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Abstract

Tachykinin NK receptors (NKR) differ to a large degree among species with respect
to their affinities for small molecule antagonists. The aims of the present study were
to clone NKRs from gerbil (NK,;R and NK3R) and dog (NK;R, NK,R, NK3R) in
which the sequence was previously unknown and to investigate the potency of several
NKR antagonists at all known human, dog, gerbil and rat NKRs.

The NKR protein coding sequences were cloned and expressed in CHO cells. The
inhibitory concentrations of selective and non-selective NKR antagonists were
determined by inhibition of agonist-induced mobilization of intracellular Ca*".
Receptor homology models were constructed based on the rhodopsin crystal structure
to investigate and identify the antagonist binding sites and interaction points in the
trans membrane (TM) regions of the NKRs.

Data collected using the cloned dog NK;R confirmed that the dog NK;R displays
similar pharmacology as the human and the gerbil NK,R, but differs greatly from the
mouse and the rat NK;R. Despite species-related AA differences located close to the
antagonist binding pocket of the NK,R, they did not affect the potency of the
antagonists ZD6021 and saredutant. Two AA differences located close to the
antagonist binding site of NK;R likely influence the NK3R antagonist potency,
explaining the 3-10-fold decrease in potency observed for the rat NK;R. For the first
time, detailed pharmacological experiments in vitro with cloned NKRs demonstrate
that not only human, but also dog and gerbil NKR displays similar antagonist

pharmacology while rat diverges significantly with respect to NK;R and NK;R.
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1. Introduction

Several small molecule antagonists selective for tachykinin NK;R, NK;R and NK;R
are in clinical development and the selective NK; R antagonist aprepitant is approved
for treatment of emesis in response to cytostatic treatment in cancer patients [1].
During the development of selective NK;R antagonists, Beresford et al. discovered
large discrepancies in the affinity for NK R from different species [2]. This led to the
NK;R family being grouped into two sub-families based on the orthologous receptor’s
affinity to small molecule antagonists. The first sub-family consists of the human,
guinea pig, rabbit, dog, gerbil and ferret NK R, and the second sub-family of the rat
and mouse homologues [2,3,4,5] Thus, several disease-related animal models in
species other than rat or mouse have been developed for evaluation of NK;R
antagonists [6,7,8,9,10] Amino acid residues in the NK;R responsible for species-
dependent differences in antagonist pharmacology have been studied in detail,
especially human GIu97, Vall16 and Ser290 [5,11,12,13,14]However, although the
dog appears to be an appropriate species in detecting anti-emetic effects with selective
NK;R antagonists intended for clinical use [15], the pharmacology of the dog NK;R
at the molecular level, and its homology to the human NK;R, remain unknown to our
knowledge.

Consistent species-related differences in the pharmacology of NK,R have not been
reported either, although recent publications demonstrated that the selective NK,R
antagonist MEN15596 and analogues MEN14268 and MEN13918 had a marked
species selectivity for inhibiting NK;R-mediated effects in human, guinea pig and pig
urinary bladder, while being 1,000-fold less potent at the rat and mouse NK,;R

expressed in urinary bladder [16,17] . By contrast, species-dependent differences were
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not observed with MEN11420 (nepadutant) [18] or saredutant [19] Detailed site-
directed mutagenesis studies suggested that the 11e202 residue, located in the upper
part of TMS in the human NK,R was, at least in part, responsible for these differences
[16] Still, the homology between the human NK,R and that of species commonly used
in tachykinin receptor pharmacology studies, such as dog and gerbil, has not been
reported.

Furthermore, species-related differences in functional response profiles between
human and mouse/rat have been reported for selective tachykinin NK3R antagonists.
Compounds from different structural classes have 5-10-fold lower potency and 10-50-
fold lower affinity for rodent NK3R compared to human counterparts [20,21] Site-
directed mutagenesis studies indicate that two amino acids in the second trans
membrane domain of the human NK;3;R (Met134 and Alal46) were responsible for
these species differences [20,22] However, as is the case for NK;,R, the identity of
NK;R from dog and gerbil remain unknown.

