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Optimization of source-sink dynamics in plant growth for ideotype breeding: a case 1 study on maize 2 3

Keywords: Pareto front, GreenLab, functional-structural model, Zea mays., 2 multi-objective optimization 3

The objective of this work is to illustrate how a mathematical model of plant 2 growth could be possible to design ideotypes and thus leads to new breeding strategies 3 with optimization guidance. As a test case, maize (Zea mays L., DEA cultivar), which 4 is one of the most widely cultivated cereals all over the world, is selected for this 5 study. The experimental data reported in a previous study are used to estimate 6 parameters of a plant growth model. As the cob and the compartment of leaves and 7 stem can be benefited from economically, an optimization problem with single 8 objective maximization of cob weight and a multi-objective optimization problem are 9 formulated, respectively. The Particle Swarm Optimization approach is applied to 10 solve these two optimization problems based on the existing plant growth model, 11 namely, "GreenLab". The optimized variables are specific parameters of GreenLab 12 model related to plant genetics, specially the parameters of the cob sink variation 13 function. The cob position on the stem is an additional factor in the investigation. 14 Plant growth behavior is analyzed based on the plant growth model through 15 optimizations. The optimization results revealed the source-sink dynamics. In 16 comparison with the experimental data reported in a previous study, the numerical 17 results showed significant yield increasing from both optimization problems. The 18 work described in this paper confirmed that optimization approaches will be a 19 promising tool for genetic analysis and management control to improve breeding 20 strategies and to design an ideotype of high-yield maize, especially in the current 21 agricultural context and the increasing importance of co-products when designing 22 cultivation practices.

Introduction

4

In plant breeding, the concept of ideotype is first defined in (Donald, 1968): "a 5 plant model which is expected to yield a greater quantity or quality of ... useful 6 product when developed as a cultivar", "plants with model characteristics known to 7 influence photosynthesis, growth, and (in cereals) grain yield". Since then, the design 8 of ideotype has been a major issue in genetic selection in order to optimize crop yields. 9

There are two main strategies to investigate ideotype breeding: experiment based and 10 plant model based approaches. Peng et al. (2008) presented the research results of 11 almost 20 years on the ideotype design of rice with the objective of high potential 12 yield, using an experiment based approach. However, the performance of the 13 improved plant type, which is obtained after the first five year experiments, is worse 14 and disappointing. The critical drawback of experiment based approach is that the 15 time consuming for experiments is long (10 years needed by Dencic (1994) and by 16 Lauri and Costes (2004)) and it consumes resources that are limited (field, water, 17 labor) due to the cultivation of thousands of plants (Dencic, 1994). Nowadays, it 18 becomes widely accepted that plant growth models may provide efficient tools to 19 study plant growth behavior (Tardieu, 2003;Letort et al., 2008a), since they can not 20 only complement field experiments, but also save time and resources. Therefore, 21 researchers dedicated themselves to study ideotype breeding based on plant models 22 (Yin et al., 2003;Cilas et al., 2006). As plant architectural information is more 1 intuitionistic and is easier to measure, Cilas et al. (2006) used an architectural plant 2 growth model to study the ideotype of Coffea canephora for good yield capacity. Like 3 as, in Peng et al. (2008), the architecture traits of the ideotype plant were highlighted.

