sequence
of XML elements potentially associated to unordered <attribute, value> pairs A(ni),
that determines the XML context in which the node is occurring. A tree node n,
containing textual/mixed information can be decomposed into textual sub-elements.
Each string s (or word, lemma, …) of a leaf node is also linked to p(n). This XML
context characterizes the occurrence of s within the document and can be represented
as follows:

p(n)=<n0 , A(n0)> <n1 , A(n1)> …<n , A(nn)> . (1)

Index Model. The indexing process involves the creation of an enriched inverted list
designed for the management of these XML contexts. For this model, the entries of
the inverted lists are the textual sub-elements s of a tree node. For a sub-element s of a
node n, four pieces of information are attached:

− a link to the URI of the document <fileId>,
− the <preorder> and <postorder> positions of the node n in the XML tree,
− an index specifying the positions of s within the document <wordOffset>,
− a link toward its XML context p(n) <ctxtId>.

 SIRIUS XML IR System at INEX 2006 187

2.2 Searching Scheme

Most of the time, for large heterogeneous databases, one cannot assume that the user
knows all of the structures – even in the very optimistic case, when all of the
structural properties are known. Some straightforward approaches (such as the XPath
search scheme [4]) may not be efficient in these cases. As the user cannot be aware of
the complete XML structure of the data base due to its heterogeneity, efficient
searching should involved exact and approximate search mechanisms.

The main structure used in XML is a tree: It seems acceptable to express a search
in term of tree-like requests and approximate matching. We proposed [6], to focus on
path matching rather than on tree matching – in a similar way with the XML fragment
approach [5]. The request should be expressed as a set of path p(r) that is matched
with the set of sub-path p(n) in the document tree. This breaks the algorithmic
complexity of tree matching techniques while still providing high precision
results [6]. This ‘low-level’ matching only manage subpath similarity search with
conditions on the elements and attributes matching. This process is used to design a
more higher-level request language: a full request is a tree of low-level matching
goals (as leafs) with set operators as nodes. These operators are used to merge leaf
results. The whole tree is evaluated to provide a set of ranked answers. The operators
are classical set operators (intersection, union, difference) or dedicated fuzzy merging
processors. The system analyzes a request and produces a set of weighted results. Let
{ (ei, vi) } the set of weighted results produced by the system, where ei is a an element
of the result and vi ∈[0..1] a weight showing the relevance of the returned element to
the request.

Textual Content Ranking Scheme. We compute the relevance value vi ∈[0..1] for
all the XML elements ei containing at least one researched term τ k of a content only
request CO. The ranking scheme takes into account the number and the
discriminating power of the retrieved terms in the collection. We used a dedicated
TFIDF [7] function for this purpose:

∑⋅=
k kkii COev τλξ .),(. (2)

where k is the number of terms τk in the CO request, λk is an IDF weighting factor
specifying the discriminating power of the term τ k in the collection :
λk = 1 – log((1+ |D τ k|) / (1+ |D|)) ; where |D τ k | is the number of documents in
which τ k is occurring ; |D| the total number of documents in the collection ; and ξ a
normalization constant ξ = 1 / Σk (λk) ;

Approximate Path Search. Let pR be a structural constraint, expressed as a path goal
with conditions or constraints to be fulfilled on the attributes. We investigate the
similarity between a pR (coding a path with constraints) and pi

D (a root/../terminal(r)
path of the tree TD associated to an index document D) as follow:

σ (pR , pi
D) = 1/(1+ δL (pR, pi

D)) . (3)

where δL is a dedicated editing distance (see [8]).

188 E. Popovici, G. Ménier, and P.-F. Marteau

The search complexity is O(l(pR).deep(TD).| { pi
D } |) with |{ pi

D }| the size of the
set { pi

D } (i.e. the number of different paths in D, starting at the root and leading to
the last element of the pR request – terminal(r)), l(p) the length of the path p and
deep(T) the deepest level of T. This complexity remains acceptable for this
application as 99% of the XML documents have fewer than 8 levels and their average
depth is 4 [9]. We designed [6] an editing pseudo-distance using a customised cost
matrix to compute the match between a path pi

D and the request path pR. This scheme,
also known as modified Levenshtein distance, computes a minimal sequence of
elementary transformations to get from pi

D to pR . The elementary transformations are:

− Substitution: a node n in pi
D is replaced by a node n’ for a cost Csubst(n, n’).

