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Abstract 

Erythropoiesis is considered as a multistep and tightly regulated process under the 

control of a series of cytokines including erythropoietin (Epo). Epo activates specific 

signaling pathways and leads to activation of key transcription factors such as GATA-

1, in order to ensure erythroid differentiation. Deregulation leads to a decreased 

number of red blood cells, a hemoglobin deficiency, thus a limited oxygen-carrying 

capacity in the blood. Anemia represents a frequent complication in various diseases 

such as cancer or inflammatory diseases. It reduces both quality of life and prognosis 

in patients. Tumor necrosis factor alpha (TNFα) was described to be involved in the 

pathogenesis of inflammation and cancer related anemia. Blood transfusions and 

erythroid stimulating agents (ESAs) including human recombinant Epo (rhuEpo) are 

currently used as efficient treatments. Moreover, the recently described conflicting 

effects of ESAs in distinct studies require further investigations on the molecular 

mechanisms involved in TNFα-caused anemia. The present study aims to evaluate the 

current knowledge and the importance of the effect of the proinflammatory cytokine 

TNFα on erythropoiesis in inflammatory and malignant conditions.  
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1. Introduction 

The proinflammatory cytokine tumor necrosis factor (TNFα) was brought in 

connection with inflammation and cancer, two tightly linked research areas [1-3] and 

it was demonstrated that cancer-associated inflammation could promote tumor growth 

[1, 4, 5]. TNFα expression has been confirmed in the tumor microenvironment of 

various malignancies [6] and was categorized as a tumor promoter because of its 

effects on tumor initiation and progression [7, 8]. Furthermore there are more and 

more drugs in clinical development that modulate TNFα function in a wide range of 

inflammatory diseases and cancers [8].  

Cancer and inflammation related anemia were shown to be mediated by cytokine 

release, and particularly by TNFα, Interferon-β (IFN-β), and Interleukin-1 (IL-1) [9]. 

Moreover, inhibition of colony-forming units-erythroid (CFU-E) in uremic patients 

with inflammatory disease due to TNFα and IFN-γ release has been reported [10]. 

Following anti-TNFα therapy, patients with rheumatoid arthritis showed 

improvement in anemic symptoms [11]. Since several years, human recombinant 

erythropoietin (rhuEpo) is a specific remedy administered against cancer-associated 

anemia. This treatment has a positive impact on hemoglobin levels and patient quality 

of life is improved. However, a preclinical background and some clinical data suggest 

a detrimental role of Epo in cancer by a possible stimulation of tumor growth.  

 

2. Regulation of erythropoiesis 

Hematopoiesis is the physiological process that leads to the formation of circulating 

blood cells from common hematopoietic stem cells (HSC) in the bone marrow. The 

different mature hematopoietic cells are usually classified in lymphoid and myeloid 

lineages. They are regulated by distinct cytokines acting on multipotential progenitors 

and their committed offspring [12, 13] (Fig. 1). 

Erythropoiesis is a multistep event leading to the formation of erythrocytes. Erythroid 

differentiation arises from the myeloid root and is phenotypically characterized by the 

production of hemoglobin and expression of erythroid markers (Fig. 2). During 

differentiation from a multipotent common myeloid progenitor (CMP) to a bipotent 

megakaryocytic/erythroid progenitor (MEP), burst-forming units erythroid (BFU-E) 
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and CFU-E are the earliest identifiable erythroid progenitors in culture (Fig. 1). BFU-

E and CFU-E are characterized by their in vitro ability to form colonies.  

Erythropoiesis is a very dynamic and tightly regulated process by which 2*1011 

erythrocytes (lifespan of 100-120 days) are produced every day. Ferrous iron (Fe2+) is 

essential for erythropoiesis as a major component of heme in hemoglobin as well as in 

the redox system of the respiratory chain. Hepcidin, a 25-amino acid peptide, is the 

main regulator of iron transport. A feedback loop involving the major cytokine for 

human erythropoiesis, Epo, regulates this physiological process, but other cytokines 

and nuclear hormones are also involved. IL-3 increases the number of BFU-E, 

whereas Stem Cell Factor (SCF) raises the number of cells within BFU-E and CFU-E 

(Fig. 1).  

