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Collision between scalar and vector spatial solitons

in Kerr media

Michaël Delqué · Gil Fanjoux · Thibaut Sylvestre

Abstract Experimental observation and numerical results concerning collisions between

scalar and vector spatial solitons in a Kerr planar waveguide are presented. It is shown that

this configuration allows for the full control of spatial and polarization dynamics of the

interacting vector solitons. On the one hand, the ability to achieve polarization control of a

single-hump vector soliton is demonstrated. On the other hand, the effect of collision on the

spatial symmetry-breaking dynamics of multimode vector solitons is investigated.

Keywords Kerr effect · Soliton collision · Vector soliton

1 Introduction

Self-guided light beams result from the balance between linear diffractive and self-focusing

effects induced in a nonlinear medium (Kivshar and Agrawal 2003). They have raised a lot of

interest because of their ability to not only guide themselves but also other beams, while being

fully configurable (Kivshar and Stegeman 2002). In view of potential applications, polari-

zation vector solitons seem of particular interest because they can provide a wide variety of

spatial and polarization dynamics (Gregori and Wabnitz 1986; Christodoulides and Joseph

1988; Tratnik and Sipe 1988; Islam et al. 1990; Silberberg and Barad 1995; Soto-Crespo

et al. 1995). In particular, the spatial symmetry-breaking of multimode vector solitons in

Kerr media spontaneously generates a waveguiding structure merging several channels to

one (Silberberg and Barad 1995; Haelterman and Sheppard 1994a; Kockaert and Haelterman

1999). A widely considered way for applying solitons to future all-optical information tech-

nologies is using collisions between them. The spatial structure of soliton collision naturally

explains the interest they raised and recent works have demonstrated some of their important

features (Cao and Meyerhofer 1994; Kang et al. 1996; Anastassiou et al. 2001). They indeed
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offer the ability to couple, cross, reflect, deflect or merge information channels. Many spatial

dynamics can be easily achieved by tuning the phase relation or the angle between solitons

in scalar propagation (Snyder et al. 1995). Using the vector nature of spatial solitons opens

the way for new opportunities. For instance, the collision between orthogonally polarized

solitons induces inelastic interactions and complex energy exchanges between polarization

components (Cao and Meyerhofer 1994) even if the solitons are initially single component.

The spatial dynamics of these soliton collisions can also be very complex, including multiple

reflections and trapping (Tan and Yang 2001; Schauer et al. 2004; Goodman and Haberman

2005). A few experimental results confirm these numerical and analytical expectations show-

ing soliton trapping and dragging (Kang et al. 1996).

An even more complex way for colliding solitons is to use collisions between vector sol-

itons. Such an interaction has been investigated in the well-known Manakov configuration

and is in essence inelastic (Radhakrishnan et al. 1997). This feature can be applied to highly

efficient polarization conversion (Radhakrishnan et al. 2004; Tchofo Dinda et al. 2007).

These phenomena have been observed experimentally and applied to information transfer

through energy switching between polarization components (Anastassiou et al. 1999; Anas-

tassiou et al. 2001). In this paper, we present experimental and numerical results showing

two collisions of spatial solitons in a vector configuration. In particular, we report on vector

and scalar spatial soliton interaction involving different frequencies, polarizations or even

modes at the same time. This is, to our knowledge, the first demonstration of the spatial and

polarization dynamics that can be reached by mixing vector phenomena and soliton collision

in Kerr media. In the first part of this paper, we introduce the theoretical and numerical model

we use to describe the vector soliton collisions of light beams. In the two following parts, we

present two experimental realizations on vector soliton collisions involving a scalar infrared

and a multi-component vector green soliton. We first demonstrate the ability of such vector

collisions to induce efficient polarization change of an initially circularly-polarized soliton.

The second experiment is devoted to the study of the random symmetry-breaking of a mul-

timode vector soliton induced by collision. Our results show that collision between vector

and scalar solitons gives rise to new spatial or polarization dynamics that could be useful for

realizing various all-optical switching functionalities.