− Deletion: a node n in pi
D is deleted for a cost Cdel(n),

− Insertion: a node n is inserted in pi
D for a cost Cins(n).

Weighting Scheme for INEX. The NEXI language [10] allows only the descendant
relationship between the nodes in a path. Therefore the XML path expressed in the
request is interpreted as a subsequence of an indexed path, where a subsequence need
not consist of contiguous nodes. To model this, we relaxed in [1] the weights of the
path editing distance in order to allow node deletions in the indexed paths without any
penalty: Cdel(n) = 0, Cins(n) = ξ, and Csubst(n, n’) = ξ . Since a node n not only stands
for an XML element but also for attributes or attributes relations, we compute
Csubst(n, n’) as follows: Csubst(n, n’)={ ξ if (n ≠ n’); ½·ξ if (n = n’)
 & (¬ attCond(n’)); 0 if (n = n’) & (attCond(n’)) }, where attCond stands for a
condition stated in the request that should apply to the attributes.

For a sequence Seq(pi
D, pR) of elementary operations, the global cost GC(Seq(pi

D,
pR)) is computed as the sum of the costs of elementary operations. The
Wagner&Fisher algorithm [11] computes the best Seq(pi

D, pR) (i.e. minimizes GC()
cost) with a complexity of O(length(pi

D) * length(pR)) as stated earlier. Let

δL(pR , pi
D,) = Mink GC(Seqk(p

R, pi
D)) . (4)

Given pR and pi
D, the value for σ (pR , pi

D) → 0 when the number of mismatching
nodes and attribute conditions between pR and pi

D increases. For a perfect match
σ (pR , pi

D) = 1, i.e. all the elements and the conditions on attributes from the request
pR match correspondent XML elements in pi

D .
The weights used to compute the structural similarity relate to an end user having

precise but incomplete information about the XML tags of the indexed collection and
about their ancestor-descendant relationships. The structural similarity takes into
account the order of occurrence of the matched nodes and the number of nodes with
no matching in the request. It heavily penalizes any mismatch relatively to the
information provided by the user but it is independent to mismatches/extra
information extracted from the indexed paths.

Merging Structure and Content Matching Scores. We add structural matching
information to the set of solutions returned by the system using a weighted linear
aggregation between the conditions on structure σ (pR , pi

D) and the initial/textual
ranking score vi as follows:

i
D

i
R

i vppv ⋅−+⋅=)1(),(' βσβ . (5)

 SIRIUS XML IR System at INEX 2006 189

The value of the β∈[0..1] parameter may be used to emphasize the importance of the
structural versus textual content matching scores.

3 SIRIUS Approach for the INEX 2006 Ad-Hoc Task

The retrieval task we are addressing at INEX 2006 is the ad-hoc retrieval of XML
documents. This involves the searching of a document collection of 4.6 GB made of
659,388 English articles from Wikipedia using a set of 125 topics. The structural part
of the collection corresponds to the Wikipedia templates (about 5000 different tags).
The topics may contain both content and structural conditions and, in response to a
query, arbitrary XML elements may be retrieved by the system. An example of an
INEX 2006 topic with the title and castitle expressed in NEXI language [10] is given
in Fig. 1.

Fig. 1. An excerpt of the INEX 2006 topic 406

Content only (CO) queries contain just search terms (see the title part in Fig. 1)
while the content and structure (CAS) queries (see the castitle part in Fig. 1) are topic
statements that contain explicit references to the XML structure, and explicitly
specify the contexts of the user’s interest (e.g. target elements) and/or the context of
certain search concepts (e.g. support elements).

3.1 Indexing the Wikipedia Collection

SIRIUS has the capability of using indexing profiles for a specific collection. The
indexing profiles are composed of rules defining how the structure and the content of
each specified XML tag should be indexed. By default, all the non empty XML tags
are fully indexed. Using these profiles we may decide or not to index the attributes
associated to a given tag, to index only the content of the presentation tags or jump
tags [12], or to completely ignore some logical tags for a specific collection. The use
of indexing profiles may reduce significantly the volume of the requested disk space
for the index and improves the system performances both in indexing and retrieval
time.