Kidney and liver are the main sites that produce the Epo in adult humans. The rate of 

Epo gene expression depends on the level of tissue oxygen through the availability of 

the hypoxia inducible factor (HIF). HIF heterodimer is composed of the oxygen 

sensitive HIF-1α and the constitutively expressed HIF-1β subunits. In hypoxic 

conditions HIF interacts with specific binding sites in the Epo enhancer. Oxygen-

dependent prolyl hydroxylases control Epo variations in the kidney by regulating the 

stability of HIF-1α. The number of circulating erythrocytes is directly dependent on 

Epo amount in blood. 

Epo is implicated in the control of cell survival, proliferation and differentiation 

within the erythroid pathway. It acts through its receptor (EpoR) in order to stimulate 

underlying cell signaling pathways including the Phosphatidylinositol 3 kinase 

(PI3K), the Janus kinase (JNK)/Signal-transducer and activator of transcription 

(STAT) and the mitogen-activated protein kinase (MAPK)/extracellular signal-related 

kinase pathways (ERK) [14]. Moreover, Epo has been reported to modulate GATA-1 

function in erythroid cells [15].  

The survival of erythroid precursors and their terminal differentiation into red blood 

cells depends on Epo/EpoR interaction and GATA-1 transcription factor activity. 

GATA-1 was first identified as a protein with binding capacity to the β-globin 

promoter [16]. It is a member of the GATA family, which includes 6 members 

(GATA-1 to GATA-6). These transcription factors recognize the same DNA 

consensus sequence (A/T)GATA(A/G) and present two characteristic zinc finger 

motifs specific to the GATA family [17]. Three functional domains compose GATA-
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1 protein: the N-terminal Zinc finger that supplies the stabilization and specificity of 

DNA binding and is responsible for the interactions with cofactors, the C-terminal 

Zinc finger that is essential for binding to the GATA consensus sequence of the DNA 

and the N-terminal activation domain [18].  

GATA-1 is required for terminal erythroid maturation [19]. Indeed, its crucial role in 

erythropoiesis was shown using GATA-1 null mouse embryos, which died between 

E10.5 and E12.5 from severe anemia due to a complete ablation of embryonic 

erythropoiesis [20]. Moreover, GATA-1-/- embryonic stem cells cannot contribute to 

definitive erythropoiesis [21]. 

GATA-1 activity is dependent on protein-protein interactions, involving cofactors 

with either promoting or repressing activities [18] (Table 1). The transcription factor 

PU.1, an Ets family member of transcription factors, is required for the development 

of the myeloid and lymphoid lineages. Nevertheless, its inhibitory effect on GATA-1 

activity can prevent erythroid differentiation.  PU.1 and GATA-1 have a cross-

antagonistic relationship. Indeed, GATA-1 and PU.1 seem to functionally antagonize 

each other via direct physical interaction of their DNA-binding domains. PU.1 

impairs GATA-1 by inhibiting its binding to DNA while GATA-1 inhibits PU.1 by 

preventing its interaction with c-Jun [22].  

In summary, GATA-1 activity is dependent on complex positive and negative 

interactions with transcriptional cofactors as well as posttranslational modifications 

leading to modulation of erythroid lineage-specific genes transcription.  

GATA-2, Nuclear Factor Erythroid-2 (NF-E2) and erythroid Krüppel-like factor 

(EKLF) are other specific transcription factors that have a major influence on 

erythroid differentiation and that are activated during erythropoiesis. GATA-2 is 

overexpressed during early hematopoiesis resulting in maintenance of the renewal 

capacity of erythroid progenitor cells. Its expression is then progressively repressed 

by the increasing expression of GATA-1 [23]. NF-E2, is described to act as a major 

regulator of hemoglobin synthesis during erythropoiesis [24], and EKLF, as a crucial 

factor in erythroid and megakaryocytic differentiation and maturation [25, 26] (Table 

1). 

Deregulation of Epo or other key factors of erythroid differentiation can lead to major 

changes in red blood cell number, and subsequent decrease in the oxygen-carrying 

capacity of the blood. Erythrocytosis are disorders resulting in an excessively high 
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level of erythrocytes, whereas anemia is characterized by a qualitative or quantitative 

deficiency of hemoglobin. Anemia is clinically defined by a hemoglobin (Hb) level 

inferior to 12g/dL.  