2 Theoretical and numerical analysis

2.1 Vector propagation

Assuming a lossless and dispersionless nonlinear medium, monochromatic vector propaga-

tion in a single mode planar Kerr waveguide can be modeled by the usual system of 1 + 1D

coupled nonlinear Schrödinger equations (NLSE) that reads (Chen et al. 1995):
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where z is the spatial coordinate along the longitudinal propagation direction and x is the

spatial coordinate along the free unguided transverse direction of the waveguide. Ex , Ey are

the transverse electric (TE) and magnetic (TM) orthogonal linearly polarized components of

the electric field, respectively, while kx and ky are the wave vectors and �k = ky − kx is the
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Fig. 1 Examples of numerical

stationary solutions of Eq. 2.

(a) Elliptically-polarized

fundamental vector soliton,

(b, c) higher-order multimode

vector solitons

(a) (b) (c)

wave vector mismatch due to the intrinsic linear birefringence. γ = 2πn2/λ0 is the nonlinear

coefficient with n2 = 3.5 × 10−18m2W−1 the nonlinear refractive index in CS2 (see, e.g.,

Cambournac et al. 2002a) and λ0 = 532 nm the wavelength in vacuum. B = χxyyx/χxxxx

represents the polarization susceptibility ratio. As the Kerr nonlinearity of CS2 mainly relies

on the molecular reorientation effect in the sub-nanosecond regime, B = 3/4 (Boyd 1992).

Terms on the right hand side of Eq. 1 stand for diffraction, self-phase modulation (SPM),

cross-phase modulation (XPM), and degenerate four-wave mixing (so-called FWM term),

respectively. FWM is a coherent coupling process which can lead to strong energy exchange

between Ex and Ey depending on the magnitude of �k. In isotropic or low-birefringence

media for which �k ≃ 0, the energy transfer can be very efficient, thus leading to nonlinear

effects such as polarization instability (Winful 1985; Wang et al. 1998), whereas in highly

birefringent media, no efficient energy exchange occurs.

In isotropic media, kx = ky = k and Eq. 1 can be rewritten in a more convenient way in

the basis of circular polarizations as:

∂U

∂z
=

i
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where U, V =
(

Ex ± iEy

)

/
√

2 are the left-handed and the right-handed circularly polarized

components of the electric field, respectively. The family of vector solitons in isotropic Kerr

media can be easily described using this basis (Haelterman and Sheppard 1994a; Haelterman

et al. 1993) because of the incoherent coupling between U and V (see Eq. 2). The phase

difference between U and V has no influence on the existence of theses bound states. It

corresponds to different values of the polarization angle in the cycle of polarization rotation

of these vector solitons (Haelterman and Sheppard 1994b; Delqué et al. 2007).

Figure 1(a) depicts the first member of the family, called elliptically polarized fundamen-

tal soliton (Haelterman and Sheppard 1994b), which was recently observed (Delqué et al.

2005a, 2007). It is the only stable member of the family. Higher-order vector solitons as those

represented in Fig. 1(b, c) are unstable and give rise to spatial left–right symmetry breaking

instability that was also recently evidenced (Cambournac et al. 2002b; Delqué et al. 2005b).

The polarization and spatial behavior of these solitons make them particularly interesting

for all-optical signal processing systems. We will see in the following that collisions makes

these dynamics even more useful in such systems.

2.2 Equations of the collision

In this paper, we focus on the study of collisions between a scalar soliton and a multicom-

ponent vector soliton. The aim of our study is to observe the inelastic collision features
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previously described for single-component solitons (Cao and Meyerhofer 1994). We also

would like to know how these collisions will alter the vector properties of the soliton, as

it has been suggested for the case of Manakov soliton (Radhakrishnan et al. 2004; Tchofo

Dinda et al. 2007).

More precisely, we experimentally study two types of collisions between a scalar infrared

soliton (1,064 nm) and a vector green soliton (532 nm) in a isotropic Kerr planar waveguide.

Using two different wavelengths with large frequency shift for soliton ensures an incoherent

coupling. Moreover, from an experimental point of view, it is more convenient to inde-

pendentely analyze the two solitons. The infrared soliton will always be single component

(in the Ex , Ey basis) and we will see that the collision with a vector soliton will not modify

the state of polarization on the infrared beam. Instead, the polarization and spatial dynamics

induced by collision will only be noticeable on the green beam.