We use the rules shown in Table 1. to index the Wikipedia collection. This
indexing profile was manually defined as we assumed that the jump and presentation
tags contained information that should not be retrieved out of their context. The
logical tags <name>, <title> and <caption> are of a particular importance for the
Wikipedia collection, as this will ensure that the <title> of a <section> will always be

190 E. Popovici, G. Ménier, and P.-F. Marteau

retrieved with the <section> itself, that the <name> of an <article> will be retrieved
with the whole <article>, and that the <caption> of a <figure> or <table> will be
retrieved only associated to the element to which they are referring to.

Table 1. Indexing rules for the Wikipedia collection

 Ignore tags Ignore tag attributes

Presentation tags emph2, emph3, emph4, sup table, tr, td, font

Jump tags collectionlink, unknownlink,
outsidelink, languagelink

Logical tags title, name,
image, caption

The Wikipedia collection is processed using an XML SAX parser and standard
methods for stop words removal and stemming. At indexing time, the most frequent
words are eliminated using a stop list. The XML elements containing no valid textual
content after stop words removal are not indexed. The index terms are stemmed using
the Porter algorithm [13]. The index model (Section 2.1) is implemented on top of the
Berkeley DB1 library using a combination of BTrees and Hashtables structures. The
inverted file index is constructed in parallel by using a Physical Document
Partitioning approach [14]. The total size of the index is about 86% of the initial
database size – i.e. 4GB.

3.2 Processing NEXI Requests

Processing CO requests. CO queries are INEX topics containing only textual search
terms (i.e. see the title part in Fig. 1). We compute the relevance score for all the
leaves elements of the XML tree containing at least one of the researched terms using
a variant of the TF-IDF ranking scheme (see eq. 2). In our approach we consider the
XML element containing a researched term as the basic and implicitly valid unit of
retrieval regardless of its size.

Processing CAS requests. For CAS topics, we have two cases: simple queries of the
form //A[B] – i.e. the request specifies only the target elements, and complex queries
of the form //A[B]//C[D] – i.e. the request specifies both target (i.e. //C[D]) and
support (i.e. //A[B]) elements.

Processing the Support and Target Elements. For simple type queries of the form
//A[B] like //template//*[about(.,architecture)] (see topic in Fig. 1), we rank the
textual content of the nodes using the same ranking scheme as for the CO requests.
The structural constraints from the requests are interpreted as structural hints [10]. We
compute the similarity between the structural constraints expressed in the request –
i.e. //template//* – and the XML paths of the candidate fragments using a modified
editing distance (see eq. 3) involving specific heuristics for attributes and attributes
values [1]. Finally we merge the content and structural match scores using a weighted
linear aggregation method (see eq. 5).

1 http://www.sleepycat.com/

 SIRIUS XML IR System at INEX 2006 191

Processing the Containment Conditions. To process complex queries of the form
//A[B]//C[D] (see the castitle part in Fig. 1) we compute the relevance for both the
support elements //A[B] and target elements //A//C[D]. Next, we select only the target
elements that have at least a relevant support element occurring in the same
document. The logic behind this is that if a relevant support element exists in a
document, its weight should be propagated using a max function to the root node of
the XML tree that is an ancestor – i.e. support element – for all the elements of the
tree. This applies inclusively to target elements.

The similarity computation for a complex request involves modifications of the
relevance associated with a result element. The relevance of a result element is
computed as the arithmetic average between the relevance of the target element and
the maximum relevance of its support elements.

Formally, let {(ei, vi)} the set of target results, {(ej, vj)} the set of support
elements, where ei is a an element of the result and vi ∈[0..1] its relevance weight. Let
eD a descendant of document D. The set of weighted results produced by the system is
{ (ei

D, v’i) } with v’i =(vi + Maxj (vj)) / 2 where ∃ ej
D ∈ { (ej, vj) }.

 Using this approach, the target elements without support elements are discarded
from the final answers, while the ones supported by highly relevant elements are
boosted in the final ranking. The final results are sorted by relevance values and the
top N results returned.

4 Experimental Results

We submitted a total of 20 runs to all of the four tasks of the ad-hoc retrieval track:
Thorough, Focused, All In Context and Best In Context [15]. In all the submitted runs
we used the same basic retrieval approach:

− To answer INEX 06 topics, we use automatic transformation of the title and
castitle part of the topics expressed in NEXI [10] to SIRIUS recursive query
language as described in [1].

CO runs
− The XML elements directly containing the research terms are considered as

independent and the only valid units of retrieval;
− IDF weighting for textual content of the leaf nodes containing the researched terms

(i.e. *IDF*, see eq. 2.);
− Strict and vague search for phrase matching. In the strict sequence matching runs

the researched terms must occur in sequence and belong to the same XML element.
This is not required for the vague phrase matching runs (i.e. *noSEQ*) that rank as
best results the XML elements containing all the researched terms without taking
into account their order of occurrence.