4 Yin et al. (2003) pointed out that the physiological information of plant growth can 5 also be used to improve the ideotype breeding efficiency; hence, he used a process 6 based plant growth model for ideotype breeding. However, note that even though 7 Cilas et al. (2006) and Peng et al. (2008) investigated ideotype breeding from the 8 architectural point of view, and Yin et al. (2003) from the physiological point of view, 9 they all agree that there exist critical relationships between plant architectures and 10 physiological processes during plant growth, with other researchers like Rasmusson 11 (1987), Sievänen et al. (2000), Luquet et al. (2006), andFourcaud et al. (2008). The 12 design of ideotypes should thus take into account both architectural and physiological 13 aspects. In parallel, functional-structural plant growth models were developed 14 (Perttunen et al., 1998;Kurth, 2000;Allen et al., 2005;Cournède et al., 2008), 15 combining the description of organogenesis, photosynthesis and biomass partitioning. 16 They can serve as the basis to improve plant breeding. 17 Maize (Zea mays L., DEA cultivar) is chosen for ideotype breeding in the present 18 work, as it is one of the most widely cultivated cereals all over the world. Commonly, 19 it is used in the human diet in both fresh and processed forms; the grain and 20 vegetative parts of maize are fed to livestock, and the components of the grain may be 21 refined for direct consumption (Pratt, 2001). Moreover, the fruit compartment and the 22 vegetative compartment can be used as biofuel of the first and second generations, 1 respectively, which becomes of important economical interest (Baenziger et al., 2006).

2 Therefore, the objective of this work is to breed maize first with the potential best cob 3 yield, and second with high yields of both cob and vegetative compartments. To find 4 the appropriate ideotype of maize that satisfies the requirement of high yield capacity, 5 optimization problems with respect to plant physiological processes are formulated 6 and numerical optimization methods are applied to a functional-structural plant 7 growth model.

8

There have been a lot of works about optimization on crops based on plant 9 growth models in the past decades. Most of the corresponding works are related to 10 optimization of environmental components including water (Ho et al., 2004), soil 11 (Mustafa, 1989) or temperature (Fink, 1993); others related to optimization of 12 cultivation modes, such as fertilizer (van Evert et al., 2006), seeding strategy 13 (Prasanna Kumar et al., 2008) or water supply strategy (Wu et al., 2005). Moreover, 14 several works focused on optimizing climate conditions especially in greenhouse 15 (Linker et al., 1998;Dieleman et al., 2006;van Henten et al., 2006). Morimoto et al. 16 (1993) also did optimal control of water supply (Morimoto et al., 1995), humidity 17 (Morimoto et al., 1997) and temperature control (Morimoto et al., 2003) on plant 18 growth. But the plant growth model he used is a kind of "black-box", which is trained 19 and formed by neural networks, without using physiological mechanisms of plant 20 growth. The corresponding review about optimization on environmental factors can 21 be found in (van Straten et al., 2000;King and Sigrimis, 2001;Ferentinos et al., 2006).

22

Technically and generally speaking, all of these optimization works belong to optimal 1 control. Even though Haverkort andGrashoff (2004) andHerndl et al. (2007) used 2 plant models to find the ideotype of plants with the optimum product with respect to 3 physiological parameters, the results they found were through trial and error method 4 based on simulation. None of them did optimization on the parameters that describe 5 the inner physiological processes of plant growth, the factors related to genetic 6 parameters or new genotype investigations for a specific species.

7

For this study on ideotype breeding, GreenLab plant growth model is chosen for 8 the following reasons. First of all, GreenLab is a functional-structural plant growth 9 model, which can describe the interaction between plant architecture and plant 10 physiological processes (Mathieu et al., 2008) that is necessary for ideotype breeding. 11 Second, Preliminary studies have allowed modelling the growth of maize cultivars 12 with the GreenLab model. Model parameters had already been estimated from 13 experimental data over different years (Guo et al., 2006;Ma et al., 2007) and over 14 different density conditions (Ma et al., 2008). The relative stability of model 15 parameters in a wide range of environmental conditions leads us to consider a 16 probable link of the model parameters to the genotype of the species. Letort et al. et al., 2008), chrysanthemum 1 (Kang et al., 2006), wheat (Kang et al., 2008), cucumber (Mathieu et al., 2007), 2 Chinese pine tree (Guo et al., 2006), Arabidopsis (Letort et al., 2006), and beech tree 3 (Letort et al., 2008b). GreenLab model was shown to be an efficient tool to describe 4 source-sink dynamics in plant growth. Fourth, GreenLab model can be considered as 5 a dynamic system, whose mathematical formulation makes it suitable for solving 6 optimization problems. 13 Yan et al., 2004;Cournède et al., 2008). Here, only the necessary points to understand 14 our approach are recalled.

