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Abstract

UDP-glucuronosyltransferases (UGTs) represent major Phase II enzymes involved in 

detoxification of endo- and xenobiotics, including many drugs. The intraluminal 

orientation of the active site of UGTs in endoplasmic reticulum membranes

necessitates a number of transporters in these membranes, for example, for UDP-

glucuronic acid and glucuronides, the latter being insufficiently characterized. In 

addition, accumulating evidence suggests that UGTs are functional as homo- and 

hetero-dimers in monoglucuronide formation. They may form tetramers in 

diglucuronide formation. UGT oligomers probably serve to stabilize UGT monomers 

and fine-tune UGT activity. Glucuronide disposition may also be influenced by

endoplasmic reticulum-localized β-glucuronidase, possibly involved in hydrolysis of 

hormone and drug glucuronides in target cells. The present commentary reviews 

recent advances and addresses open questions. Resolution of these questions may 

help to understand many problems of glucuronide synthesis and disposition in vivo, 

for example, under-prediction of the in vivo clearance of drugs mostly eliminated by 

glucuronidation by in vitro enzyme kinetic parameters of UGTs.

Key words: UDP-glucuronosyltransferases; UGT topology in endoplasmic reticulum 

membranes; UGT oligomers; diglucuronide formation; β-glucuronidase.
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1. Introduction

Glucuronidation represents a major Phase II biotransformation reaction. It is 

catalyzed by two evolutionary conserved UGT enzyme families, each including at 

least 8 enzymes which are adaptively regulated in a tissue-specific manner [1-5]. The 

review by Geoffrey Dutton [1] represents an invaluable source of the earlier literature.

UGTs are involved in detoxification of endobiotics including bilirubin, thyroxine, 

steroids, and xenobiotics including phytochemicals, carcinogenic polycyclic 

hydrocarbons and a variety of prescribed drugs from all therapeutic classes. The 

intraluminal orientation of the active site of UGTs and of β-glucuronidase in ER 

membranes necessitates a number of transporters in these membranes. Following 

transport of glucuronides between ER lumen and cytosol, conjugate transporters in 

the plasma membrane are required to prevent the accumulation of polar conjugates

in cells [6-8]. Recently, accumulating evidence suggests that UGTs are functional in 

ER membranes as dimeric complexes, and may form tetramers in diglucuronide 

formation. The present commentary reviews recent advances and addresses open 

questions about the UGT topology in ER membranes and their oligomeric nature. 

Glucuronide disposition may be influenced by ER-localized β-glucuronidase, possibly 

involved in futile cycling of glucuronides and hydrolysis of hormone and drug

glucuronides in target cells. Resolution of these questions may help to understand 

many problems of glucuronide synthesis and disposition in vivo, for example 

underprediction of the in vivo clearance of drugs mostly eliminated by glucuronidation 

by in vitro enzyme kinetic parameters of UGTs. 

2. Topology of UGTs in ER membranes

A number of advances have recently been made on the structure and topology of 

UGTs and β-glucuronidase in ER membranes (Fig. 1). The schematic representation

should be viewed as an extension of the previously published hypothetical model of 

UGT dimers [4]. UGTs are integral ER membrane proteins with a transmembrane 

segment and a short cytoplasmic tail. They are known to be active at the luminal side 

of the ER [3,4]. This topology necessitates recently identified nucleotide sugar 

transporters (NSTs) to carry the cofactor UDP-glucuronic acid (UDPGA) to the ER 

lumen [9]. They act as antiporters requiring countertransport of UDP-N-

acetylglucosamine [10]. The reason for luminal orientation of UGTs is unknown but 
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may be due to evolutionary constraints since many glycosyltransferase reactions 

including those involved in glycoprotein synthesis occur in the ER lumen. UGT 

monomers consist of the N-terminal aglycone substrate-binding half of the protein

and the UDP-glucuronic acid-binding C-terminus, the latter containing one 

transmembrane sequence [2-4]. The crystal structure of the UDPGA-binding C-

terminal half of UGT2B7 has recently been determined at 1.8-Å resolution. Mutants at 

residues predicted to interact with UDPGA exhibited impaired catalytic activity, and

mutants at predicted aglycone binding sites abrogated UGT activity [11]. In addition, 

an internal signal sequence has been identified embedding part of the N-terminal half 

of UGTs in the ER membrane, a feature which may facilitate access of lipophilic 

aglycones to the active site [12]. 

