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Mathematical modelling and analysis of
replicated viruses for glioma cell control

June 19, 2010

Baba Issa CAMARA1 and Houda MOKRANI2

Abstract

In this paper, we discuss biological background and mathematical
analysis of glioma gene therapy for contributing to cancer treatment.
By a reaction- diffusion system, we model interactions between gliom
cells and viruses. We establish some sufficient conditions on model
parameters which guarantee the permanence of the system and the
existence of periodic solutions. Our study has experimental and theo-
retical implication in the perspective management strategy of therapy.

1 Introduction

Diffuse infiltrative gliomas are the most frequent primary central nervous
system (CNS) tumors in adults. Their deserved reputation as devastating
diseases is due in large part to their widespread invasiveness in the neuropil,
i.e., the dense network of interwoven neuronal and glial cell processes.

Gene therapy consists of the delivery of a gene of interest to tumor cell
populations to control and, when possible, kill the growing tumor. Viruses
are prominent vehicles for gene therapy, and some adenoviral vectors exhibit
oncolytic properties. To this end, a variety of viral vectors have been de-
veloped, with oncolytic viruses emerging as an innovative therapeutic tool
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for these tumors. To be effective, a virus used for oncolytic therapy must
have several features. The desired properties of these vectors include selec-
tivity for the tumor target, minimal brain and systemic toxicities, and the
capacity to penetrate and diffuse throughout the brain to reach all neoplastic
foci residing beyond the resection border of the tumor. In addition, the vi-
ral vector needs to remain active despite evoking an immune response. The
goal of developing an ideal vehicle for treatment of malignant brain tumors
remains to be achieved. A wide variety of viral vectors have been developed
and tested in the setting of gene therapy for malignant gliomas. These are
based on different kinds of viruses, such as herpes simplex virus, retrovirus,
measles virus, reovirus, and adenovirus. Some have shown promising results
when tested in animal models of intra-cranial gliomas, but to date, clinical
trials performed in humans have not shown a significant increase in survival.

Various vectors have been targeted toward cancer cells by deleting the
genes responsible for bypassing those cells antiviral proteins. Without these
genes, the designed vectors will only be able to replicate within cancer cells
with disrupted antiviral mechanisms. The deletion of viral genes to enhance
specificity for the killing of neoplastic cells is a principle well exemplified
by the actions of two oncolytic adenoviruses, ONYX 015 and Ad5-Delta24.
ONYX 015, has a deletion in the viral genomic region coding E1B 55kd. This
deletion effectively limits the replication of the virus to neoplastic cells that
have a defective p53 pathway (2; 12). A Phase I clinical trial to examine
the effects of injection of ONYX 015 into peritumoral regions of recurrent
malignant gliomas was recently completed and published (6). In that study,
ONYX 015 was injected into the walls of tumor resection cavities. This trial
proved that the injection of up to 1010 plaque-forming units of ONYX 015
into brain tissue surrounding a resected malignant glioma is safe in humans.
Extensive efforts have been dedicated over many years to mathematical mod-
elling of cancer development (14; 17; 18). These mathematical models serve
as valuable tools to predict possible outcomes of virus infection, and pro-
pose the optimal strategy of anti-virus therapy. Wodarz (29; 30) presented a
mathematical model that describes interaction between two types of tumor
cells, the cells that are infected by the virus and the cells that are not infected
but are susceptible to the virus so far as they have cancer phenotype and
the immune system. Our system is more general than the one considered
in (29; 30) even when there is no diffusion. Because the free virus parti-
cles are very small, they disperse in the fluid tissue like Brownian particles.
Therefore, we have incorporated into our model a diffusion term for the free
viruses. We also assume that the tumor has a logistic growth, which can be
slowed down by the inhibitor, captured in the expression 1 − u. Thus, the
tumor admits a maximum size and density defined by the carrying capacity
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K. When the virus is administered, the dynamic interactions between the
virus and tumor cell populations is described by the following diffusive ratio-
dependent predator-prey model of reaction-diffusion equations in the tumor
region Ω,

∂V1

∂t
= µ1∆V1 + V1

[
ρ(t, x)(1− u)(1− V1

K
)− d(x, t)

]

− βr(t, x)V1V3

1 + εV3
, x ∈ Ω, t > 0, (1)