15

In the usual cultivation conditions, maize is a single stem crop. The phytomer 16 appearance is controlled by the thermal time in GreenLab model for maize. The 17 model time step, also called growth cycle (GC), is thus equivalent to the thermal time 18 necessary for a new phytomer to appear. The topology of maize cultivar ND108 is 19 simplified as follows: first six phytomers with short internodes appear; they are 20 followed by 15 phytomers with longer internodes; the last one bears the male flower 21 (tassel). Therefore, the organogenesis terminates at the end of the 21 st growth cycle, 22 but the plant is still alive until the 33 rd growth cycle. Even though several phytomers 1 may bear female flowers (cobs), Guo et al. (2006) chose to gather all the potential cob 2 weights on the 15 th phytomer. This simplification was proved very effective for plant 3 modelling and model calibration (Guo et al., 2006).

4

The functional processes of plant growth are described by a source-sink model in 5 GreenLab, with a common pool of biomass. GreenLab simulates plant growth from 6 the seed stage, hence the initial plant biomass is from seed and the initial organs are 7 driven by seed. And then, at the following growth cycle n, biomass production Q n of 8 an individual plant is described in Eqn.(1). It depends on the total green leaf surface 9 area at the end of the previous growth cycle n-1 (S n-1 ), on environmental factors 10 gathered in the function E n and on empirical parameters ȕ (linked to energetic 11 efficiency) and J (linked to light interception): The biomass increment of an organ o with age j at growth cycle n is proportional 1 to its sink value p o (j) and the ratio of biomass production to the total demand of the 2 plant, as detailed in Eqn.(3).
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4

The accumulated biomass for an organ o with age j at growth cycle n is given by: 5

¦ ' j k o o k k j n q j n q 1 ) , ( ) , ( (4) 6 
As a consequence, the total green leaf surface area at growth cycle n, denoted by 7

S n , is 8 slw j n q N S a t j a a j n n ¦ 1 1 ) , ( (5) 9 
where t a is the blade functioning duration, and slw is the specific leaf weight. 
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12 where x i is the ith element of the vector X on which we optimize and n is the 13 dimension of the problem; J i is the ith objective which is a function of X and m is the 14 number of objectives; g i is the ith inequality constraint of the problem and k is the 15 number of inequality constraints; h j is the jth equality constraint and l is the number of 16 equalities. 17

For multi-objective optimization problems, generally, objectives are in conflict 18 with each other. In comparison with single objective optimization problems for which 19 we may have results on the existence and unicity of the solution, the situation of 20 multi-objective problems is more complex, since there is no canonical relationship in 21 the feasible space. Thus, the optimal solutions for multi-objective optimization 1 problems is defined such that for these solutions, performance on one objective cannot 2 be improved without sacrificing performance on at least another. The solutions 3 satisfying this property form the Pareto front (Mostaghim and Teich, 2003).

4

For maize, one of our objectives is to maximize cob weight, which is used for 5 food or biofuel of the first generation. The formula for calculating the final weight of 6 cob when plant age is n is as follows:
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However, for the cultivar of maize ND108 (Zea mays L., DEA cultivar) that we 9 considered, leaves and stems are useful for poultry as a kind of forage. Moreover, 10 leaves and stem of maize will be also used for biofuel of the second generation, 11 whereas cob should be reserved for food. Thus, it is also of economical interest to 12 maximize the total weight of leaves and stem. The equation for calculating the final 13 weight of leaves and stem is given by: 14
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In Eqn.( 10), the first item corresponds to the total weight of leaves, and the 16 second item to the stem weight. showed that if the tassel size is reduced, the cob size will be limited. Thus, a 21 constraint that the tassel weight should be beyond a threshold is set. The formula for 1 calculating the final weight of tassel when plant age is n is as follows:
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Finally, the multi-objective optimization for maize is given by:
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For potential applications in breeding, the parameters we optimize should be 6 linked to plant genetics and therefore should be representative of some physiological 7 processes. As it is acknowledged that final cob weight of maize depends on the 8 relationship between cob sink and biomass production (Borrás et al., 2002), we 9 choose to study the cob sink variation. Thus, the parameters we optimize are the cob given by:
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where v ij k is the jth coordinate of the velocity of the ith particle at iteration k; B ij is the 12
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To make the balance between exploration and exploitation, the acceleration parameter values listed in Table 1.