UGTs conjugate glucuronic acid to functional groups of a variety of aglycones mostly 

hydroxyl, amino or carboxyl groups. With hydroxyl groups (XOH) they catalyze the 

following reversible reaction: XOH + UDPGA  XOGA + UDP. Recent extensive 

kinetic analysis in microsomal preparations in vitro suggested an ordered bi bi 

mechanism in which the aglycone substrate may act as an inhibitor by binding to the 

enzyme-UDP complex and thus depleting the active enzyme pool [13]. However, the 

reversible reaction may only rarely occur in the intact cell since the two products of

the UGT reaction are rapidly removed: (i) UDP is rapidly hydrolyzed to UMP by 

nucleoside diphosphatase in the hepatic ER lumen [14]. Rapid hydrolysis of UDP in

microsomes may explain the lack of UDP-dependent inhibition of UGT reactions in 

liver microsomes in contrast to preparations from expressed UGTs [15]. (ii) 

Glucuronides appear to be rapidly translocated to the cytosol. Evidence for multiple 

ER-localized organic anion transporters (ATER) has been obtained which - in contrast 

to plasma membrane-localized ATP-dependent glucuronide transporters - do not 

need ATP but transport organic anions through ER membranes by facilitated 

diffusion [16,17]. Some of these transporters may also be involved in transport of 

hormone glucuronides such as thyroxine glucuronide from the cytoplasm to ER-

localized β-glucuronidase (see chapter 5.3).

3. Monoglucuronide formation by UGT dimers

Accumulating evidence suggests that UGTs mostly operate as dimeric complexes. 

Using mutants and chimeric constructs Meech and Mackenzie demonstrated that 
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oligomerization of two inactive mutants could yield an active unit [18]. Nearest 

neighbor crosslinking studies followed by gel filtration provided evidence that UGTs 

form dimers in microsomes [19,20]. Using a variety of techniques evidence was 

obtained that oligomers may function as homo- [20,21] or hetero-oligomers [21-25]. 

For example, in live cells intermolecular interactions among UGT1A proteins was 

demonstrated by fluorescently tagged UGT1A proteins and homo- and 

heterodimerization by co-immunoprecipitation analysis [21]. Cotranslational insertion 

of UGTs into the membrane appears to be a requirement for oligomerization [21].

UGTs as oligomeric enzymes were critically discussed [23]. Functional implications of 

dimer formation were studied in several ways: for example, co-expression of an 

inactive mutant of UGT1A6 (the only enzyme catalyzing serotonin glucuronidation 

[26]) and of UGT1A4 restored UGT1A6-mediated serotonin glucuronidation,

suggesting tight interaction between the two recombinant enzymes. Interestingly, 

these dimers did not share substrate binding sites [23,24]. Heterodimerization has 

been shown to up- or down-regulate UGT activity [25]. In addition, heterodimers may 

include recently identified inhibitory UGTs [27]. However, more work is needed to 

characterize these homo- and hetero-oligomers and their functional implications.

4. Diglucuronide formation by UGT tetramers

Some UGT dimers may form tetramers as suggested by radiation target analysis, a 

method which has been conceptually and experimentally established by Ellis 

Kempner, and frequently applied to determine the functional molecular mass of 

membrane proteins [28-30]. Studies of bilirubin glucuronidation suggested that 

diglucuronide formation may be carried out by UGT tetramers [31]. Expressed human 

UGT1A1 efficiently converts the two bilirubin monoglucuronides (at either the C8 or 

C12 propionic acid group) to the diglucuronide [32], and bilirubin is known to be 

mainly secreted in human bile as the diglucuronide.