∂V2

∂t
= µ2∆V2 − V2

[
a(t, x)(1− u) + d(t, x)

]

+
βr(t, x)V1V3

1 + εV3
, x ∈ Ω, t > 0, (2)

∂V3

∂t
= µ3∆V3 + k(t, x)(1− u)V2 − b(t, x)V3,

x ∈ Ω, t > 0, (3)

∂V1

∂n

∣∣∣
∂Ω

= 0,
∂V2

∂n

∣∣∣
∂Ω

= 0,
∂V2

∂n

∣∣∣
∂Ω

= 0, t > 0, (4)

where V1 is the number density of susceptible and uninfected tumor cells;
V2 is the number density of infected tumor cells and V3 is the number den-
sity of free virus, i.e., virus in the extracellular tissue. When parameters of
system (1-4) are constant, we determined in (5) the conditions for optimal
therapy and estimated by numerical simulations, the patient survival time
when tumor can not be cured. This paper is organized as follows: Section 2
is devoted to some preliminaries, which are needed in next sections, includ-
ing some lemmas, due to Walter and Smith. In Section 3, some conditions
for the ultimate boundedness of solutions and permanence of this system are
established and in section 4, we study the existence of the unique periodic
solutions of the system (1-4).

2 Preliminaries

We need the following lemmas due to Walter (27) and Smith (24), respec-
tively.

Lemma 1. Suppose that vector-functions v(t, x) = (v1(t, x), . . . , vm(t, x))
and w(t, x) = (w1(t, x), . . . , wm(t, x)), m ≥ 1; satisfy the following condi-
tions:

(i) they are of class C2 in x; x ∈ X and of class C1 in (t, x) ∈ [a, b] × Ω̄,
where Ω ⊂ Rn is a bounded domain with smooth boundary;
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(ii) vt−µ∆v−g(t, x, v) ≤ wt−µ∆w−g(t, x, w), where (t, x) ∈ [a, b]×Ω, µ =
(µ1, . . . , µm) > 0, vector-function g(t, x, v) = (g1(t, x, v), . . . , gm(t, x, v))
is continuously differential and quasi-monotonically increasing with re-

spect to u = (u1, . . . , um) and
∂gi(t, x, u1, . . . , um)

∂uj
≥ 0, i, j = 1, . . . ,m,

i '= j;

(iii)
∂v

∂n
=

∂w

∂n
= 0, (t, x) ∈ [a, b]× ∂Ω.

Then, v(t, x) ≤ w(t, x) for all (t, x) ∈ [a, b]× Ω̄.

Lemma 2. Assume that T and µ are positive real numbers, a function u(t, x)
is continuous on [0, T ]×T̄ , continuously differential in x ∈ Ω̄, with continuous

derivatives
∂2u

∂xi∂xj
and

∂u

∂t
on (0, T ] × Ω, and u(t, x) satisfies the following

inequalities:

ut − µ∆u− c(t, x, u) ≥ 0, (t, x) ∈ (0, T ]× Ω,

∂u

∂n
≥ 0, (t, x) ∈ (0, T ]× ∂Ω,

u(t, x) ≥ 0, x ∈ Ω,

where c(t, x, u) is bounded on (0, T ] × Ω. Then u(t, x) ≥ 0 on x ∈ (0, T ] ×
Ω̄. Moreover, u(t, x) is strictly positive on x ∈ (0, T ] × Ω̄ if u(t, x) is not
identically zero.

Consider the following logistic differential equation:

dz

dt
= z(a− bz), (5)

where z ∈ R+; a and b are positive constants.

Lemma 3. Every solution z(t, 0, z0), z0 > 0 of (5) satisfies

lim
t→+∞

z(t) =
a

b
.

3 Permanence

Throughout the paper we always assume that (H): a(t, x), b(t, x), d(t, x),
k(t, x), r(t, x) and ρ(t, x) are bounded positive-valued functions on R × Ω̄
continuously differential in t and x, and are periodic in t with a period ω > 0.
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Definition 4. Solutions of system (1-4) are said to be ultimately bounded if
there exist positive constants N1, N2, N3 such that for every solution
(V1(t, x, V01, V03, V03); V2(t, x, V01, V03, V03); V3(t, x, V01, V03, V03)) there exists a
moment of time t̄ = t̄(V01, V03, V03) > 0 such that V1(t, x, V01, V03, V03) ≤ N1,
V2(t, x, V01, V03, V03) ≤ N2, V3(t, x, V01, V03, V03) ≤ N3, for all x ∈ Ω̄ and
t > t̄.