21

Single optimization problem of maximization of cob weight

Fixing cob expansion duration, on one hand, it limits the potential duration of 1 obtaining biomass for cob. On the other hand, cob potential ability to obtain biomass 2 will be missed. To avoid these two drawbacks, in this subsection, we suppose that cob The comparison results of the cob sink variation reveal the source-sink dynamics. 17

The increment of the cob weight is the product of the cob sink value and the ratio of 18 the plant biomass production, which depends on the leaf surface area, to the plant 19 demand that is the sum of all the organ sinks, as described in Eqn.(3). Even though the 20 cob sink value is smaller than the estimated one, the leaf surface area is higher. Due to 21 the optimal trade-offs between sources and sinks, the cob weight with the optimal 22 parameter values (1032 g) is bigger than the observed one (895 g).

1

Multi-objective optimization problem

2 Economically speaking, we can benefit both from cob as food for human beings results shown in Figure 7, we found that the tassel expansion corresponds to the early 6 stages when the cob sink begins to increase.

7

In Figure 8, the evolution of the tassel weight corresponding to the points on the 8 Pareto front is illustrated. We see that for a wide range, the tassel weight does not 9 vary since its expansion corresponds to growth cycles when the cob sink is still very 10 low. However, we found that for the maximal cob weights (above 900g), the tassel the plant will grow as much as it can until its biomass reaches a threshold, and then 13 the biomass may be distributed to fruits and flowers.

14

The interaction between cob and tassel is also deduced from the single and 15 multi-objective optimization problems. The optimal solutions of cob sink variation 16 revealed that the cob growth requires pollen which is provided by tassel. set for tassel weight (not less than 10 g). In contrary to optimal solutions of general 1 optimization problems with constraints that are on the boundary of the feasible area 2 formed by constraints, all the tassel weights are higher than this 10 g. One reason is 3 that so far we do not know the relationship between cob and tassel quantitatively. Actually, in cobs, only kernels give the food for human beings or for livestock. 17

The number of kernels is a critical factor that affects the final kernel weight (Borrás 

  17

(

  2008a) explored the possibility to link GreenLab to a genetic model in order to 18 design new breeding strategies. Third, Carson et al. (2006) pointed out that plant 19 growth is a complex system, which raised a challenge on plant growth models for 20 parameter estimation and model validation. This challenge must be overcome for 21 model application. Over decade of GreenLab model development, besides maize, its 22 parameters have been well estimated on tomato (Dong

7

  As mentioned above, from an economical point of view, there are potential 8 benefits from both cob weight and the total weight of leaves and stem (to feed animals 9 as forage, or biofuel). Firstly, an optimization problem with single objective 10 maximization of cob weight is formulated and investigated, as the most beneficial 11 component in maize is cob. And then, a multi-objective optimization problem with 12 two conflict objectives: maximization of cob weight and of the total weight of 13 vegetative compartment at the same time, is formulated with a constraint of a minimal 14 tassel weight. The optimization is based on the GreenLab plant growth model, which 15 is used to simulate the growth behavior of maize and to estimate parameters from 16 measured data which are the preconditions of applying optimization. It is 17 acknowledged that cob weight is highly dependent on growth conditions during the 18 early stages of grain filling and the final cob weight reflects the source-sink ratio of 19 the entire grain filling period (Borrás et al., 2002); final cob weight of maize depends 20 on the relationship between cob sink and availability of assimilates resulting from the 21 biomass production of the plant to fill this sink (Borrás et al., 2003). Therefore, the optimized variables of both problems are specific GreenLab parameters related to 1 plant genetics: parameters of cob sink variation function. In addition, the impact of 2 cob position on the cob weight and on the total weight of vegetative compartment is 3 investigated. A heuristic optimization algorithm, Particle Swarm Optimization (functional-structural plant growth model combining the 9 descriptions of plant architecture and physiological processes of plant growth, in 10 interaction with the environment (light, water, temperature and density). The dynamic 11 mechanisms to generate plant architecture (organogenesis), plant biomass production 12 and partitioning to the organs are introduced in details in (de Reffye and Hu, 2003;