CAS runs (*cas*)
− The structural constraints on both the support elements (where to look) and on the

target elements (what to return) are interpreted vaguely, as structural hints. The
vague interpretation of the structural constraints is implemented using a modified

192 E. Popovici, G. Ménier, and P.-F. Marteau

editing distance (*EDs*) on the XML paths with conditions on attributes and
attributes values (see Section 2.2, eq. 2 and 3) .

− We use weighted linear aggregation for content and structure matching scores. (see
eq. 5) The runs (*W0_1*, *W0_5*) use different values for the β parameter to
emphasize the importance of the structural versus textual content matching (i.e.
β=0.1 biases the ranking towards the textual content while β=0.5 uses equal
weights for merging the structural and content matching relevance scores).

− We use boolean (*BOOL*) merging operators at document level.

4.1 Thorough Task

At the Thorough task, the system estimates the relevance of elements in the
collection. We submitted five runs identified by runId’s using combinations of the
abbreviations introduced above. We report in Fig. 2 and Table 2 the evaluation
curves for the ep/gr evaluation metric and the ranks obtained by all the submitted
runs. The results may contain overlapping elements (i.e. Overlap=off). Details of the
evaluation metrics can be found in [16].

Table 2. Task: Thorough, Metric:ep-gr, Quantization: gen, Overlap=off, R: rank/106 runs

 filtered assessments
RunId MAep R MAep R
IDF_BOOL_noSEQ 0.0158 42 0.0296 37
IDF_BOOL 0.0151 45 0.0287 42
casEDsW0_1_IDF_BOOL_noSEQ 0.0146 48 0.0274 43
casEDsW0_5_IDF_BOOL_noSEQ 0.0134 50 0.0253 45
casEDsW0_5_IDF_BOOL 0.0130 51 0.0242 48

We obtained average rankings for the Thorough task. This is not surprising as the
implementation of our approach is biased towards focused retrieval. A rather
surprising result is the fact that using the structural hints does not improve the quality
of the retrieved results. Rather the opposite. The best overall performance is obtained
by the run using only the textual content and no phrase constraints (IDF_BOOL_noSEQ)
with a MAep value of 0.0158 and respectively 0.0296 when evaluated against the
filtered assessments2.

4.2 Focused Task

The aim of the Focused retrieval strategy is to find the most exhaustive and specific
element in a path. In other words, the result list should not contain any overlapping
elements. For the Thorough task we considered the XML element containing a
researched term as the basic and implicitly valid unit of retrieval regardless of its size.
This approach “naturally” implements a focused strategy as it returns the most focused
elements containing the research terms. However, cases where nested/overlapping
XML elements could be returned as valid results may occur.

2 "element links" (i.e. collectionlink, wikipedialink, redirectlink, unknownlink, outsidelink and

weblink) in the assessments have been given an exhaustive value of ? (corresponding to "too
small" in INEX 2005 relevance definition).

 SIRIUS XML IR System at INEX 2006 193

Fig. 2. Task: Thorough, Metric:ep/gr , Quantization: gen, Overlap: off, Filtered assessments

We implemented a two steps post filtering process to remove the overlapping
elements from the results list [1]: i) we recalculate the relevance of the elements in
the answer list in order to reflect the relevance of their descendants elements (if any);
and ii) we select non overlapping elements from the list.

The weights are calculated in a bottom-up manner from the leafs to the highest non
overlapping nodes composing the answer by using two strategies:

− MAX - the max relevance value is propagated recursively to the highest non
overlapping elements; and

− AVG - the relevance of a node is computed as the arithmetic average of all its
descendant relevant nodes including its own relevance.

To select the non overlapping elements we compared the following strategies:

− HA - the highest ancestor from the answer list is selected;
− MR - the most relevant answer is selected recursively from the answer list as long

as it not overlaps with an already selected element – i.e. for equally relevant
overlapping elements we choose either the descendant (MRD) or the ancestor
(MRA).

We experimented with different settings for computing the elements relevance and
selecting the non overlapping answers for the Focused tasks within the framework of
the INEX 2005 campaign [1]. This year we selected only the MAX_MRD and
MAX_HA strategies for the focused task as they obtained the best results during the
INEX 2005 evaluation.