Definition 5. System (1-4) is said to be permanent if there exist positive con-
stants ζ and η such that for every solution with non-negative initial functions
V01(x), V02(x) and V03(x), V01(x) '= 0, V02(x) '= 0, V03(x) '= 0, there exists a
moment of time t̂ = t̂(V01, V03, V03) such that ζ ≤ V1(t, x, V01, V03, V03) ≤ η,
ζ ≤ V2(t, x, V01, V03, V03) ≤ η, ζ ≤ V3(t, x, V01, V03, V03) ≤ η, for all x ∈ Ω̄
and t > t̂.

For simplicity, for a bounded function ϕ(t, x), we denote ϕm = inf(t,x) ϕ(t, x)
and ϕM = sup(t,x) ϕ(t, x). Now we have the following positively invariant
principle for system (1-4)

Theorem 6. Assume that conditions (H) hold, then non-negative and posi-
tive quadrants of R3 are positively invariant for system (1-4).

Proof. Suppose (V1(t, x, V01, V03, V03); V2(t, x, V01, V03, V03); V3(t, x, V01, V03, V03))
is a solution of system (1-4) with initial condition V01(x) ≥ 0 (V01(x) '= 0),
V02(x) ≥ 0 (V02(x) '= 0), V03(x) ≥ 0 (V03(x) '= 0). Let V̂1(t, x) a solution of

∂V̂1

∂t
− µ1∆V̂1 + V̂1

[
dM − ρm(1− u)(1− V̂1

K
) + ε−1βMrM

]
= 0,

V̂1(0, x) = V01(x),
∂V̂1

∂n

∣∣∣
∂Ω
≥ 0, t > 0. (6)

It holds that

∂V̂1

∂t
− µ1∆V̂1 + V̂1

[
d(x, t)− ρ(t, x)(1− u)(1− V̂1

K
)
]

+
βr(t, x)V̂1V3

1 + εV3

≤ ∂V̂1

∂t
− µ1∆V̂1 + V̂1

[
dM − ρm(1− u)(1− V̂1

K
) + ε−1βMrM

]
,

which implies that V̂1(t, x) is a lower solution of equation (1). By Lemme 2,
we have V̂1(t, x) ≥ 0 for all t > 0 and x ∈ Ω̄. In addition, since V01(x) ≥ 0
(V01(x) '= 0), then V̂1(t, x) > 0 for all t > 0 and x ∈ Ω̄. Thus by Lemme 1,
V1(t, x) is bounded from below by positive function V̂1(t, x), and so V1(t, x) >
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0.
Let V̂2(t, x) a solution of

∂V̂2

∂t
− µ2∆V̂2 + V̂2

[
aM(1− u) + dM

]
= 0,

V̂2(0, x) = V02(x),
∂V̂2

∂n

∣∣∣
∂Ω
≥ 0, t > 0. (7)

It holds that

∂V̂2

∂t
− µ2∆V̂2 + V̂2

[
a(t, x)(1− u) + d(t, x)

]
− βr(t, x)V1V3

1 + εV3

≤ ∂V̂2

∂t
− µ2∆V̂2 + V̂2

[
aM(1− u) + dM

]
= 0,

which implies that V̂2(t, x) is a lower solution of equation (2).
Let V̂3(t, x) a solution of

∂V̂3

∂t
− µ3∆V̂3 + bM V̂3 = 0,

V̂3(0, x) = V03(x),
∂V̂3

∂n

∣∣∣
∂Ω
≥ 0, t > 0. (8)

It holds that

∂V̂3

∂t
− µ3∆V̂3 + b(t, x)V̂3 − k(t, x)(1− u)V2

≤ ∂V̂3

∂t
− µ3∆V̂3 + bM V̂3 = 0,

which implies that V̂3(t, x) is a lower solution of (3).
A similar argument to V1(t, x) leads that V2(t, x) and V3(t, x) are bounded
from below respectively by positive functions V̂2(t, x) and V̂3(t, x).