To numerically account for these multicomponent and multicolor interactions together,

we use the model described in (Tran et al. 1994). Because the wavelengths of the colliding

fields are quite different, the coherent terms containing these two fields can be neglected con-

trary to polarization coherent ones (FWM in Eq. 1). The only effective multicolor coupling

terms are incoherent cross-phase modulation ones. In our case, the cross-phase modulation

coefficient between different frequencies equals 2 for linearly-polarized components and −1

for orthogonally-polarized components. This is relevant of re-orientational molecular non-

linearity, as in CS2. Thus we define the multicolor XPMm terms: XPMm‖ and XPMm⊥. The

NLS describing the evolution of one component of the green vector soliton writes:
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where j = x, y and l = y, x . Fx , Fy stand for the infrared components. To make the system

equation complete, the same equation must be written for F j ( j = x, y) by exchanging E

and F in Eq. 3. As we said previously, Fy = 0 is an input condition.

3 Experiments

3.1 Collision between single-hump solitons

In a first experiment, the linearly-polarized infrared soliton enters into collision in the non-

linear waveguide with a circularly-polarized green one and we analyze at the waveguide’s

output the induced polarization change on both beams. As previously said, circular basis is

more convenient to describe vector solitons in an isotropic Kerr medium. This experiment

aims at studying the result of such a collision on a single component in this basis.

The experiment, schematically sketched in Fig. 2, is performed in a 7 cm-long CS2 liquid

planar slab waveguide. The step-index waveguide is made of a 15 µm-thick CS2 layer sand-

wiched between two SK5 glass plates, whose index difference is �n = 0.04 (Cambournac

et al. 2002b). A beat length of L = 1.8m much longer than the waveguide length was mea-

sured, which ensures a quasi isotropic regime. As a pump laser, we used a compact passively

Q-switched powerchip Nd:YAG laser emitting 450 ps Gaussian pulses at a repetition rate of

1 kHz and at a wavelength of 1,064 nm (mean power is 90 mW). The laser beam is frequency
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Fig. 2 Experimental setup

(a) (b) (c)

Fig. 3 Experimental profiles. (a) input, (b) output when the beams are not injected simultaneously and

(c) output when the collision occurs

doubled in a KTP (Potassium Titanyl Phosphate) crystal. Each wavelength component is

separated thanks to a dichroic mirror (DM). The green field is circularly-polarized by the use

of a quarter-wave plate.The fundamental (1,064 nm) and second-harmonic (532 nm) radia-

tions are shaped by using two couples of lenses (L1bis , L1ter ) and (L1, L1bis), respectively.

They are then recombined by a second dichroic mirror and launched in the planar waveguide

by the (Lx , Ly) cylindrical lenses. At the output of the waveguide, once again they are divided,

analyzed in polarization and imaged on CCD cameras.

The infrared soliton is polarized along the free transverse x direction of the waveguide

and crosses the straight route of the green circularly polarized beam. Input spatial profiles are

shown in Fig. 3(a). We see the infrared and the green input gaussian profiles separated by a

distance of 220µm. Figure 3(b) shows the output profiles when beams are injected indepen-

dently, i.e., when no collision occurs. We clearly see the generation of the sech-shaped infrared

soliton through the measure of the beam widths: �x I R
in = 80µm and �x I R

out = 75µm.

In comparison with its input transverse position, it has moved apart from the green beam

towards x < 0 by almost −400µm. This corresponds for 7-cm propagation to a collision

angle of ∼1.8 × 10−3π rad, which is in the range of angles studied in Kang et al. (1995).

Figure 3(b) also shows that the green beam does not reach exact soliton propagation. Indeed

�xin = 75µm and �xout = 100µm. However, purely linear propagation would result in

�xout ≈ 140µm, thus we are in between soliton and linear propagation. As expected from

isotropic condition, Fig. 3(b) shows that its state of polarization remains circular at the output

of the waveguide since no energy appears in the V component.

Figure 3(c) depicts the experimental output profiles when the collision enters into play.

What we first see is that the infrared soliton has not been altered by this collision, neither

in its spatial nor in its polarization characteristics. On the other hand, the polarization of the
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(a) (b) (c)

Fig. 4 Numerical profiles. (a) input, (b) output when the beams are not injected simultaneously and (c) output

when the collision occurs

green beam is substantially modified after collision leading to the generation of an opposite

right-handed circular polarization component V . Figure 3(c) shows that the intensity of this

component is close to the U one (Note that we plot the V intensity profile with an offset

to clearly distinguish the two components). Moreover, the width of the total green beam

becomes narrower than the previous case (�xout = 75µm) although the input power is

the same as in Fig. 3(b). This can be explained by the fact that the green soliton undergoes

self-focusing after collision owing to the strong state of polarization change.