We report here the nxCG values @5, @10, @25 and @50 (see [16] for metric
descriptions) for all the submitted focused runs, along with their official ranks in the
INEX06 campaign. The runs are evaluated on both the original (see Tables 3 and 5)
and filtered assessments (see Tables 4, 6 and Fig. 3).

194 E. Popovici, G. Ménier, and P.-F. Marteau

Fig. 3. Task: Focused Metric:nxCG, Quantization: generalised, Filtered assessments, Overlap=
on (left) ; and Overlap=off (right)

Table 3. Task: Focused, Metric: nxCG, Quantization: generalised, Overlap=on, R: rank/85 runs

RunId nxCG@5 R nxCG@10 R nxCG@25 R nxCG@50 R
IDF_BOOL_noSEQ_MAX_MRD 0.2882 47 0.2759 24 0.2393 13 0.2095 6
IDF_BOOL_MAX_MRD 0.2889 45 0.2695 28 0.2391 14 0.2022 9
casEDsW0_5_IDF_BOOL_noSEQ_MAX_MRD 0.2335 66 0.2215 60 0.1965 35 0.1638 29
casEDsW0_5_IDF_BOOL_MAX_MRD 0.2338 65 0.2202 61 0.1933 40 0.1572 35
casEDsW0_1_IDF_BOOL_noSEQ_Foc_MAX_HA 0.2055 73 0.1996 65 0.1693 54 0.1436 46

Table 4. Task: Focused, Metric: nxCG, Quantization: generalised, Overlap=on, Filtered
assessments, R: rank/85 runs

RunId nxCG@5 R nxCG@10 R nxCG@25 R nxCG@50 R
IDF_BOOL_noSEQ_MAX_MRD 0.2832 48 0.2752 23 0.2475 9 0.2289 4
IDF_BOOL_MAX_MRD 0.2840 46 0.2679 28 0.2469 10 0.2211 7
casEDsW0_5_IDF_BOOL_noSEQ_MAX_MRD 0.2297 66 0.2218 59 0.2039 31 0.1782 23
casEDsW0_5_IDF_BOOL_MAX_MRD 0.2301 64 0.2196 61 0.2004 33 0.1709 32
casEDsW0_1_IDF_BOOL_noSEQ_Foc_MAX_HA 0.2043 73 0.2012 63 0.1757 47 0.1562 42

Table 5. Task: Focused, Metric: nxCG, Quantization: generalised, Overlap=off, R: rank/85
runs

RunId nxCG@5 R nxCG@10 R nxCG@25 R nxCG@50 R
IDF_BOOL_noSEQ_MAX_MRD 0.3227 38 0.3238 16 0.2807 12 0.2424 9
IDF_BOOL_MAX_MRD 0.3180 40 0.3093 21 0.2768 14 0.2339 12
casEDsW0_5_IDF_BOOL_noSEQ_MAX_MRD 0.2770 60 0.2829 36 0.2475 21 0.2071 20
casEDsW0_5_IDF_BOOL_MAX_MRD 0.2719 62 0.2735 41 0.2418 27 0.2002 21
casEDsW0_1_IDF_BOOL_noSEQ_Foc_MAX_HA 0.2073 73 0.2063 66 0.1779 59 0.1477 46

Table 6. Task: Focused, Metric: nxCG, Quantization: generalised, Overlap=off, Filtered
assessments, R: rank/85 runs

RunId nxCG@5 R nxCG@10 R nxCG@25 R nxCG@50 R
IDF_BOOL_noSEQ_MAX_MRD 0.3227 37 0.3238 14 0.2805 12 0.2440 9
IDF_BOOL_MAX_MRD 0.3180 39 0.3084 20 0.2766 14 0.2353 12
casEDsW0_5_IDF_BOOL_noSEQ_MAX_MRD 0.2770 59 0.2829 33 0.2477 18 0.2082 17
casEDsW0_5_IDF_BOOL_MAX_MRD 0.2719 61 0.2726 39 0.2416 23 0.2011 18
casEDsW0_1_IDF_BOOL_noSEQ_Foc_MAX_HA 0.2073 73 0.2063 64 0.1780 54 0.1483 43

 SIRIUS XML IR System at INEX 2006 195

The MAX_MRD method for overlap removal retrieves more focused elements and
seems to be more adequate for the focused task than its MAX_HA competitor. This
may be considered with care as the results are influenced with different degrees by the
structural matching process.