  and b o are the coefficients of the sink variation function. 16 The sink value of an organ with age j, denoted by p o (j), is f o (j) multiplied by the 17 sink amplitude (also called sink strength) P o as in Eqn.(7). Diverse sink variations can 18 be obtained by setting different values of the coefficients: a o and b o in Eqn.(6). An 19 example is given in Figure 1. (Zea mays L., DEA cultivar) seed was sown 0.6 m apart 4 in north-south-oriented rows that were 0.6 m apart, at the China Agricultural 5 University (CAU) (39°50'N, 116°25'E). The resulting plant population (28 000 plants 6 ha -1 ) is about half that commonly used by local farmers and was chosen to minimize 7 competition among plants. Plants emerged on the 18th May 2000. Soil, irrigation and 8 fertilizer inputs were managed so as to avoid any mineral and water limitation to plant 9 growth, and plant disease, pest or stress symptoms. Samples were taken destructively 10 on 12 dates. Fresh weights of blades, sheaths, internodes, cob and tassel were 11 measured and recorded individually at each sample date. The number of organs 12 generated at each growth cycle, the functioning duration of blades and the expansion 13 duration of organs, specific leaf weight, can be observed and measured by field 14 experiments. The detailed information about the environmental conditions, sampling 15 strategy and the measured data is given by (Guo et al., 2006). 16 Parameter estimation of GreenLab 17 In GreenLab, the parameters are classified into two categories: measurable 18 parameters, i.e. functioning duration of blades, number of organs emerged at each 19 growth cycle, and hidden parameters which cannot be measured directly in the field, 20 i.e. organ sink. To guarantee that GreenLab can describe the dynamic processes of 21 plant growth well, it is necessary to estimate the hidden parameters through 22 minimizing the difference between the measured data and the corresponding 1 simulation results of GreenLab. 2 The same set of parameters is estimated simultaneously by fitting with several 3 plants of a species at different development stages, which is called multi-fitting. In 4 this paper, the data measured at three stages (8 th GC corresponding to vegetative stage, 5 18 th GC approximately corresponding to flowering stage and 33 rd GC corresponding 6 to physiological maturity) are used as target data. 7 Multi-objective Optimization 8 In multi-objective optimization problems, several objectives are optimized 9 (maximization or minimization) simultaneously. The mathematical formulism of a 10 multi-objective optimization problem is given by: 11

  17

A

  constraint on the tassel weight is also imposed, since cob weight and tassel 18 weight are interrelated. Cob weight is controlled by pollen production, while the 19 pollen production depends on the tassel size of maize. Uribelarrea et al. (2002) 20