This collision-induced polarization change is confirmed by the numerical simulations in

Fig. 4 that shows the input and output of both the infrared soliton (gray scale) and the green

soliton (solid and dashed lines). The agreement with experimental profiles of Fig. 3 is very

good. The physical explanation of this effect is quite simple in terms of nonlinearly-induced

birefringence. Actually, the infrared soliton induces through XPMm a strong nonlinear bire-

fringence which is seen by the green soliton. Thus the green soliton does not propagate in an

isotropic medium anymore where the collision occurs, and its polarization changes resulting

in the appearance of the V component. This means that its polarization is no longer circu-

lar, resulting in a more efficient self-focusing and a smaller beam width at the waveguide’s

output. The green soliton will in turn induce a nonlinear birefringence leading to a polariza-

tion change of the infrared one. But the experimental and numerical results of Figs. 3 and 4

do not show this phenomena. Indeed, at the beginning of the collision, the green beam is cir-

cularly polarized and induces no birefringence. Its polarization has efficiently changed only

at the very end of the collision, that’s why the infrared soliton does not noticeably suffer the

induced birefringence. To verify this hypothesis, we have performed additional numerical

simulations with longer interaction lengths (i.e., smaller angles) that demonstrate that the

infrared polarization can also be modified. The most interesting feature of this experiment

relies on the fact that the green beam remains self-guided and spatially stable while suffering

polarization change. Given the diversity of the collision parameters, namely, relative powers

of the solitons, collision angle, relative polarization, we can expect a wide variety of output

polarization states of the green beam.

3.2 Collision between scalar and higher-order vector solitons

Another interesting application of vector soliton collision is to induce the symmetry-breaking

of multimode vector solitons as those shown in Fig. 1(b) and (c) (Silberberg and Barad 1995;

Cambournac et al. 2002b). As previously demonstrated for the case of the bimodal vector

soliton (Kockaert and Haelterman 1999), this instability results from the exponential ampli-

fication of pertubative modes, leading to an efficient left–right energy switching between

the two modes of the soliton. Since the instability can start from a very small perturbation,
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Fig. 5 Experimental setup

Fig. 6 Input and output

experimental profiles and

corresponding longitudinal

simulation of: (a) the propagation

of a green multimode vector

soliton; (b) the collision of the

same multimode vector soliton

and an infrared soliton. Profiles

depict the U (continuous line)

and V (dashed line) components

(a) (b)

e.g., quantum noise, it is difficult to control it, and this therefore leads to a random left–right

output (Lantz et al. 2004). The aim of the present work is to induce through collision the

symmetry-breaking dynamics before such random dynamics develop. Thus we can expect

a full control of the vector soliton symmetry breaking in view of potential applications to

all-optical N→1 junctions (Cambournac et al. 2002b; Delqué et al. 2005b).

The experimental setup is depicted in Fig. 5. It is very similar to the previous one, in

particular concerning the infrared beam. As regards the green one, we insert in the setup a

Michelson-type interferometer to independently generate the symmetric U and antisymmet-

ric V components of the bimodal vector soliton. In the first arm, we only use a slit in order

to tune the width of U . In the other one, a phase-shift mirror ensures that the sides of V are

π -out of phase. The end of the setup is the same as in Fig. 2.

Experimental profiles and corresponding numerical simulations are summarized in Fig. 6.

In this figure we compare the stable propagation of the multimode vector soliton alone
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(a) (b) (c) (d)

Fig. 7 Numerical results. Position of the intensity maximum after 7 cm propagation for both the U and V

components: (a, b) when the multimode vector soliton propagates alone and (c, d) when the collision with the

linearly polarized infrared soliton occurs

(a) (b)

(c) (d)

Fig. 8 Experimental results. Position of the intensity maximum after 7 cm propagation for both the U and V

components: (a, b) when the multimode vector soliton propagates alone and (c, d) when the collision with the

linearly polarized infrared soliton occurs

in Fig. 6(a) with the same one perturbed by the collision with the scalar infrared soliton.