For the Focused task, the system is better ranked than on the Thorough task
regardless if it is evaluated with the overlap ‘on’ or ‘off’. SIRIUS has several results
in the best top ten runs using the nxCG@25 and nxCG@50 metrics (see Tables 3, 4, 5
and 6; top ten results are highlighted, best results are in bold characters).

By analyzing the overall comportment of nxCG curves of Fig. 3 we observe that
SIRIUS runs have a good recall. We also observe a slightly decrease in the system
retrieval performance for the first ranked results. This may be determined by the
indexing configuration settings (see Table 1). The indexing profile did not allowed for
a large number of small/possibly relevant focused elements (i.e. jump tags &
presentation tags) to be retrieved. This hypothesis is sustained by the slight increase in
the SIRIUS performance when evaluating the runs against the filtered assessments.
The differences are not major as the indexing profiles are not an exact match of the
rules used to obtain the filtered assessments. The indexing profile eliminated only a
part of the tags defined as “too small”. When evaluating the runs against the filtered
assessments the remaining element links (i.e. redirectlink, wikipedialink and weblink)
as well as the eliminated tags but that were considered relevant by the assessors
(emph2, emph3, title, name, and caption) [17] penalize the results. We observe that as
for the Thorough task, the runs involving structural conditions performed worse than
their content only pairs.

4.3 All in Context Task

For the INEX 2006 All In Context task, the systems have to find a set of elements that
corresponds well to (all) relevant information in each article. The relevant elements
must be clustered per article and ordered in their original document order when
returned to the user. The assumption is that users consider the article as the most
natural unit, and prefer an overview of relevance in their context.

For this task, we used as starting point the approach used for the Focused runs. We
clustered the non overlapping results by file and ranked them according to their
relevance inside each file. We set the article score equal to the most relevant element
occurring inside each file. The files are ranked by their relevance. We returned the top
N relevant results for each file, where N={5, 10} until reaching the INEX 2006 max
results limit per topic (i.e. 1500 results).

The official and additional SIRIUS evaluation results for this task are given in
Tables 7, 8, 9 and Fig. 4 (left) (top ten results are highlighted, best results are in bold
characters).

Table 7. Task: All In Context (Article level), Metric: hixeval-article, R: rank/62 runs

RunId F[5] R F[10] R F[25] R F[50] R MAP R
IDF_BOOL_MAX_MRD_10 0.1028 44 0.1150 40 0.1181 39 0.1055 33 0.0752 39
IDF_BOOL_noSEQ_MAX_MRD_10 0.1027 45 0.1132 41 0.1203 38 0.1079 32 0.0759 38
casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA_5 0.0881 50 0.0871 53 0.0966 48 0.0864 45 0.0623 48
casEDsW0.5_IDF_BOOL_MAX_MRD_5 0.0867 52 0.0910 52 0.0956 49 0.0864 46 0.0613 49
casEDsW0.1_IDF_BOOL_noSEQ_AVG_HA_5 0.0373 57 0.0457 57 0.0549 57 0.0533 57 0.0299 58

196 E. Popovici, G. Ménier, and P.-F. Marteau

Table 8. Task: All In Context (Element level), Metric: hixeval-element, Overlap=off, R: rank/57
runs

hixeval-element-intersection hixeval-element-union RunId
F-avg R F-avg R

casEDsW0.1_IDF_BOOL_noSEQ_AVG_HA_5 0.4695 2 0.2845 24
casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA_5 0.4677 3 0.3306 15
IDF_BOOL_noSEQ_MAX_MRD_10 0.4658 5 0.3492 8
IDF_BOOL_MAX_MRD_10 0.4650 6 0.3464 9
casEDsW0.5_IDF_BOOL_MAX_MRD_5 0.3948 32 0.2752 31

Table 9. Task: All In Context (combining Article and Element levels scores), Metric: generalized
Precision/Recall, R: rank/56 runs

RunId gP[5] R gP[10] R gP[25] R gP[50] R MAgP R
IDF_BOOL_MAX_MRD_10 0.2245 32 0.2164 24 0.1801 15 0.1386 13 0.1414 15
IDF_BOOL_noSEQ_MAX_MRD_10 0.2231 33 0.2117 25 0.1779 16 0.1417 11 0.1408 16
casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA_5 0.1881 43 0.1654 41 0.1414 33 0.1141 29 0.1133 29
casEDsW0.5_IDF_BOOL_MAX_MRD_5 0.1642 45 0.1553 44 0.1325 35 0.1059 33 0.1021 34
casEDsW0.1_IDF_BOOL_noSEQ_AVG_HA_5 0.1586 47 0.1448 46 0.1245 40 0.0988 34 0.0868 38

Fig. 4. Task: All In Context (combining Article and Element levels scores), Metric: generalized
Precision/Recall (left) ; Task: Best In Context. Metric:EPRUM-BEP-Exh-BEPDistance,
A=0.01 (right).