Radiation inactivation analysis was also carried out in studies of 3,6-quinol 

monoglucuronide (MG) and diglucuronide (DG) formation of BaP and the chemically 

more stable chrysene (Fig.2). We got interested in these reactions because of strong 

induction of these UGT activities in hepatic microsomes from 3-MC-treated rats

[33,34]. Induction factors were 10- and 40-fold for BaP-3,6-quinol MG and DG 
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formation, and 7- and 310-fold for chrysene MG and DG formation, respectively. 3-

MC-inducible UGT1A7 efficiently converted the studied quinol monoglucuronides to 

their diglucuronides [35], as suggested by much lower MG/DG ratios compared to 

microsomes from untreated controls (Table 1). However, enzyme induction alone 

may not explain the efficiency of DG formation. For example, 3-MC treatment of rats 

enhanced chrysene-3,6-DG formation about 310-fold in liver microsomes, suggesting 

- in addition to induction of UGT isoforms- an influence of topological features of UGT 

quaternary structure, discussed subsequently. Glucuronidation of quinols is 

toxicologically relevant since it probably prevents quinone-quinol redox cycles and 

associated oxidative stress [33-37]. BaP quinol diglucuronides represent major 

conjugates in bile and urine after administration of BaP [38,39].

Radiation inactivation analysis was carried out using the described quinol MG and 

DG reactions [40]. For monoglucuronide formation of BaP- and chrysene-3,6-quinol

target sizes were 118 ± 33 and 109 ± 21 kDa, respectively (in agreement with the 

existence of dimers) whereas for diglucuronide formation target sizes were 218 ± 24 

and 192 ± 34 kDa, respectively, suggesting the formation of tetramers. It should be 

noted that in early enzyme purification studies, gel filtration in presence of detergents 

revealed peaks at the position of tetrameric UGT complexes [41,42]. In diglucuronide 

formation some dimers may loosely interact in ER membranes to form tetramers (Fig. 

1), findings which, however, need further validation. Loose interaction may explain 

why tetramers have not been detected in cross-linking studies [20]. Nevertheless, as 

discussed previously [23], high molecular weight bands possibly corresponding to 

tetramers can be seen by close inspection of the cross-linking studies of Gosh et al. 

[20 (Fig. 3, lane 3 and 4)]. Tetramers may generate a compartment between two 

dimers in which monoglucuronides reach high levels to facilitate diglucuronide 

formation, as evidenced in studies on BaP-3,6-quinol diglucuronide formation: while a

high KM value (>70 µM) was detected when the diglucuronide was formed from 

synthesized monoglucuronides, a much lower KM of 10-20 µM was determined when 

starting the reaction from the quinol [43,44]. However, it is acknowledged that the 

results could also reflect the ease of access of quinols versus quinol glucuronide 

across the ER membrane. Radiation target analysis of bilirubin glucuronidation using 

human microsomes and expressed UGT1A1 may be useful to substantiate formation 

of UGT tetramers.
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5. In vitro-in vivo comparison of glucuronide formation 

To guide future studies on synthesis and hydrolysis of glucuronides in ER 

membranes, the relevance of UGT activity is emphasized (i) by correlation studies 

using UGT polymorphism UGT1A1*28, and (ii) by comparative studies between in 

vitro kinetic parameters of UGTs and in vivo clearance of drugs mostly eliminated by 

glucuronidation.

5.1. Bilirubin UGT polymorphism UGT1A1*28

Allelic variants often clearly demonstrate the relevance of proteins. Functional UGT 

polymorphisms are increasingly identified, and are updated in the UGT web site at 

http://som.flinders.edu.au/FUSA/ClinPharm/UGT. It is assumed that further analysis 

of bilirubin mono- and diglucuronide formation may help to answer open questions on 

UGT oligomers. Therefore, in vivo findings using the frequent bilirubin UGT 

polymorphism UGT1A1*28 are highlighted.

Early clinical studies of inherited hyperbilirubinemias identified the rare and fatal 

Crigler-Najjar syndromes I and II and the frequent mild form of Gilbert's syndrome. 

Frequent occurrence of allelic variants is often due to 'balanced polymorphism' [45], 

i.e. balancing blood bilirubin between high neurotoxic levels and low levels acting as 

powerful antioxidant [46, for references]. Bilirubin is the final product of heme 

catabolism, as heme oxygenase cleaves the heme ring to form the water-soluble 

biliverdin, which is reduced by biliverdin reductase to bilirubin (Fig. 3). Why should 

mammals have evolved the potentially toxic and insoluble bilirubin? Recently, it was 

established that bilirubin is oxidized by reactive oxygen species (ROS) to biliverdin 

which is efficiently reduced back to bilirubin. This amplification cycle establishes a 

physiologic function of bilirubin as powerful antioxidant [47]. Epidemiologic evidence 

indicates that homozygous UGT1A1*28 allele carriers with high serum bilirubin 

exhibit a strong association with lower risk of cardiovascular disease [48]. Bilirubin 

and bilirubin monoglucuronides produced in extrahepatic tissues are efficiently taken 

up into hepatocytes by OATP1B1 and converted to bilirubin diglucuronide by 

UGT1A1. 