 

3. Tumor necrosis factor alpha 

TNFα also known as cachectin or differentiation inducing factor (DIF), is a 

proinflammatory multifunctional cytokine, which is mainly produced by 

macrophages, but also by neutrophiles, fibroblasts, keratinocytes, astrocytes, Kupffer 

cells, smooth-muscle cells, T and B cells. It was initially described to induce 

hemorrhagic necrosis in transplanted tumors [27]. TNFα effects are principally 

mediated through two distinct receptors TNFα receptor (TNFR) I and II. 

TNFα/TNFR interaction results in stimulation of the underlying cell signaling 

pathways that lead to nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase 

(JNK), p38MAPK, or caspase activation. Thus TNFα simultaneously activates both 

apoptotic and anti-apoptotic or cell survival signals depending on the factors present 

in the receptor complex [28]. TNFα, which was discovered in B cells, is known as the 

most powerful activator of NF-κB transcription factor. NF-κB is known to bind its 

specific ten base pair consensus-binding site in order to regulate over 200 immune, 

growth, and inflammation genes. 

TNFα, as well as other TNFα superfamily members, plays a role in hematopoiesis, 

host defense, immune surveillance, and proliferation. In this regard, TNFα 

deregulation leads to numerous diseases, including cancer [28-30].  

 

4. TNFαααα and inflammation  

A TNFα overproduction is involved in numerous chronic inflammatory diseases, such 

as rheumatoid arthritis [31] chronic hepatitis C [32], or Crohn's disease [33]. An 

increase in the TNFα level was described in diabetic patients to cause retinopathies 

[34], while during pancreatitis, the release of  TNFα leads to inflammation and 

cellular damage [35].  

Currently, three marketed TNFα antagonists [etanercept (Enbrel®), infliximab 

(Remicade®), and adalimumab (Humira®)] are indicated in diseases characterized by 
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abnormally elevated TNFα levels. Moreover the effectiveness of the treatments varies 

with agent and disease [36, 37]. TNFα is thus leading to various biological 

phenomena implying different molecular mechanisms and is involved in different 

cellular responses. Although TNFα is considered to act as a proinflammatory 

cytokine, it was described as a positive and negative regulator of myeloid cell 

proliferation and differentiation [38-40]. Effects of TNFα can be mediated either 

directly [41] or indirectly by inducing other cells to produce cytokines, including 

hematopoietic growth factors [42, 43].  

 

5. Link between TNFαααα, inflammation and cancer 

Abnormal TNFα levels have been confirmed in tumor microenvironment [6]. 

Moreover, this cytokine is paradoxically able to induce necrosis and to promote tumor 

development, depending on the levels of TNFα in distinct settings [44]. When TNFα 

is secreted by tumors and tumor-associated macrophages, it promotes tumor growth 

and stimulates angiogenesis, whereas when it is administered therapeutically at high 

doses, it induces an increased permeability of tumor vasculature. Thus, recombinant 

TNFα, as a tumor regressing agent, is approved in Europe to be administered 

locoregionally at supraphysiological levels as a therapy for soft tissue sarcoma [45].  

Using murine models, it was shown that inflammation-associated hepatocellular 

carcinogenesis involved the activation of the tumor promoter NF-κB via the 

production of TNFα [5]. Moreover several reports associate detection of abnormally 

high levels of TNFα protein and/or constitutively active NF-κB in cancer patients 

with a wide range of tumor types [46], including kidney [47], breast  [48], asbestosis 

induced lung [49], and prostate cancers [50]. Suppression of constitutively active NF-

κB results in cell proliferation arrest and apoptosis, indicating a crucial role for NF-

κB in proliferation and survival [51]. Furthermore chronic bioavailability of TNFα 

has been correlated with enhanced invasive activities as well as survival of neoplastic 

cells [44]. Within groups of patients with the same tumor type, higher levels of TNFα 

have been correlated with advanced tumor stage, greater complications, and shorter 

survival time [52]. Moreover various cytokines, including TNFα, are overexpressed 

in pancreatic cancer cells, leading to an NF-κB activation and as a consequence, to 
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cell growth by inhibiting apoptosis [53]. TNFα also appears as a growth factor 

regulated by NF-κB in Hodgkin’s lymphoma, T cell lymphoma and glioma [54].  

As Rudolf Virchow already suspected in 1863, inflammation and cancer have to be 

handled together [1, 3]. Cancer-associated inflammation includes the expression of 

cytokines such as TNFα or IL-1 by tumor-associated macrophages, stimulating tumor 

growth [55]. As TNFα was categorized as a tumor promoter, it is not astonishing that 

cytokine antagonists as well as NF-κB inhibitors are already used in cancer therapy 

and prevention [7, 8, 44].  