Theorem 7. Assume that conditions (H) hold, then all solutions of system
(1-4) with non-negative initial functions are ultimately bounded.

Proof. Let V 1(t, x) a solution of

∂V 1

∂t
− µ1∆V 1 − ρM(1− u)(1− V 1

K
)V 1 = 0,

V 1(0, MV1) = MV1 , (9)

where MV1 is such that maxx∈Ω̄ |V01(x)| ≤MV1 .
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It holds that

0 =
∂V1

∂t
− µ1∆V1 + V1

[
d(x, t)− ρ(t, x)(1− u)(1− V1

K
)
]

+
βr(t, x)V1V3

1 + εV3

≥ ∂V1

∂t
− µ1∆V1 − ρM(1− u)(1− V1

K
)V1.

So, we get

0 =
∂V 1

∂t
− µ1∆V 1 − ρM(1− u)(1− V 1

K
)V 1

≥ ∂V1

∂t
− µ1∆V1 − ρM(1− u)(1− V1

K
)V1.

Therefore, Lemme 1 gives V1(t, x, V01, V02, V03) ≤ V 1(t, MV1).
Note that, according to the uniqueness theorem, the solution V 1(t, MV1) of
(9), does not depend on x for t > 0, and so V 1(t, MV1) satisfies the ordinary
differential equation

∂V 1

∂t
− ρM(1− u)(1− V 1

K
)V 1 = 0.

By Lemme 3, we have

V 1(t, MV1) −→ K, as t→ +∞.

So, there exists N1 and t1 > 0 such that V1(t, x) ≤ N1.
For the infected tumor cells, we have the following inequality

0 =
∂V2

∂t
− µ2∆V2 + V2

[
a(t, x)(1− u)V2 + d(t, x)

]
− βr(t, x)V1V3

1 + εV3

≥ ∂V2

∂t
− µ2∆V2 + V2

[
am(1− u) + dm

]
− ε−1βMrMN1.

So, we get

0 =
∂V 2

∂t
− µ2∆V 2 + V 2

[
am(1− u) + dm

]
− ε−1βMrMN1

≥ ∂V2

∂t
− µ2∆V2 + V2

[
am(1− u) + dm

]
− ε−1βMrMN1.

Therefore, Lemme 1 gives V2(t, x, V01, V02, V03) ≤ V 2(t, MV2), where V 2(t, MV2)
satisfies the ordinary differential equation

∂V 2

∂t
= −V 2

[
am(1− u) + dm

]
+ ε−1βMrMN1, V 2(0, MV2) = MV2 .
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Since

V 2(t, MV2) −→
ε−1βrMN1

am(1− u) + dm
as t→ +∞,

thus, there exists N2 and t2 > 0 such that V2(t, x) ≤ N2.
For the virus in the extracellular tissue, we have the following inequality

0 =
∂V3

∂t
− µ3∆V3 + b(t, x)V3 − k(t, x)(1− u)V2

≥ ∂V3

∂t
− µ3∆V3 + bmV3 − kM(1− u)N2.

So, we get

0 =
∂V 3

∂t
− µ3∆V 3 + bmV 3 − kM(1− u)N2

≥ ∂V3

∂t
− µ3∆V3 + bmV3 − kM(1− u)N2.

Therefore, Lemme 1 gives V3(t, x, V01, V02, V03) ≤ V 3(t, MV3), where V 3(t, MV3)
satisfies the ordinary differential equation

∂V 3

∂t
= −bmV 3 + kM(1− u)N2, V 3(0, MV3) = MV3 .

Since

V 3(t, MV3) −→
kM(1− u)N2

bm
as t→ +∞,

thus, there exists N3 and t3 > 0 such that V3(t, x) ≤ N3.

Theorem 8. Assume that conditions (H) hold, in addition, if dM+βε−1rM <
ρm(1− u), then the system (1-4) is permanent.