Thus, there are clearly gaps in our knowledge with respect to which species most
likely will predict clinical efficacy and selectivity for NK;R, NK,;R or NK3R
antagonists. Furthermore, the lack of antagonist affinity data will complicate species
selection for toxicological studies intended to detect adverse effects upon blocking of
receptor signalling. In the current study, we have cloned and sequenced the dog
NK;R, NK;R and NK;R and the gerbil NK,R. This should increase the understanding
of the molecular mechanisms underlying the species related differences in NKR

pharmacology, which would facilitate more relevant model system selection.
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2. Material and Methods

2.1.  Chemicals

Substance P, neurokinin A and Pro7neurokinin B were purchased from Bachem
(Peninsula Laboratories Inc, San Carlos, CA). ZD6021 was synthesized at
AstraZeneca, Wilmington, USA [23]. Aprepitant [24], RP67580 [25], CP-99,994 [26],
saredutant [19], talnetant [27,28] and osanetant [29,30] were synthesized at

AstraZeneca Molndal, Sweden.

2.2.  Molecular cloning of the gerbil and dog NK receptors

The sequences for the human and rat NKR subtypes and the gerbil NK;R have been
published previously (see Table 1 for accession numbers, [S]. The receptor sequences
for the gerbil NK,R and the dog NK; R, NK;R and NK;R were largely unknown and
are presented in this paper and submitted to the EMBL GenBank database under the
accession numbers listed in Table 2. The gerbil NK3R sequence has been cloned and
was presented in a recent study [31].

Dog hypothalamus was used as a source for cloning NK;R and NK;R. Dog ileum and
gerbil colon were used as sources for cloning of the respective NK,R. Total RNA was
prepared from the different tissues with RNA-STAT-60 (Tel-Test Inc, Friendswood,
Texas, USA). One pg of total RNA from each tissue sample was used for the first
strand cDNA synthesis using SMART RACE ¢cDNA Amplification kit (BD
Biosciences, Mountain View, CA, USA). ClustalW alignment of NK;R, NK;R and
NKj3R sequences from human, rat, mouse and guinea pig was used to select primers

with high homology between different species. Primers used in the 3’'RACE and in
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the 5’'RACE are listed in Table 2. The RACE fragments were characterized and
cloned fragments containing gerbil and dog specific NK;R, NK;R and NK;R
sequences spanning the open reading frame were identified.

Complementary DNA (2.5 pl) from the harvested tissues indicated above was used in
the optimized full-length PCR with forward and reverse primers (20 uM of each),
1xPCR buffer, 5 mM of each dNTP and 1 U Pfu Ultra (Stratagene, La Jolla, CA,
USA). A Kozak sequence (GCCACC) was introduced before the ATG in each
construct. Conditions were optimized for each primer pair used. The resulting PCR
products for the gerbil and dog NK;R and NK,R were cloned into pIREShyg?2
expression vector (Clontech, Palo Alto, CA, USA). The full-length cDNA of dog and
gerbil NKj receptor was cloned into pPCDNA/FRT expression vector (Invitrogen,
Carlsbad, CA, USA). In order to construct a full length clone of dog NK;3R, the 5'-end
of the dog NK3R was cloned using genomic sequence data (TI number 356163905)
from a trace file as a template for PCR reactions.

Multiple sequence alignments were constructed using ClustalX version 2.0 [32], and
the TM domains were predicted using the TMHMM server version 2.0

(http://www.cbs.dtu.dk/servicess TMHMMY/). A position in the alignments is

considered TM if the majority of the individual sequences are predicted to be TM at

that position.

2.3.  Cell culture and transfection
Chinese Hamster Ovary (CHO) cells (ATCC, Middlesex, UK) or CHO-FIpIN cells
(Invitrogen, Carlsbad, CA, USA) were transfected with the different constructs. All

accession numbers for the sequences used to transfect the CHO cells are listed in table
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2. NK;.3 R-containing clones were selected by growth in appropriate selection media
and tested for functionality in a Ca’’ mobilization assay.

CHO cells stably expressing human NK;R was supplied by AstraZeneca R&D,
Wilmington, USA and human NK;R, rat NK;R, rat NK,R and rat NK;R were
transfected in house (see Table 1 for gene accession numbers). Stable transfectants
were maintained by supplementing culture media (NutMix F12 (HAM) with
Glutamax I and 10% FBS) (Invitrogen, Carlsbad, CA, USA) with suitable selection
depending on the expressing vector. Cultures were kept at 37°C in a 5% CO2-

incubator and routinely passaged when 70-80% confluent for up to 20-25 passages.