SIRIUS obtained relatively good rankings for the All In Context task (see Table 9).
We may get an insight at the SIRIUS retrieval performance by analyzing All In
Context Task additional scores for the article-level (Table 7) and element-level
(Table 8). The element-level scores show that SIRIUS is able to detect and extract the
amount of retrievable relevant information within an article with very good results.
Unfortunately, SIRIUS retrieval performance highly degrades when evaluated at
article-level. A possible way to improve the retrieval performances of the system is to
rank the files using a global relevance value computed at article level.

 SIRIUS XML IR System at INEX 2006 197

4.4 Best in Context Task

For the Best In Context task we had to retrive a ranked list of articles. For each article,
we must return a single element, representing the best entry point for the article with
respect to the topic of request. For this task we used the same approach as for the All
In Context Task with N set to 1. The official results evaluated with BEP-D (see
Table 10) and EPRUM-BEP-Exh-BEPDistance [18] (see Table 11) were ranked
several times in the top ten positions out of 77 submitted runs (see Fig. 4 – right). The
top ten results are highlighted while the best obtained values are in bold characters.

Table 10. Task: Best In Context. Metric: BEPD, R: rank/77 runs.

RunId A=0.01 R A=0.1 R A=1 R A=10 R A=100 R
IDF_BOOL_noSEQ_AVG_MRD 0.1959 1 0.2568 2 0.3642 6 0.5596 6 0.7556 7
IDF_BOOL_MAX_HA 0.1722 2 0.2753 1 0.4095 1 0.5847 3 0.7542 8
casEDsW0.1_IDF_BOOL_noSEQ_MAX_HA 0.1394 16 0.2303 8 0.3580 7 0.5239 18 0.6853 27
casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA 0.1346 17 0.2222 12 0.3447 12 0.5048 24 0.6631 36
casEDsW0.5_IDF_BOOL_MAX_HA 0.1322 19 0.2114 17 0.3222 23 0.4691 36 0.6170 45

Table 11. Task: Best In Context. Metric:EPRUM-BEP-Exh-BEPDistance, R: rank/77 runs.

RunId A=0.01 R A=0.1 R A=1 R A=10 R A=100 R
IDF_BOOL_noSEQ_AVG_MRD 0.0407 1 0.0579 8 0.0873 13 0.1489 16 0.2193 35
IDF_BOOL_MAX_HA 0.0304 4 0.0607 6 0.1069 7 0.1770 8 0.2536 14
casEDsW0.1_IDF_BOOL_noSEQ_MAX_HA 0.0233 24 0.0478 15 0.0881 12 0.1480 19 0.2180 36
casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA 0.0218 31 0.0444 24 0.0812 20 0.1363 34 0.2031 42
casEDsW0.5_IDF_BOOL_MAX_HA 0.0214 34 0.0435 29 0.0785 23 0.1323 38 0.1969 44

The Best In Context task results confirmed that the runs using structural hints (*cas*)
are ranked lower than the ones using only the textual content. We have a single
content and structure run in the top ten results casEDsW0.1_IDF_BOOL_noSEQ_MAX_HA
for A=0.1 when evaluated with the BEPD metric (see Table 10.).

5 Conclusions

This year, at INEX 2006, we have pursuit the evaluation of the retrieval performances
of the SIRIUS XML IR system [2, 3] started last year within the INEX 2005
campaign [1]. SIRIUS retrieves relevant XML elements by approximate matching
both the content and the structure of the XML documents. A modified weighted
editing distance on XML paths is used to approximately match the documents
structure while the IDF of the researched terms are used to rank the textual content of
the retrieved elements. A number of extensions were brought to the system in order to
cope with the requirements of the Thorough, Focused, All In Context and Best In
Context tasks.