Proof. Theorem 7 implies that there exists η > 0 such that V1(t, x) ≤ η,
V2(t, x) ≤ η and V3(t, x) ≤ η starting with a certain moment of time. Note
that, by comparison principle, if V01(x) ≥ 0 (V01(x) '= 0), V02(x) ≥ 0
(V02(x) '= 0) and V03(x) ≥ 0 (V03(x) '= 0), then V1(t, x, V01, V03, V03) > 0,
V2(t, x, V01, V03, V03) > 0 and V3(t, x, V01, V03, V03) > 0 for all x ∈ Ω̄ and
t > 0. Considering the solution on the interval t ≥ ε with some ε > 0,

we get
(
V1(ε, x, V01, V03, V03); V2(ε, x, V01, V03, V03); V3(ε, x, V01, V03, V03)

)
sep-

arated from zero. Therefore, we can assume that minx∈Ω̄ V01(x) = mV1 > 0,
minx∈Ω̄ V02(x) = mV2 > 0 and minx∈Ω̄ V03(x) = mV3 > 0. Let V̂1(t, x) a
solution of

∂V̂1

∂t
+ V̂1

[
dM − ρm(1− u)(1− V̂1

K
) + ε−1βMrM

]
= 0,

V̂1(0, MV1) = mV1 . (10)
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So using the inequality

0 =
∂V1

∂t
− µ1∆V1 + V1

[
d(x, t)− ρ(t, x)(1− u)(1− V1

K
)
]

+
βr(t, x)V1V3

1 + εV3

≤ ∂V1

∂t
− µ1∆V1 + V1

[
dM − ρm(1− u)(1− V1

K
) + ε−1βMrM

]
,

one has by (10),

0 =
∂V̂1

∂t
− µ1∆V̂1 + V̂1

[
dM − ρm(1− u)(1− V̂1

K
) + ε−1βMrM

]

≤ ∂V1

∂t
− µ1∆V1 + V1

[
dM − ρm(1− u)(1− V1

K
) + ε−1βMrM

]
.

Therefore, Lemme 1 gives V1(t, x, V01, V02, V03) ≥ V̂1(t, mV1). By the condition
dM + ε−1βMrM < ρm(1− u), we have

V̂1(t, mV1) −→
K

[
ρm(1− u)− dM − ε−1βMrM

]

ρm(1− u)
, t→ +∞.

Therefore, there exist ζ1 > 0 such that V1(t, x, V01, V02, V03) ≥ ζ1 for t large
enough.
Let V̂2(t, x) a solution of

∂V̂2

∂t
+ V̂2

[
aM(1− u) + dM

]
− ε−1βMrMζ1 = 0, V̂2(0, x) = mV2 . (11)

Using the inequality

0 =
∂V2

∂t
− µ2∆V2 + V2

[
a(t, x)(1− u) + d(t, x)

]
− βr(t, x)V1V3

1 + εV3

≤ ∂V2

∂t
− µ2∆V2 + V2

[
aM(1− u) + dM

]
− ε−1βMrMζ1,

we have by (11),

0 =
∂V̂2

∂t
− µ2∆V̂2 + V̂2

[
aM(1− u) + dM

]
− ε−1βMrMζ1

≤ ∂V2

∂t
− µ2∆V2 + V2

[
aM(1− u) + dM

]
− ε−1βMrMζ1.

Therefore, V2(t, x, V01, V02, V03) ≥ V̂2(t, mV2) −→
ε−1βMrMζ1

aM(1− u) + dM
,

as t→ +∞. Therefore, there exist ζ2 > 0 such that V2(t, x, V01, V02, V03) ≥ ζ2

9



for t large enough.

Now, let V̂3(t, x) a solution of

∂V̂3

∂t
+ bM V̂3 − kM(1− u)ζ2 = 0, V̂3(0, x) = mV3 . (12)

By the following inequality,

0 =
∂V3

∂t
− µ3∆V3 + b(t, x)V3 − k(t, x)(1− u)V2

≤ ∂V3

∂t
− µ3∆V3 + bMV3 − kM(1− u)ζ2,

we have

∂V̂3

∂t
− µ3∆V̂3 + bM V̂3 − kM(1− u)ζ2 ≤

∂V3

∂t
− µ3∆V3 + bMV3 − kM(1− u)ζ2.

Therefore, V3(t, x, V01, V02, V03) ≥ V̂3(t, mV3) −→
kM(1− u)ζ2

bM
, as t → +∞.

Therefore, there exist ζ3 > 0 such that V3(t, x, V01, V02, V03) ≥ ζ3 for t large
enough.