2.4.  Calcium mobilization assay

Ca’" mobilization was studied in CHO cells or in CHO FlplIn cells stably expressing
human, rat, gerbil or dog NK 1-3 receptors using the cytoplasmic Ca;*" indicator Fluo-
4 (TEFLABS 0152, Austin, TX, USA). Cells were seeded into black-walled clear-
base 96-well plates (Costar, #3904) at a density of 35,000 cells per well in culture
media and grown for 24 h in a 37°C CO,-incubator. The cells were incubated with 4
uM of Fluo-4 (TEFLABS 0152) in loading media (Nut Mix F12 (HAM), glutamax I,
22 mM HEPES, 2.5 mM probenicid (P-8761, Sigma, St. Louis, MO, USA) and 0.04
% pluronic F-127 (P-2443 Sigma, St. Louis., MO, USA) for 30 minutes in a 37°C
COs-incubator. The Fluo-4-loaded cells were then washed three times in assay buffer
(Hanks Balanced Salt Solution, 20 mM HEPES, 2.5 mM probenicid and 0.1% BSA).
The plates were placed into the Fluorometric Imaging Plate Reader (FLIPR™ ) to
monitor cell fluorescence (Aex = 488nm, Aem = 540nm) before and after the addition
of antagonists and/or agonists. Antagonists and agonists were dissolved in assay

buffer (final DMSO, D2650, Sigma. concentration kept below 1%) in 96-well plates
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and added to the loaded cells by the automated pipettor in the FLIPR™. Loaded cells
were pre-incubated with antagonists for 2 minutes before addition of agonist (0.08 nM
SP for NK R, 0.15 nM NKA for NK;R and 1.0 nM pro7NKB for NK3R). Cai2+
responses were measured as peak fluorescence intensity minus basal fluorescence

after agonist addition.

2.6.  Rhodopsin homology model

The sequences of the human NK; ;R were aligned to the bovine rhodopsin and a
subset of rhodopsin sequences, covering different degrees of sequence identity. The
pair wise alignments of NK;_ 3R and rhodopsin, were extracted and adjusted manually
to optimize compatibility with structure and frequently occurring sequence motifs
amongst GPCRs. The rhodopsin-NK ;R alignment was used as input for the
automatic modeling and used for the evaluation of the WhatCheck module [33]. All
binding site results and discussions are based on predictions drawn from NKR
modified rohdopsin homology model. A limitation of the Whatif modeling tool is that
insertions and gaps are not considered. In this case, however, the active site should not

be affected by this limitation.

2.7.  Data analysis

The calcium mobilization data generated in vitro were fitted to a four parameter
equation using Excel Fit. ICss for antagonists were determined from concentration-
response curves for each compound. Potency (Kg)-values for antagonists were
calculated using the Cheng-Prusoff equation [34] and expressed as pKg-values (pKg =

-log Kg). All data are expressed as Mean + S.E.M.
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3. Results

3.1. Sequence characterization and antagonist pharmacology of the tachykinin NK;
receptor

Multiple sequence alignments of the gerbil, human, dog, rat, mouse and guinea pig
NK;R are shown in Fig. 1A. Unlike rat and gerbil, the dog NK;R displays 100%
homology with human in the trans-membrane regions. Thus, the Vall16 and 11e290
residues, previously identified as important for antagonist binding, are identical
between the dog and the human NK; receptor sequences. Also extracellular residues
such as Glu97 have also been suggested as being responsible for species selectivity of
antagonists. Indeed, gerbil and dog NK;R also contained a Glu residue in this position
while rat and mouse counterparts contained Val97.

The selective NK;R antagonists aprepitant (Fig. 1B, Table 3), CP99,994 (Table 3),
and the pan-NK antagonist ZD6021 (Table 3) were slightly more potent (5-10 fold)
inhibitors of the SP-induced responses in cells expressing the dog compared to the
human NK;R. RP67580 displayed similar potency at NK;R from all species evaluated
(Table 3).

Fig 1C illustrates a rhodopsin-NK;R homology model which emphasizes the role of
AA 116 and 290 in dictating species differences in NK R antagonist pharmacology.
The polar 290Ser in rat is smaller and less hydrophobic compared to the non-polar
290Ile present in human and dog NK;R. In contrast, the Leul 16Val (rat/human) is a
rather conservative AA exchange. There are no other species-related differences in
any of the other residues found to be close to the aprepitant binding site using this

model (Fig 1C).
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3.2. Sequence characterization and antagonist pharmacology at the tachykinin NK;
receptor

The alignments of the gerbil, human, dog, rat, mouse and guinea pig NK,Rs, are
shown in Fig. 2A. The residues located in the proposed saredutant binding site differ
between species. Position 202 located within TM 5 is an Ile in the human and dog
NK,R while the gerbil and rat NK;R have a Phe in this position. Position 205, also
located in TM 5, is Ile in human, rat and dog NK;,R and Val in gerbil NK;R, while
position 267 (located in TM6) has Leu in the human, rat and gerbil NK,;R, which is
replaced by a Phe in the dog NK,R.