 

6. Deregulation of erythropoiesis by TNFαααα in inflammation and cancer. 

Besides the proinflammatory, proliferative and apoptotic properties, TNFα was also 

described as an inhibitor of the erythroid differentiation in vitro and in vivo [38, 39, 

41, 56] (Fig. 3). Its expression is associated with the hematologic diseases Fanconi 

anemia (FA) [57], myelodysplastic syndromes [58], aplastic anemia [59] and anemia 

due to chronic diseases [60]. Indeed, in FA patients, TNFα is significantly 

overexpressed in stimulated marrow mononuclear cells, which leads to a suppression 

of erythropoiesis. In bone marrow cultures, the addition of anti-TNFα increases the 

size and the number of CFU-E and BFU-E grown from FA patients but not from 

healthy controls. This indicates that FA subjects have a marrow TNFα activity that 

inhibits erythropoiesis in vitro. TNFα plays a relevant role in the pathogenesis of 

erythroid failure in FA patients [57]. Several in vitro studies revealed the inhibitory 

effects of this cytokine on hematopoietic progenitor cell growth [38, 39, 41, 56, 57, 

61]. It was shown that the inhibition of human CFU-E by TNFα requires IFN-β, 

which is produced by macrophages in response to TNFα. TNFα was also shown to 

have a direct inhibitory effect on Epo-induced generation of GPA positive cells from 

CD34+ progenitors, leading to the suppression of erythropoiesis and the reduction of 

the proliferation capacity of GPA positive cells [61]. Interestingly, TNFα is also 

believed to play a critical role in many forms of cancer [9, 62] and inflammation 

related anemia [11]. Indeed anemia is considered as a common symptom induced by 

inflammation and cancer pathologies. In patients with B-cell chronic lymphocytic 

leukemia suffering from anemia, the serum levels of TNFα were significantly higher 

than in those without anemia [63]. The incidence of anemia was shown to vary with 
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tumor type, stage and patient age. Up to one third of patients had anemia at diagnosis 

[64]. This number increases after chemotherapy [65]. Cancer-associated anemia was 

shown to reduce survival of patients regardless of tumor type [66]. Moreover, the 

quality of life is considerably affected and is associated with a range of symptoms 

including fatigue, depression, and dizziness [67]; thus pro-inflammatory cytokines 

were recently suggested as the common denominator for cancer related fatigue [68]. 

Inflammation associated anemia is considered as a main symptom of patients with 

inflammatory disorders [69]. Prior to the use of erythroid stimulating agents (ESAs), 

the most frequent treatment of cancer related anemia was blood transfusion. Clinical 

trials established erythropoietin’s ability to increase hemoglobin levels and reduce 

transfusion requirements [2, 3]. However, the conflicting effects of ESAs were 

recently described in distinct studies [70-72]. Indeed, besides cardiovascular and 

thromboembolic events in erythropoietin-treated patients, several phase II and III 

trials showed a significant deterioration of cancer patients survival [73-75]. 

Unexpectedly, the increased mortality came from accelerated progression of cancer. 

This reproducible effect was attributed to erythropoietin. Thus, the use of 

erythropoietin in cancer patients might increase the risk of cancer-associated death. It 

is suggested that additional phase III trials should be performed to determine whether 

erythropoietin is safe when used in accordance with FDA-approved indications. One 

claims that waiting for these further studies to modify or stop Epo treatments could 

have detrimental impact on many cancer patients [70]. In this context, controversial 

effects of erythropoietin in cancer-related anemia makes necessary to further 

investigate the molecular mechanisms involved in anemia and to identify new targets 

for drug development as well as to detect more significant predictors. In order to 

improve quality of life, several drugs are under investigation for the treatment of 

different forms of anemia. Jelkmann reviewed several anti-anemic drugs and 

techniques based on Epo gene expression [71, 76].  

Additionally, our group previously reported that TNFα-mediated inhibition of K562 

cell differentiation was correlated to GATA-1 downregulation [77], GATA-1/GATA-

2 unbalance in favor of GATA-2 as well as a decrease in the acetylation status of 

GATA-1 [78, 79]. Moreover we suggested a role for p38 in the inhibition of erythroid 

differentiation by TNFα, in correlation with a reversal of important erythroid 

transcription factors [78]. Miwatashi and colleagues already used a novel p38 
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inhibitor, N-[4-[2-Ethyl-4-(3-methylphenyl)-1,3-thiazol-5-yl]-2-pyridyl] benzamide 

(TAK-715), as an anti-TNFα drug for the treatment of rheumatoid arthritis, 

presenting anemic complications [11, 80].  