Gilbert's syndrome in Caucasians is mostly due to an additional TA repeat in the 

TATA box of UGT1A1 (a promoter polymorphism termed UGT1A1*28), leading to 

reduced UGT1A1 expression and significantly decreased UGT activity. Liver 

http://som.flinders.edu.au/FUSA/ClinPharm/UGT
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homogenate bilirubin UGT activity in Caucasian carriers of the UGT1A1*28 genotype 

was only 48% (ranges 27-75; n=6) of the UGT1A1*1 reference genotype (ranges 47-

170; n=17) [62]. The frequency of homozygous carriers of UGT1A1*28 in Caucasians 

is approximately 10% and the allele frequency 30 to 40% [46]. Correlation studies 

between populations expressing UGT1A1*1 and UGT1A1*28 proteins are often used 

to associate UGT1A1 activity with in vivo responses. Examples include (i) adverse 

side effects of irinotecan. The topoisomerase inhibitor irinotecan has been approved 

for standard therapy of colorectal cancer. Its active metabolite SN-38 is mostly 

metabolized by UGT1A1 and 1A7 [49]. Poor glucuronidators, i.e., carriers of the 

promoter variant UGT1A1*28 have been suggested to be at higher risk to develop 

unwanted side effects such as diarrhea [50]. (ii) A strong correlation was observed 

between UGT1A1-mediated glucuronidation of SN-38 and of T4 [51]; there was a 

significant trend of decreasing T4 glucuronide levels and expression of UGT1A1*28. 

Despite low levels of T4 glucuronide in serum, the role of T4 glucuronidation in vivo is 

supported by alteration of thyroid hormone homeostasis in antiepileptic drug-treated 

patients [52]. (iii) UGTs such as UGT1A1 and UGT2B7 appear to be involved in 

homeostasis and further metabobolism of estradiol in endometrium [53]. Estradiol is 

metabolized to genotoxic 4-hydroxy- or antiproliferative 2-hydroxy-catechol estrogen. 

Interestingly, reducing the excretion of 2-hydroxyestradiol in carriers of the 

UGT1A1*28 allele has been suggested to be responsible for decreased endometrial 

cancer risk [54]. These three examples may serve to highlight the relevance of in 

vitro microsomal UGT activity for a variety of in vivo functions.

5.2. Comparative studies between in vitro enzyme kinetic parameters of UGTs

and in vivo drug clearance

Comparison of in vitro intrinsic clearance of drugs (represented by the enzyme kinetic 

parameter Vmax/KM) with their hepatic clearance in vivo represents a challenging 

exercise. In the case of drugs mainly excreted by glucuronidation, it was found that 

the in vitro intrinsic clearance under-predicts in vivo hepatic clearance [4,55,56].

Many factors have been suggested to be responsible for this discrepancy. In addition 

to general factors such as the nutritional state, the following liver microsomal UGT 

assay conditions may be relevant: (i) In the case of the antiretroviral drug zidovudine 

(mainly eliminated via glucuronidation by UGT2B7 [57]) inclusion of the physiologic 

carbonate buffer or Williams E medium increased Vmax and reduced KM in liver 
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microsomes, thereby increasing the intrinsic clearance in vitro [58]. Determination of 

UGT activity in physiologic buffer may better preserve the topology of UGTs and 

associated proteins in the ER. (ii) Fatty acid-free human serum albumin and bovine 

serum albumin reduce the KM values for UGT2B7 substrates (but not UGT1A1 and 

UGT1A6 activities) by sequestering inhibitory long-chain fatty acids released by 

incubations of human liver microsomes and cell-expressed UGTs. This observation 

has been termed 'albumin effect' [59]. (iii) As mentioned in chapter 2, rapid hydrolysis 

of UDP in the ER may explain the lack of product inhibition by UDP [15]. In addition, 

rapid translocation of glucuronides from ER into the cytoplasm may further decrease 

product inhibition in vivo. (iiii) Atypical enzyme kinetics, i.e. non-Michaelis-Menten 

kinetics, is frequently observed in studies of drug glucuronidation and often

interpreted by evoking a two site model; in the light of UGT oligomers these sites 

could be present on separate molecules within the same oligomeric complex [23]. 