4 Periodic solutions

Theorem 9. Assume that conditions (H) hold and system (1- 4) is perma-
nent. Moreover, if we assume the following conditions:

2
(
ρM(1− u)(1− 2ζ/K)− dm

)
− ε−1βMrM < 0, (13)

βM

ε
rM + kM − 4ζaM(1− u) + 2dM < 0, (14)

kM − 2bm < 0, (15)

then, the system has a unique globally asymptotic stable strictly positive ω-
periodic solution.

Proof. For convenience, we denote a = a(t, x), and similar meaning to b, d, k,
r and ρ. Let (V 1

1 (t, x), V 1
2 (t, x), V 1

3 (t, x)) and (V 1
2 (t, x), V 2

2 (t, x), V 2
3 (t, x)) be

two solutions of system bounded by constants ζ and η for below and above.
Consider the function

L(t) =

∫

Ω

[
(V 1

1 (t, x)−V 2
1 (t, x))2+(V 1

2 (t, x)−V 2
2 (t, x))2+(V 1

3 (t, x)−V 2
3 (t, x))2

]
dx.

(16)
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So,

L(t)

dt
= 2

∫

Ω

(V 1
1 − V 2

1 )
(∂V 1

1

∂t
− ∂V 2

1

∂t

)
dx + 2

∫

Ω

(V 1
2 − V 2

2 )
(∂V 1

2

∂t
− ∂V 2

2

∂t

)
dx

+ 2

∫

Ω

(V 1
3 − V 2

3 )
(∂V 1

3

∂t
− ∂V 2

3

∂t

)
dx

= 2µ1

∫

Ω

(V 1
1 − V 2

1 )∆(V 1
1 − V 2

1 ) dx + 2µ2

∫

Ω

(V 1
2 − V 2

2 )∆(V 1
2 − V 2

2 ) dx

+ 2µ3

∫

Ω

(V 1
3 − V 2

3 )∆(V 1
3 − V 2

3 ) dx

+ 2

∫

Ω

(V 1
1 − V 2

1 )2
[
ρ(1− u)

(
1− (V 1

1 + V 2
1 )/K

)
− d

]
dx

− 2

∫

Ω

(V 1
1 − V 2

1 )
βrV 1

1 V 1
3

1 + εV 1
3

dx + 2

∫

Ω

(V 1
1 − V 2

1 )
βrV 2

1 V 2
3

1 + εV 2
3

dx

− 2

∫

Ω

(V 1
2 − V 2

2 )2
[
a(1− u)(V 1

1 + V 2
1 ) + d

]
dx

+ 2

∫

Ω

(V 1
2 − V 2

2 )
βrV 1

1 V 1
3

1 + εV 1
3

dx− 2

∫

Ω

(V 1
2 − V 2

2 )
βrV 2

1 V 2
3

1 + εV 2
3

dx

+ 2

∫

Ω

k(1− u)(V 1
2 − V 2

2 )(V 1
3 − V 2

3 ) dx− 2

∫

Ω

b(V 1
3 − V 2

3 )2 dx

:= I1 + . . . + I11.

It follows from the boundary condition (4) that

I1+I2+I3 = −2

∫

Ω

[
µ1|∇(V 1

1 −V 2
1 )|2+µ2|∇(V 1

2 −V 2
2 )|2+2µ3|∇(V 1

3 −V 2
3 )|2

]
dx ≤ 0.

The terms

I4 + I7 + I10 + I11 ≤ 2

∫

Ω

(
ρM(1− u)(1− 2ζ/K)− dm

)
(V 1

1 − V 2
1 )2 dx

−
∫

Ω

(
4ζaM(1− u) + 2dM

)
(V 1

2 − V 2
2 )2 dx

− 2

∫

Ω

bm(V 1
3 − V 2

3 )2 dx +

∫

Ω

kM

[
(V 1

2 − V 2
2 )2 + (V 1

3 − V 2
3 )2

]
dx,
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and

I5 + I6 + I8 + I9 = 2

∫

Ω

βrV 1
1 V 1

3

1 + εV 1
3

[
(V 1

2 − V 2
2 )− (V 1

1 − V 2
1 )

]
dx

+ 2

∫

Ω

βrV 2
1 V 2

3

1 + εV 2
3

[
(V 1

1 − V 2
1 )− (V 1

2 − V 2
2 )