Figure 6(b) shows that the soliton collision induces the symmetry-breaking of the multimode

vector soliton, as expected. Once again this can be physically understood on the basis of the

nonlinear birefringence induced by the infrared soliton. We must stress that the data plot-

ted on this figure are averaged over tens of pulses. As the propagation is unstable due to

symmetry-breaking, these results only have a statistical meaning and do not correspond to

one-shot output profiles. When the green vector soliton propagates alone, the random nature

of its breaking dynamics results in symmetric output statistics, as shown in top of Fig. 6(a).

This means that as many left and right symmetry-breaking events are observed, along with

stable soliton bound-state events (Cambournac et al. 2002b). When the collision occurs, how-

ever, the statistics clearly changes. We also observe in the top of Fig. 6(b) energy exchanges

between U and V as in the previous section. To get better insight into the breaking dynamics,

we performed shot-to-shot analysis.

Numerical results of such an analysis are described in Fig. 7. We ran as many numeri-

cal simulations (70) as experimental corresponding data recorded and represented in Fig. 8.

Every single simulation includes a different small input random amplitude noise. In Fig. 7 we
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(a) (b)

(c) (d)

Fig. 9 Results of simulations taking into account the random phase relation between U and V green com-

ponents. Position of the intensity maximum after 7 cm propagation for both components: (a, b) when the

multimode vector soliton propagates alone and (c, d) when the collision with the linearly polarized infrared

soliton occurs

show the position of the maxima of both green components, with and without the collision

in order to identify on which side the energy switches. Figure 7(a, b) show the positions of

these maxima without collision. These figures show the random left–right spatial dynamics

corresponding to the spontaneous symmetry-breaking instability.

Figure 7(c, d) represent the collision in the same conditions as in Fig. 7(a, b). We now see

that the collision suppresses the random nature of the symmetry-breaking. The vector soliton

bound-states always follows the same breaking dynamics towards x > 0.

Figure 8 illustrates the corresponding experimental observations. We show in Fig. 8(a, b)

the left–right random symmetry-breaking dynamics of the unperturbed multimode vector sol-

iton. In Fig. 8(c,d), we cannot observe the same results as in the simulations of Fig. 7(c, d). We

see that the breaking statistics has dramatically changed, but we could not erase the random

behavior. Indeed a preferred direction of switching can be identified around x = −20µm

but the dispersion of the values is as large as in the collisionless configuration.

This can be easily understood by considering the random phase difference of the vector

soliton U and V components. Let us recall that the interaction between the infrared and the

green soliton are assumed incoherent thus their relative phase has no influence. But, as

the collision acts through XPMm‖ and XPMm⊥ (XPMm‖ 	= XPMm⊥), the result depends on

the exact polarization state of the green beam. This state strongly depends on the relative

phase between U and V which defines its orientation angle (Delqué et al. 2007). Unfortu-

nately, our experimental conditions did not allow for the achievement of the full control of

the relative phase difference between the two components U and V of the vector soliton. As

a result, we obtain random shot-to-shot polarization angle, inducing random collision results,

as observed in Fig. 8(c, d). Note that this random polarization orientation has no effect on

the green soliton generation, as it corresponds to different steps in the polarization rotation

cycle of the same soliton, but it prevents us from suppressing the random behavior.

This explanation has been confirmed by additional simulations as in Fig. 7 but taking into

account the random phase relation between U and V . The results of these simulations are

depicted in Fig. 9. We observe that in such configuration, the collision does not prevent from

random behavior and that the dispersion of the output positions is as large as in the collision-

less case. Finally, these results show that a full control of symmetry breaking instability can

be achieved by phase locking the two components of the vector soliton.
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4 Conclusion

In this paper, we reported two examples of vector soliton collision in isotropic Kerr media.

We first demonstrated the ability of such collisions to achieve all-optical polarization control

of a self-guided beam. This ability was explained as resulting from the nonlinearly-induced

birefringence between the solitons. Then we investigated the control of the symmetry break-

ing instability of multimode vector solitons by collision. We achieved experimentally the

modification of the symmetry-breaking dynamics of theses solitons but not the total suppres-

sion of the random nature, owing to the random phase difference between the components

of the vector soliton. Finally, these two examples showed that the collisions between vector

and scalar solitons give rise to new spatial or polarization dynamics that could be useful in

various all-optical switching techniques.
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