Atypical enzyme kinetics leading to autoactivation could in part be responsible for 

paradoxical effects observed with the over the counter analgesic drug paracetamol 

(acetaminophen) [60]. Its metabolism has been intensely investigated, in particular 

due to its hepatotoxicity in suicidal overdose. Interestingly, paracetamol is a high-

affinity substrate for UGT1A6 [60,61]. However, it appears to be mainly conjugated in 

liver by UGT1A9 (and also by UGT1A1) [60]. Of course, the presently unknown 

relative abundance of UGT isoforms may also play a role. In conclusion, 

understanding oligomeric UGTs and the influence of associated proteins may be 

necessary for the development of generalizable models for the in vitro-in vivo 

comparison of drug glucuronidation.

5.3. Role of ER-localized β-glucuronidase in glucuronide disposition 

Glucuronide disposition may be influenced by ER-localized β-glucuronidase, possibly

involved in futile cycling of glucuronides and hydrolysis of conjugated hormones in 

target cells. Murine β-glucuronidase is derived from a single gene but is located in 

two subcellular sites, the ER and lysosomes. On the way from synthesis in the rough 

ER to lysosomes part of the enzyme is retained in the lumen of the ER by associating

with the carboxylesterase egasyn which contains an ER retention sequence [63-65]. 

ER-localized β-glucuronidase has been shown to form tetramers (Fig. 1). Its in vivo 

activity has been demonstrated in the hydrolysis of bilirubin monoglucuronides [66]. 

The activity of β-glucuronidase in the lumen of the ER may lead to futile cycling of 
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glucuronides [67], which, however, appears to be limited since ß-glucuronidase 

activity is low. ER-resident β-glucuronidase may also be responsible for hydrolysis of 

hormone and drug glucuronides in cells, examplified by the hydrolysis of T4 

glucuronide. T4 is widely used for treatment of hypothyroidism. It is mainly 

deiodinized to T3 (>70%) but is also metabolized by conjugation. T4 sulfate is very 

unstable because sulfation accelerates inner ring deiodination by approximately 200-

fold [51]. T4 glucuronidation (carried out by UGT1A1 and 1A3) leads to a stable T4 

glucuronide which may serve as a mechanism of delivery of T4 into intracellular 

compartments, as discussed in chapter 5.1 [51,52]. However, the postulated uptake 

of circulating T4 glucuronide into target cells and its hydrolysis by cellular β-

glucuronidases needs to be further studied. In contrast, lysosomal glucuronidase is 

involved in the degradation of glycosaminoglycans, synthesized in the Golgi 

apparatus. Transit of lysosomal glucuronidase from the ER to lysosomes has been 

reviewed [63].

Hydrolysis of glucuronides is also important for enterohepatic and entero-enteric 

recirculation of many important drugs including SN-38 (the metabolite of irinotecan 

(mentioned in chapter 5.1) and in the action of the cholesterol-lowering drug

ezetimide which is mainly conjugated by UGT1A1 [68]. It has been suggested that 

ezetimibe glucuronide represents a storage form for long lasting recycling of the 

active ezetimibe to the intestinal absorption compartment via the systemic circulation. 

However, it is unknown to what extent glucuronide hydrolysis contributes to the 

clearance of drugs mainly eliminated by glucuronidation.

6. Conclusions

UDP-glucuronosyltransferases (UGTs) represent major Phase II biotransformation 

enzymes involved in detoxification of endobiotics such as bilirubin, thyroxin and 

steroid hormones and xenobiotics including a variety of phytochemicals, 

environmental pollutants such as benzo[a]pyrene, and many drugs. UGTs represent 

integral membrane proteins. Accumulating evidence suggests that UGTs operate in 

ER membranes mostly as homo- and heterodimeric complexes which may fine-tune 

UGT activity and stabilize the enzyme. Evidence includes recombinant technology

[18], cross-linking studies [20], co-immunoprecipitation, and fluorescence resonance 

technology in live cells [22]. The results of radiation target analysis suggest that

tetramers are involved in diglucuronide formation, a finding which, however, needs 
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further validation. Orientation of the active site toward the intraluminal space of the 