Despite the interspecies differences in AA in TM regions, the selective NK;R
antagonist saredutant (Fig. 2B, Table 3), and the pan-NKR antagonist ZD6021 (Table
3), had a similar potency at the NK,R from the various species.

Fig. 2C illustrates the chemical structures of AA that differ between species and that
are presumed to be involved in NK;R binding of saredutant. All the differences
between AA in the NK,R binding site contain neutral, nonpolar AA. Even though
there are differences in the hydrophobicity among residues, they do not seem to affect

the potency of the tested NK,R antagonists (Table 3).

3.3. Sequence characterization and antagonist pharmacology at the tachykinin NK;
receptor

Alignments of the gerbil, human, dog, rat, mouse and guinea pig NK3R sequences are
shown in Fig. 3A. Key residues important for the binding of talnetant (Met134,
Alal46 and Ile317) are identical between gerbil, dog and human, while the
corresponding residues in the rat and mouse sequences are Vall34, Gly146 and

Val317 respectively.

10
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The selective NK3R antagonists talnetant (Fig. 3B and Table 3) and osanetant (Table
3) had similar potency at human, dog and gerbil NK3;R while being approximately 10-
fold less potent for the rat NK3R. Furthermore, the pan-NKR antagonist ZD6021 also
displayed 10-fold higher potency at human, dog and gerbil NK3;R compared to rat
NK;R (Table 3).

Fig. 3C illustrates the rhodopsin NK3R homology model which emphasizes the role of
key residues for talnetant binding. The human NK3R positions 265 and 306 differ
from all other species studied. The dog NK3R has a Met at position 202 while the
other species have an Ile. Nevertheless, based on the pharmacological profile of
antagonists at NK3R for the various species it appears as if the rat/mouse-specific AA
at residues 134, 146 and 317 may play a role in the lower potency of NK3;R

antagonists at rat NK;R.

4. Discussion

It has been known for quite some time that there are major differences in the affinity
of many selective NK;R antagonists between human and rat/mouse NK;R. Therefore,
since these commonly used experimental animals are not always suitable for
evaluation of clinically relevant compounds, other species have been used instead,
including gerbils and dogs. Indeed, gerbils have been used for detecting potential
behavioural [6] anti-depressive [9], visceral anti-hyper algesic [10] and gut motility
[7] effects of NK;R antagonists. We recently showed that the gerbil NK;R shares key
residues (Glu97, Valll6, 11e290) with the human NK;R homologue and that it has
similar affinity for several known NK;R antagonists [5] (Fig 1C). Dogs are often used
to study the efficacy of anti-emetic compounds like NK;R antagonists [15]. The

current study extends our previous findings in that the dog NK;R also contains the

11
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same important residues for antagonist function as human and gerbil NK;R. This
provides confirmation at the molecular level that the dog belongs to the human-like
NK;R sub-family which has been previously suggested based on experiments in vivo
[35]. Interestingly, the compounds ZD6021, CP99,994 and aprepitant were actually
slightly more potent (5-10-fold) at dog NK;R compared to gerbil and man. The reason
for this is unclear since the receptors display 100% homology in the TM region.
RP67580, often referred to as a rat-selective NK;R antagonist, was equipotent at dog,
rat and man. Hence, the rat-selectivity is not supported in the current study and is in-
line with previous data [S]. Aprepitant is clearly less potent at rat NK;R than at NK;R
from other species. However, based on our data, aprepitant could be useful as a tool
compound in rat models since it displays similar potency as RP67580, an NK ;R
antagonist commonly used in rat models, but appears to have better DMPK properties
such as CNS penetration and metabolic half-life [36].

Cloning and sequencing of gerbil and dog NK,R provides data for a more thorough
comparison between species. In contrast to NK;R, rather large discrepancies were
found in the TM region in the NK,R. Residues 202, 205 and 267 had a variety of
amino acids in this position among species (Fig 2C). Interestingly, all three of these
residues have been implicated in the binding of NK,R antagonists [37]. Despite the
potential importance of these residues for binding and the rather large degree of
variation between species, we were unable to identify significant differences of the
potency of saredutant and ZD6021 at NK,R among the species studied. However, it
can not be excluded that the potency of structurally different compounds could have
different potency at NK,R from gerbil and dog [16].