 

7. Conclusions 

Erythropoiesis is a tightly regulated, complex physiological process leading to the 

formation of erythrocytes from a pluripotent hematopoietic stem cell. Deregulation 

can lead to various complications, including anemia. Anemia represents a frequent 

complication in cancer patients, as well as in patients suffering from inflammatory 

diseases. Proinflammatory cytokines seem to be overexpressed in these diseases. 

Anemia considerably affects quality of life and is even considered as an independent 

bad prognostic factor. On the other hand some studies showed that the use of 

recombinant Epo as a treatment for cancer related anemia could be inappropriate for 

cancer patients.  For these reasons the molecular mechanisms behind the inhibitory 

effect of TNFα on erythroid differentiation need to be further elucidated in order to 

find potential new, and more pointed therapeutic targets for inflammation and cancer 

related anemia. In this respect, investigations using hematopoietic stem cell culture 

systems should allow to better understand the impact of TNFα on the control of 

erythropoiesis by identifying which specific cellular process is affected, including 

differentiation and/or apoptosis regulation.  
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Legends to figures 

 

Figure 1: Hematopoiesis and the role of cytokines. Cytokines act both on 

multipotential progenitors and their committed offspring. CLP, common lymphoid 

progenitor; CMP, common myeloid progenitor; HSC, hematopoietic stem cell; GMP, 

granulocyte–macrophage progenitor; MEP, megakaryocyte erythroid progenitor; 

BFU-E, burst-forming units-erythroid; CFU-E, colony-forming units-erythroid; CFU-

Meg, colony-forming units-megakaryocyte; MPP, multipotent progenitor; IL, 

Interleukin; SCF, stem cell factor; GM-CSF, granulocyte-macrophage colony 

stimulating factor; G-CSF, granulocyte colony stimulating factor; M-CSF, 

macrophage colony stimulating factor; TPO, thrombopoietin; Epo, Erythropoietin 

(Adapted from [12, 13] with modifications). 

 

Figure 2: Stages of mammalian erythropoiesis and corresponding expression of 

erythroid specific markers. The relative sizes and morphologic appearances of 

erythroid cells at various stages of differentiation: common myeloid progenitor 

(CMP), megakaryocyte erythroid progenitor (MEP), burst-forming units-erythroid 

(BFU-E), colony-forming units-erythroid (CFU-E), proerythroblasts (Pro EB), 

basophilic erythroblasts (Baso EB), polychromatophilic erythroblasts (Poly EB), 

orthochromatic erythroblasts (Ortho EB), reticulocytes (RET), and erythrocytes 

(Eryt). Erythroid markers are represented in red and their periods of expression with 

gray lines: erythropoietin receptor (EpoR), Glycophorin A (GPA), Transferrin 

receptors (TFRC), δ-aminolevulinate synthase (δ-ALA-S) (Adapted from [81]). 

 

Figure 3: Pathophysiology of anemia. Tumor cells act on erythrocytes through 

macrophages by cytokine release, which leads to impaired erythropoiesis. Released 

cytokines can affect BFU-E and CFU-E proliferation, iron utilization and Epo 

production. TNFα can also affect erythrocyte half-life. TNFα, tumor necrosis factor 

alpha; IFN, Interferon; IL, Interleukin; BFU-E, burst-forming units-erythroid; CFU-E, 

colony-forming units-erythroid; Epo, Erythropoietin (Adapted from [68]). 
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Table 1: The main transcription factors and co-factors involved in the regulation 

of erythroid specific genes expression and their positive (+) or negative (-) effect 

on erythropoiesis.

Factor name Effect References

GATA-1 + [20]

GATA-2 +/- [82]

NF-E2 (Nuclear Factor 
Erythroid 2)

+ [83]

FOG (Friend of GATA) -1 + [84]

Lmo2 (LIM-only protein 2) 
(Rbtn2)

+ [85]

p300/CBP + [86]

EKLF (Erythroid Kruppel 
like factor)

+ [87]

PU.1 (SPI1) - [22]

c-myb . [88]

Table