  10 sink strength P f and the two coefficients of the Beta function a f and b f . The effect of 11 cob position on the cob weight and on the total weight of leaves and stem is also revealed non convex and multimodal, particularly 16 since there is no unique solution for multi-objective problems. Therefore, 17 population-based heuristic optimization algorithms, which usually allow obtaining 18 quickly a number of acceptable solutions, were used in our study. Compared to the 19 other population-based heuristic optimization algorithms, PSO has a high 20 convergence rate for a wide range of optimization problems (Kennedy and Eberhart, 21 1 PSO is proposed by Kennedy and Eberhart (1995), which originally simulates 2 the behaviour of bird flocking. It is also an iterative algorithm, similar to other 3 population-based optimization algorithms. The feasible solutions found at the current 4 iteration are recorded separately in each individual in the population as their current 5 positions. The direction and the distance controlling how the individuals move are 6 determined by their velocities and their experiences during the searching. With the 7 help of social and cognition knowledge of each individual (also called particle), the 8 population (also called swarm) converges to the optimal solution (or position). With 9 the increasing development of PSO in the past decade, there are many variants of PSO 10 in order to improve its performance (convergence rate, convergence accuracy, etc). In 11 this paper, PSO with passive congregation (He et al., 2004) is used to solve the single 12 objective optimization problem, thanks to its generalization capacities and robust 13 performance. The equations used to calculate velocities and the new positions are 14

  17 jth coordinate of the best position recorded by the ith particle during the previous 18 iterations; B gj is the jth coordinate of the position of the global best particle among all 19 the particles in the swarm, which is marked by g; B rj is the jth coordinate of the best 20 position recorded by a random selected particle r during the previous iterations; x ij k is value at iteration k, which decreases linearly from the maximal inertia weight to the 1 minimal one; c 1 and c 2 are acceleration coefficients; r 1 and r 2 are uniformly distributed 2 random values between 0 and 1. The second and the third items of Eqn. (13) on the 3 right hand side are considered as cognition knowledge and social knowledge of a 4 particle respectively, and the last item is used to avoid getting trapped into the local 5 optimum. 6 Many researchers have already applied PSO to solve multi-objective 7 optimization problems (Fieldsend, 2004). The specific algorithm that we used is the 8 mixture of the algorithms proposed by Mostaghim and Teich (2003) and by Tripathi et 9 al. (2007). To extend the original PSO to solve multi-objective problem and to find 10 the Pareto front, the equations for changing the velocity and position of each particle 11 are improved slightly, as given by Eqn.(14).

3

  All the optimal solutions are recorded in an archive with limited size. The Sigma 4 method(Mostaghim and Teich, 2003) is used to determine the local guide best 5 position of each particle. The solution in the archive which has the nearest distance 6 from a given particle is decided to its local guide best position. For more details, we 7 refer to(Mostaghim and Teich, 2003). When the maximal number of solutions in the 8 archive is reached, the solutions which have the shortest distance from the other 9 solutions in the archive will be deleted. If the number of solutions in the archive is 10 less than its maximal number, new optimal solutions will be added into the archive. estimated by a generalized non-linear least square method 15 are different from the ones in Guo et al. (2006) and Ma et al. (2007), as the sink 16 variation function (Beta function) in this work is slightly improved as shown in 17 Eqn.(6). The comparison of the simulation results by GreenLab with the estimated 18 parameters and the measured data is given in Figure 2. The optimization results in the 19 following sections are based on the maize modelled by GreenLab with the estimated 20

3Figure 4 .

 4 Figure 4. During the third stage from the 23 rd growth cycle to the 31 st growth cycle,
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  and as biofuel of the first generation, and from leaves and stem as forage for poultry 4 and probably as biofuel of the second generation. Therefore, an optimization problem 5 with two objective functions on maximization of cob weight and total weight of 6 leaves and stem simultaneously is investigated. The optimal result of this 7 multi-objective optimization problem, known as Pareto front, is shown in Figure 6, 8 for each cob position. There is no obvious difference among the Pareto fronts 9 associated to each cob position. They are all very similar and can not be distinguished, 10 as shown in Figure 6. Each Pareto front is given by about 500 optimal solutions of 11 cob sink variation. Hence in Figure 7, we outlined the area covered by all the optimal 12 solutions of cob sink variation. Particularly, two examples of the optimal cob sink 13 variation are given, when the cob is born by the 12 th phytomer with cob weight of 792 14 g and total weight of leaves and stem of 1695 g, and when the cob is born by the 15 th 15 phytomer with cob weight of 503 g and total weight of leaves and stem of 2050 g, Pareto front of our multi-objective optimization problem reveals source-sink 18 dynamics and the necessary balance between both objectives. Maximization of the 19 total weight of leaves and stem leads to a zero cob sink strength. On the other hand, to 20 maximize the cob weight, the cob sink value can not be maximal all the way, 21 otherwise there would not be enough leaf surface area, and the reduced biomass 22 production would decrease the final cob weight. For this reason, the left extremity of 1 Pareto front corresponds to a zero cob weight whereas the right extremity 2 corresponds to a strictly positive weight of stem and leaves. For maize cultivar 3 ND108 (Zea mays L., DEA cultivar), the tassel appears and begins to develop at the 4 21 st growth cycle, with a very quick expansion (2 growth cycles). From the optimal 5