Consistent with previous findings by [38], both talnetant and osanetant displayed

about a 5-10-fold lower potency at the rat NK3R compared to the human NK;R.

12
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ZD6021 also displayed a relatively weak potency for rat NK3;R (30-fold weaker than
at human NK3R). The current study extends these findings demonstrating that the
antagonists tested have similar potency at dog and gerbil NK3R as to human NK;R.
Recent data show that talnetant and osanetant interact within overlapping but not
identical binding pockets in the human tachykinin NK3R trans membrane domains
[39]. The human-like pharmacology of gerbil and dog NK;R is consistent with the
presence of a methionine located in position 134, a residue that has previously been
shown to be importance for talnetant and osanetant binding to the human NK3R (Fig
3C). The Ile317Val AA change may induce less sterical hindrance, and may affect the
functional potency of the tested compounds (Fig 3C). The above suggestions support
that gerbils and dog represent appropriate species for evaluating the efficacy of
tachykinin NK3R antagonists intended for clinical use. Indeed, osanetant has
demonstrated anxiolytic-like and antidepressant-like effects in gerbils [40].

Single nucleotide polymorphisms in genes encoding receptors can affect many aspects
of receptor function and antagonist binding. For instance, four variants of the human
NK;R are common within the human population [41]. The current study utilized the
Thr23 Arg375 variant, however saredutant and ZD6021 display similar potency at all
four human variants. If AA-exchanging polymorphisms in NKRs occur within or
between strains of the experimental animals compared here is unknown to our
knowledge.

Given the above species difference in NKR pharmacology the study of receptor-
mediated toxicology of any NKR modulator, both agonist and antagonists, is not
trivial. Ideally, for such studies to be meaningful, selected species for toxicology
testing should express the receptor in a similar way and have similar functions as in

humans. Concomitantly, selected species should be well characterized with historical

13
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data, in order to differentiate any treatment related lesions from spontaneous
(background) pathology. For these reasons, studies of potential toxicology of NK,R
antagonists seem to be appropriately conducted in well-known species such as the rat
and dog, while dogs appear to suffice for detected potential unwanted effects of NK;R

and NK;R antagonism.

14
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Table 1. Accession numbers for the cloned NKR from human, rat, gerbil and dog and

21

the accession numbers for NKR from mouse and guinea pig used in the alignments of

NK receptors.

Receptor Species

NK;
NK,
NK3
NK;
NK,
NK3
NK;
NK,
NK;
NK;
NK,
NK;
NK;
NK,
NK;
NK;
NK,
NK;

human
human
human

rat

rat

rat

gerbil
gerbil
gerbil

dog

dog

dog
mouse
mouse
mouse
guinea pig
guinea pig
guinea pig

Acc number
NM_ 001058
AY322545
M89473
J05097
M31838

NM 017053
AJ884917
AJ884918
AM157740
AJ884915
AJ884916
AM423140
NM 009313
NM 009314
NM 021382
P30547
Q64077
P30098
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Table 2. Primers used in the 3’'RACE and in the 5’'RACE of NK; R, NK,R and NK3R.

receptor
NK1
NK1
NK2
NK2
NK3
NK3
NK2
NK2

species
dog

dog

dog

dog

dog

dog
gerbil
gerbil

primer sequence
CCCTCGTAGTCGCCGGCGCTGATAAAG
CCCTTTATCAGCGCCGGCGACTACGAG
CACTGTAGGCGACGATCATCACCAAGAG
TCTCTTGGTGATGATCGTCGCCTACAGTG
GGGACCTTCTGGCCATTGCACATAACA
CATGCCAGGCCGTACCCTTTGTTATGTGC
GGAAAGCAAGCCGGAATCCAGAGCG
GGCTGCCCTACCACCTCTACTTCATCCT

reaction
5'RACE
3’RACE
5'RACE
3'RACE
5'RACE
3'RACE
5'RACE
3'RACE

original sequence

dog S75109

dog S75109

dog S75024

dogS75024

dog S75029

dog S75029

rat and mouse alignment

gerbil
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Table 3. Potency of selective NK receptor antagonists and the pan-NKR antagonist

7ZD6021 on substance P (NK;R), NKA (NK;R) and Pro7NKB (NK3R) evoked

23

increases in intracellular Ca®" mobilization. Data are expressed as pK values + SEM,

n=3-5.