We have submitted and evaluated 20 valid runs in all the INEX 2006 ad-hoc tasks,
and showed the system ability to retrieve relevant non overlapping XML elements
within the Focused, All In Context and Best In Context tasks. SIRIUS obtained
average rankings for the Thorough task and top ten ranked results in the range of the
50 first retrieved answers for the Focused and All In Context task. For Best In

198 E. Popovici, G. Ménier, and P.-F. Marteau

Context task the results were quite encouraging as the system was ranked on the 1st
place out of 77 submissions for both BEPD and EPRUM metrics with A=0.013. (see
Tables 10, 11).

The runs using structural constraints were consequently outperformed by the runs
using content only conditions, while the runs using strict constraints for phrase
searching were outperformed by their relaxed variants.

Our experiments at INEX 2005 showed that taking into account the structural
constraints improved the retrieval performances of the system and jointly showed the
effectiveness of the proposed weighted editing distance on XML paths for this task.
This observation was not confirmed by any of the tasks evaluated at INEX 2006.
More experimental studies analyzing the use of structural hints within the XML IR
requests are necessary to better understand the reasons for this behaviour.

References

1. Popovici, E., Ménier, G., Marteau, P.-F.: SIRIUS: A Lightweight XML Indexing and
Approximate Search System at INEX 2005. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G.
(eds.) INEX 2005. LNCS, vol. 3977, pp. 321–335. Springer, Heidelberg (2006)

2. Ménier G., Marteau P.F.: Information retrieval in heterogeneous XML knowledge bases,
IPMU, July 1-5, 2002, Annecy, France (2002)

3. Ménier, G., Marteau, P.F.: PARTAGE: Software prototype for dynamic management of
documents and data. In: ICSSEA, 29 November-1 December, 2005, Paris, France (2005)

4. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0, W3C Recommendation,
November 16, 1999 (1999) http://www.w3.org/TR/xpath.html

5. Carmel, D., Maarek, Y.S., Mandelbrod, M., Mass, Y., Soffer, A.: Searching XML
documents via XML fragments, SIGIR 2003, Toronto, Canada, pp. 151–158 (2003)

6. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and Content
Scoring for XML, VLDB, Trondheim, Norway, pp. 361–372 (2005)

7. Salton, G., Buckeley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing and Management 24, 513–523 (1988)

8. Levenshtein, A.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Sov.Phy. Dohl. 10, 707–710 (1966)

9. Mignet, L., Barbosa, D., Veltri, P.: The XML Web: A First Study, WWW 2003, May 20–
24, Budapest, Hungary (2003)

10. Trotman, A., Sigurbjörnsson, B.: Narrowed Extended XPath I (NEXI). In: Fuhr, N.,
Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 16–40.
Springer, Heidelberg (2005)

11. Wagner, R., Fisher, M.: The String-to-String Correction Problem. Journal of the
Association for Computing Machinery 12(1), 168–173 (1974)

12. Tannier, X., Girardot, J.-J., Mathieu, M.: Classifying XML Tags through Reading
Contexts. In: DocEng, Bristol, United Kingdom, pp. 143–145 (2005)

13. Porter, M.F.: An algorithm for suffix stripping, Program. Program 14(3), 130–137 (1980)

3 Note that high values of A (e.g. 10) does not discriminate whether the answer is near to or far

from the BEP. Whereas, low values of A (e.g. 0,1) favour runs that return elements very close
to a BEP.

 SIRIUS XML IR System at INEX 2006 199

14. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press. Addison-
Wesley, New York (1999)

15. Clarke C., Kamps J., Lalmas M.: INEX 2006 Retrieval Task and Result Submission
Specification. In: INEX 2006 Workshop Pre-Proceedings, Dagstuhl, Germany, December
18–20, 2006, pp. 381–388 (2006)

16. Kazai, G., Lalmas, M.: INEX 2005 Evaluation Metrics. In: Fuhr, N., Lalmas, M., Malik,
S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 16–29. Springer, Heidelberg (2006)

17. Kamps, J., Koolen, M., Sigurbjörnsson, B.: The University of Amsterdam at INEX 2006.
In: INEX 2006 Workshop Pre-Proceedings, Dagstuhl, Germany, December 18–20, 2006,
pp. 88–99 (2006)

18. Piwowarski, B., Dupret, G.: Evaluation in (XML) information retrieval: expected
precision-recall with user modelling (EPRUM). In: SIGIR 2006, pp. 260–267 (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