  11 weight is decreasing. It corresponds to experimental observations of Westgate et al. 12 (2003) who indicated that there is a potential gain of cob yield by decreasing the tassel 13 weight. 14 The cob weight simulated by GreenLab with the estimated parameter values is 15 1013 g, whereas the total weight of leaves and stem is 927 g and the tassel weight is 16 29 g. With the optimal parameter values, the maximal cob weight among the Pareto 17 front in Figure 6 is 1032 g, the corresponding total weight of leaves and stem is 955 g 18 and the tassel weight is 30 g. Comparing the Harvest Index (HI) of the simulated and 19 the optimal plants, HI of the optimal one is surprisingly a little smaller than the 20 simulated one, even though both the cob weight and the total weight of leaves and sinks. Post-expansion and fast growing rate as shown in Figure 3(b) and Figure 7 will 1 not only enhance the cob weight but also the weight of leaves and stem. , we have illustrated how the optimization of the parameters of plant 5 growth models could be used to design ideotypes for genetic selection. The GreenLab 6 model was chosen for the simplicity of its parameterization. Moreover, it describes 7 plant growth, both from ecophysiological and architectural points of view, at the 8 individual organ scale, which potentially allows distinguishing more easily genetic 9 and environmental effects. However, we should note that the model can be 10 extrapolated to stand level by taking into account competition between individuals 11 (Cournède et al., 2008). 12 Particle Swarm Optimization (PSO), which is a population-based heuristic 13 optimization algorithm, is used to solve the single and multi-objective optimization 14 problems. As it does not require the differentiation of the objective functions, and it 15 returns several solutions at the same time, we can benefit from it to solve non-convex, 16 single objective or multi-objective optimization problems, with potentially non-unique 17 solutions. Compared to other population-based heuristic optimization algorithms, such 18as Genetic Algorithm, the PSO has a high convergence rate and a better accuracy 19(Kennedy and Eberhart, 2001). Even though the optimal solutions found by the PSO 20 cannot be proven to be global, the results are better than observations and can be used 21 to practically guide genetic selection.22The sink variation function corresponding to the maximal cob weight reveals the 1 optimal source-sink dynamics. In order to obtain the maximal yield of cob, the cob 2 sink value keeps extremely small: almost zero during the early development stages, so 3 that the leaf surface area may increase. When biomass production almost saturates, 4 the cob begins absorbing biomass quickly, especially during the last several growth 5 cycles where nearly all the available biomass is allocated to the cob and the cob 6 becomes the strongest competitor for biomass against the other organs. This 7 phenomenon can be derived from the monotonously increasing cob sink variation as 8 illustrated in Figure 3(b) for the single objective optimization of maximization of cob 9 weight and in Figure 7 for the optimal solutions of the multi-objective optimization 10 problem. This optimal cob development strategy is in agreement with Weiner (1988) 11 and Vega et al. (2000): there is a threshold size for plants to produce flowers and fruits, 12