ER necessitates a number of transporters (i) for the cofactor UDP-glucuronic acid 

synthesized in the cytosol, and (ii) for glucuronides between the ER lumen and the 

cytosol, the latter being insufficiently characterized. Glucuronide hydrolysis by ER-

localized β-glucuronidase may also require ER-localized glucuronide transporters

involved in transport of glucuronides from cytoplasm to ER lumen. Many advances

have been made in recent years on the topology and quaternary structure of 

oligomeric UGTs in ER membranes; but a lot of open questions are remaining. It is 

hoped that resolution of these questions may help to understand many problems of 

glucuronide formation and disposition in vivo, for example, under-estimation of in vivo

clearance of drugs mainly eliminated by glucuronidation by in vitro enzyme kinetic 

parameters of UGTs.
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Figure legends

Fig. 1. Schematic model of ER-localized UGT oligomers, β-glucuronidase and 

functionally associated transporters. UGTs consist of the N-terminal aglycone (X-

OH)-binding half of the monomer and the UDPGA-binding C-terminus with 

transmembrane segment and cytoplasmic tail (dark). Accumulating evidence 

suggests that UGTs are functional as dimers in monoglucuronide formation. Two 

dimers may interact to form a tetramer in diglucuronide formation (see text). 

Tetrameric β-glucuronidase retained in ER membranes by the carboxylesterase 

egasyn [63] may be involved in futile cycling of glucuronides and the hydrolysis of 

hormone glucuronides in target cells (discussed in chapter 5.3). The luminal

orientation of UGTs and β-glucuronidase requires the action of additional proteins 

such as nucleotide sugar transporters (NSTs), transporting the cofactor UDPGA to 

the lumen of the ER, and multiple organic anion transporters in ER membranes 

(ATER) transporting glucuronides to the cytosol or back into the ER lumen. It is 

tempting to speculate that glucuronide transporters may be localized in the proximity 

of UGTs to prevent accumulation of glucuronides in the lumen.

Fig.2. (A) Structures of benzo[a]pyrene (BaP)- and chrysene-3,6-quinols. (B) Role of 

glucuronidation in detoxification of BaP quinones (Q). QOH, quinols; QOGA and 

QO(GA)2 , quinol monoglucuronides and diglucuronide, respectively; NQO1, 

NAD(P)H quinone oxidoreductase-1, which bypasses the semiquinone step; GSTs, 

glutathione S-transferases.

Fig.3. Scheme of heme catabolism to bilirubin and its diglucuronide in hepatocytes 

and the physiologic role of bilirubin as antioxidant. Bilirubin can be oxidized by ROS 

to biliverdin which is efficiently reduced back to bilirubin by biliverdin reductase. This 

magnifying cycle represents the basis for the role of bilirubin as antioxidant [47].
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Table 1. Formation of moglucuronides (MG) and diglucuronides (DG) of 

benzo[a]pyrene (BaP)- and chrysene-3,6-quinol. For calculation of the MG/DG ratio 

the sum of the two MGs are used. Data for BaP-3,6-quinol UGT activity in 

microsomes and expressed UGT1A6 were taken from [33] and [34], respectively; 

data for chrysene-3,6-quinol UGT activity in liver microsomes of untreated controls 

and 3-MC-treated rats and expressed UGT1A6 were taken from [34] and for 

expressed UGT1A7 from [35]. MG/DG ratios are operationally used as inverse 

parameters for the efficiency of diglucuronide formation.

Substrate UGT activity (nmol/min/mg protein)

      Liver microsomes

Control 3-MC rUGT1A6 rUGT1A7

BaP-3,6-

quinol

MG 5.8 60 1.5 0.75

DG 0.17 6.4 0.09 0.09

MG/DG 34 9 17 8

Chrysene-

3,6-quinol

MG 2.8 20.8 0.03 0.057

DG 0.02 6.2 - 0.033

MG/DG 140 3 - 2

Table
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UDP glucuronosyltransferases are functional as oligomers. The intraluminal orientation of the active 

site in endoplasmic reticulum membranes necessitates a number of transporters for the cofactor 

UDP-glucuronic acid and glucuronides. 
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