Compound
NK;R
ZD6021
RP67580
CP99,994
Aprepitant
NK;R
7ZD6021
Saredutant
NK;3;R
ZD6021
Talnetant

Osanetant

Human

8.6+ 0.4
7.1+0.4
8.7+0.2
8.7+0.2

83+04
9.1

79+0.3
8.6+0.3
8.4+0.5

Dog

9.5+0.2
7.1+£0.6
9.8+0.3
9.2+0.1

84+0.2
94+0.1

7.8+0.1
84+0.2
82+0.2

Gerbil

9.0+£0.2
6.5+0.2
89+0.3
8.8+0.2

8.4+0.3
9.3+£0.2

79+0.1
8.4+0.1
8.0+0.2

Rat

<6

73+0.4
59+0.2
7.3+0.1

8.1+0.1
94+0.1

6.7+0.2
74+0.2
74+0.3
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Legends to Figures

Figure 1. (A): Sequence alignments of NK;Rs from gerbil, human, dog, rat, mouse
and guinea pig. TM regions are under lined, sequence differences indicated by gray
shading and amino acids predicted to be important for antagonist binding are boxed.
(B): Dose-dependent inhibitory effect of the selective NK;R antagonist aprepitant on
SP-evoked mobilization of intracellular Ca*" in cells expressing the NK R from
various species. Representative curves from each animal from three experiments
done, are shown, all performed in the same experiment (see Table 3). (C): Chemical
sequences of amino acids interacting in the NK;R binding site in the presence of
aprepitant. Bold numbers on AA indicate change as compared to the human AA. AA

marked in bold show a TM region species difference.

Figure 2. (A): Sequence alignments of NK;Rs from gerbil, human, dog, rat, mouse
and guinea pig. Tm regions are under lined, sequence differences indicated by gray
shading and amino acids predicted to be important for antagonist binding are boxed.
(B): Representative curve illustrating the dose-dependent inhibitory effect of the
selective NK; receptor antagonist saredutant on NKA-evoked mobilization of
intracellular Ca®" in cells expressing the NK, receptor from various species.
Representative curves from each animal from three experiments done, are shown, all
performed in the same experiment (see Table 3). (C): Chemical sequences of amino
acids interacting in the NK,R binding site in the presence of saredutant. Bold numbers
on AA indicate change as compared to the human AA. AA marked in bold show a

TM region species difference.
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Figure 3. (A): Sequence alignments of NK3;Rs from gerbil, human, dog, rat, mouse
and guinea pig. Tm regions are under lined, sequence differences indicated by gray
shading and amino acids predicted to be important for antagonist binding are boxed.
(B): Representative curve illustrating the dose-dependent inhibitory effect of the
selective NK3R antagonist talnetant on NKB-evoked mobilization of intracellular Ca**
in cells expressing the NK;R from various species. Representative curves from each
animal from three experiments done, are shown, all performed in the same experiment
(See Table 3). (C): Chemical sequences of amino acids interacting in the NK3R
binding site in the presence of talnetant. Bold numbers on AA indicate change as
compared to the human AA. AA marked in bold show a TM region species

difference.
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Fig 1B
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Fig 1C

Species difference in NK1R.
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Fig 2B
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Fig 2C

Species difference in NK2R
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Fig 3A
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Fig 3B
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Fig 3C

Species difference in NK3R
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Graphical Abstract

Experiments with Neurokinin receptors (NKR) demonstrate that not only human, but also dog
and gerbil NKR displays similar antagonist pharmacology while rat diverges significantly

with respect to NK; R and NK;R.

Potencies of selective NKR antagonists and of the pan-NKR antagonist ZD6021.

Compound Human Dog Gerbil Rat
NK;R

ZD6021 8.6+04 95+0.2 9.0+£0.2 <6
RP67580 7.1+04 7.1£0.6 6.5+0.2 73+04
CP99,994 8.7+0.2 9.8+0.3 8.9+0.3 59+0.2
Aprepitant 8.7+0.2 9.2+0.1 8.8+0.2 73+0.1
NK;R

ZD6021 83+04 8.4+0.2 84+0.3 8.1+0.1
Saredutant 9.1 9.4+0.1 9.3+0.2 9.4+0.1
NK;R

ZD6021 79+0.3 7.8 +0.1 7.9+0.1 6.7+0.2
Talnetant 8.6+0.3 8.4+0.2 8.4+0.1 74+0.2
Osanetant 8.4+0.5 82+0.2 8.0+0.2 7.4+0.3
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