4

  Hence, it is difficult to set the threshold value. Another reason is that tassel sink 5 strength variation is fixed and it does not change according to the cob sink strength 6 variation, in this work.7From the optimal results, the ideotype of maize can be deduced. From a 8 physiological point of view, the cob begins to absorb biomass from about the 20 th 9 growth cycle when the leaf area saturates, independently of the cob position. And then, 10 it absorbs biomass smoothly or significantly, depending on the breeding objectives. 11 Especially, if the objective is to have a maximal cob weight, the maize should have a 12 bigger reproductive capacity, and the cob should grow with post-expansion and fast 13 growth rate. From an architectural point of view, for the maize giving the maximal 14 cob weight, the leaf size is reduced during the last vegetative and reproductive stages 15 of growth. The harvest index is above 50%. It is coincident with the ideotype of maize 16 proposed by Mock and Pearce (1975) by analysing research results of other people 17 with experimental based approach. The Pareto front of the multi-objective 18 optimization problem presents all the different optimal strategies, and the 19 decision-maker could choose his optimal strategy according to market prices or the 20 application purposes for example. The optimal results provide a reference to improve 21 breeding strategies and to design a new ideotype of maize. 22 Even though GreenLab model can simulate plant growth in response to 1 environmental conditions (light, temperature, water, competition), some 2 complementary work is needed to describe simultaneously carbon balance and water 3balance that determine the distinction between fresh and dry biomass. In addition, the 4 parameters that we optimized are oriented to those related to the cob sink variation 5 function, whereas the others are fixed to be the estimated values. However, there 6 might be some correlation between parameters. Due to the limited observation data 7 (samples), we have not been able to assess the correlation between parameters so far. 8 If these drawbacks are corrected correspondingly, the parameter estimation accuracy 9 should be increased and the frame work for optimization shall be improved. If the 10 estimated parameter values are changed, the optimal solutions may be different, as the 11 optimization is based on the model with estimated parameters. However, the 12 methodology that we proposed to maximize both cob weight and the vegetative 13 compartment weight, is still valid. Furthermore, it is interesting to note that the 14 relationship between sources and sinks as illustrated in Figure 3(b) and Figure 7 does 15 not depend on parameter values. The qualitative results are not changed.16

  18andOtegui, 2001). Therefore, optimizing the number of kernels per cob could be an 19 interesting work in future. So far, we do not have the information about the proportion 20 of the kernel weight to the cob weight, which raises the difficulty to estimate 21 parameters of GreenLab model. However, the corresponding experimental work is in 22 optimization problems of either only maximization of cob weight 4 or maximization of cob weight and total weight of leaves and stem simultaneously 5 were formulated. The non-convex, multimodal or non-unique solution problems were 6 solved by a heuristic optimization algorithm, Particle Swarm Optimization. 7 The source-sink dynamics is investigated through optimization in this study. The 8 optimization results provide a reference for decision-makers to improve the breeding 9 strategies or to design ideotypes of plants, especially in the current context of biofuel 10 development, increase in agricultural products price and necessity to consider 11 co-products when designing cultivation practices. ., Prusinkiewicz, P., DeJong, T., 2005. Using L-systems for modeling 20 source-sink interactions, architecture and physiology of growing trees: the 21 L-PEACH model.
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  the algorithm is changed by replacing the unique global best position with a 1 local guide best position for each particle, denoted by Bl ij for the jth coordinate of

	14			
		coefficient c 1	k decreases linearly, and the acceleration coefficient c 2	k increases linearly.
	17			
	18	the new position x ij	k+1 : if x i	k+1 satisfies the constraints while B i does not, or if one of
	19	the objective function value with respect to x i	k+1 is better than the one with respect to
		B i , no matter whether the constraints are satisfied, replace B ij with x ij	k+1 .

15

For the problems with constraints, there are two criteria to decide whether the jth 16 coordinate of the best position of each particle B ij is updated by the jth coordinate of 20

The aim of multi-objective optimization problems is to find all the optimal 21 solutions that form the Pareto front. Therefore, to obtain various solutions at a given 22 iteration, 2 particle i in Eqn.(

14

).
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the jth coordinate of the current position of particle i at iteration k; w k is inertia weight

stem are higher than the simulated one. It revealed the trade-offs between sources and