]
dx

≤ 2

∫

Ω

ε−1βMrMV 1
1

[
(V 1

2 − V 2
2 )− (V 1

1 − V 2
1 )

]
dx

+ 2

∫

Ω

ε−1βMrMV 2
1

[
(V 1

1 − V 2
1 )− (V 1

2 − V 2
2 )

]
dx

≤ −2

∫

Ω

ε−1βMrM(V 1
1 − V 2

1 )2 dx

+ 2

∫

Ω

ε−1βMrM(V 1
1 − V 2

1 )(V 1
2 − V 2

2 ) dx

≤ −
∫

Ω

ε−1βMrM

[
(V 1

1 − V 2
1 )2 − (V 1

2 − V 2
2 )2

]
dx.

Thus, we have

L(t)

dt
≤

∫

Ω

[
2
(
ρM(1− u)(1− 2ζ/K)− dm

)
− ε−1βMrM

]
(V 1

1 − V 2
1 )2 dx

+

∫

Ω

[
ε−1βMrM + kM − 4ζaM(1− u) + 2dM

]
(V 1

2 − V 2
2 )2 dx

+

∫

Ω

[
kM − 2bm

]
(V 1

3 − V 2
3 )2 dx

≤ (V 1
1 − V 2

1 , V 1
2 − V 2

2 , V 1
3 − V 2

3 ) P (V 1
1 − V 2

1 , V 1
2 − V 2

2 , V 1
3 − V 2

3 )T ,

≤ λM(P )
[
‖V 1

1 − V 2
1 ‖2

L2(Ω) + ‖V 1
2 − V 2

2 ‖2
L2(Ω) + ‖V 1

3 − V 2
3 ‖2

L2(Ω)

]
,

where λM(P ) is the maximal eigenvalue of the diagonal matrix P = diag(P1, P2, P3)
with

P1 = 2
(
ρM(1− u)(1− 2ζ/K)− dm

)
− ε−1βMrM

P2 = ε−1βMrM + kM − 4ζaM(1− u) + 2dM

P3 = kM − 2bm.

So, we deduce that

L(t) ≤ L(0)eλM (P )t −→ 0, as t→ +∞.

12



Thus, ‖V 1
1 −V 2

1 ‖L2(Ω) −→ 0, ‖V 1
2 −V 2

2 ‖L2(Ω) −→ 0 and ‖V 1
3 −V 2

3 ‖L2(Ω) −→ 0;
as t → +∞. By Theorem 6, solutions of system (1-4) are bounded in the
space C1+ν(Ω̄, R3, where 0 < ν < 2l − 1 − n/p and 1/2 + n/(2p) < l < 1.
Therefore,

lim
t→+∞

sup
x∈Ω

|V 1
1 (t, x)− V 2

1 (t, x)| = 0, lim
t→+∞

sup
x∈Ω

|V 1
2 (t, x)− V 2

2 (t, x)| = 0,

lim
t→+∞

sup
x∈Ω

|V 1
3 (t, x)− V 2

3 (t, x)| = 0. (17)

Consider the sequence

(V1(qω, x, V01, V02, V03; V2(qω, x, V01, V02, V03); V3(qω, x, V01, V02, V03) = W (qω,W0).

Then {W (qω,W0), q ∈ N} is compact in the space C(Ω̄)3. Let W̄ be a limit
point of this sequence. It follows, from

‖W (ω,W )−W‖C ≤ ‖W (ω,W )−W (ω, W (qnω, W0))‖C

+ ‖W (ω, W (qnω, W0))−W (qnω, W0)‖C

+ ‖W (qnω, W0)−W‖C −→ 0 as n→ +∞,

that W (ω,W ) = W .
Next, let W and Ŵ two limit points of the sequence {W (qω,W0), q ∈ N}.

Using (17) and Ŵ = W (qnω, Ŵ ), we have

‖W − Ŵ‖C ≤ ‖W −W (qnω, W0)‖C + ‖W (qnω, W0)− Ŵ‖C −→ 0 as n→ +∞.

Thus, W = Ŵ and so (V1(t, x, V̄1, V̄2, V̄3); V2(t, x, V̄1, V̄2, V̄3); V3(t, x, V̄1, V̄2, V̄3))
is the unique periodic solutions of system (1-4). By (17), it is asymptotically
stable.
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