T Fanjoux 
  
Sylvestre 
  
Michaël Delqué 
email: michael.delque@univ-fcomte.fr
  
Gil Fanjoux 
  
Thibaut Sylvestre 
  
Collision between scalar and vector spatial solitons in Kerr media

Keywords: Kerr effect, Soliton collision, Vector soliton

de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Self-guided light beams result from the balance between linear diffractive and self-focusing effects induced in a nonlinear medium [START_REF] Kivshar | Optical Solitons: from Fibers to Photonic Crystals[END_REF]. They have raised a lot of interest because of their ability to not only guide themselves but also other beams, while being fully configurable [START_REF] Kivshar | Spatial Optical Solitons. Guiding Light for Future Technologies[END_REF]. In view of potential applications, polarization vector solitons seem of particular interest because they can provide a wide variety of spatial and polarization dynamics [START_REF] Gregori | New exact solutions and bifurcations in the spatial distribution of polarization in third-order nonlinear optical interactions[END_REF][START_REF] Christodoulides | Vector solitons in birefringent nonlinear dispersive media[END_REF][START_REF] Tratnik | Bound solitary waves in a birefringent optical fiber[END_REF][START_REF] Islam | Soliton intensity-dependent polarization rotation[END_REF][START_REF] Silberberg | Rotating vector solitary waves in isotropic fibers[END_REF][START_REF] Soto-Crespo | Soliton propagation in optical devices with two-component fields: a comparative study[END_REF]. In particular, the spatial symmetry-breaking of multimode vector solitons in Kerr media spontaneously generates a waveguiding structure merging several channels to one [START_REF] Silberberg | Rotating vector solitary waves in isotropic fibers[END_REF]Haelterman and Sheppard 1994a;[START_REF] Kockaert | Stability and symmetry breaking of soliton bound states[END_REF]. A widely considered way for applying solitons to future all-optical information technologies is using collisions between them. The spatial structure of soliton collision naturally explains the interest they raised and recent works have demonstrated some of their important features [START_REF] Cao | All-optical switching by means of collisions of spatial vector solitons[END_REF][START_REF] Kang | Observation of Manakov spatial solitons in AlGaAs planar waveguides[END_REF][START_REF] Anastassiou | Information tranfer vis cascaded collisions of vector solitons[END_REF]. They indeed offer the ability to couple, cross, reflect, deflect or merge information channels. Many spatial dynamics can be easily achieved by tuning the phase relation or the angle between solitons in scalar propagation [START_REF] Snyder | Parallel spatial solitons[END_REF]. Using the vector nature of spatial solitons opens the way for new opportunities. For instance, the collision between orthogonally polarized solitons induces inelastic interactions and complex energy exchanges between polarization components [START_REF] Cao | All-optical switching by means of collisions of spatial vector solitons[END_REF] even if the solitons are initially single component. The spatial dynamics of these soliton collisions can also be very complex, including multiple reflections and trapping [START_REF] Tan | Complexity and regularity of vector-soliton collisions[END_REF][START_REF] Schauer | Collisions of orthogonally polarized spatial solitons in AlGaAs slab waveguides[END_REF][START_REF] Goodman | Vector-soliton collision dynamics in nonlinear optical fibers[END_REF]. A few experimental results confirm these numerical and analytical expectations showing soliton trapping and dragging [START_REF] Kang | Observation of Manakov spatial solitons in AlGaAs planar waveguides[END_REF]).

An even more complex way for colliding solitons is to use collisions between vector solitons. Such an interaction has been investigated in the well-known Manakov configuration and is in essence inelastic [START_REF] Radhakrishnan | Inelastic collision and switching of coupled bright solitons in optical fibers[END_REF]. This feature can be applied to highly efficient polarization conversion [START_REF] Radhakrishnan | Efficient control of the energy exchange due to the Manakov vector-soliton collision[END_REF][START_REF] Tchofo Dinda | Energy-exchange collision of the Manakov vector solitons under strong environmental perturbations[END_REF]). These phenomena have been observed experimentally and applied to information transfer through energy switching between polarization components [START_REF] Anastassiou | Energy-exchange interactions between colliding vector solitons[END_REF][START_REF] Anastassiou | Information tranfer vis cascaded collisions of vector solitons[END_REF]. In this paper, we present experimental and numerical results showing two collisions of spatial solitons in a vector configuration. In particular, we report on vector and scalar spatial soliton interaction involving different frequencies, polarizations or even modes at the same time. This is, to our knowledge, the first demonstration of the spatial and polarization dynamics that can be reached by mixing vector phenomena and soliton collision in Kerr media. In the first part of this paper, we introduce the theoretical and numerical model we use to describe the vector soliton collisions of light beams. In the two following parts, we present two experimental realizations on vector soliton collisions involving a scalar infrared and a multi-component vector green soliton. We first demonstrate the ability of such vector collisions to induce efficient polarization change of an initially circularly-polarized soliton. The second experiment is devoted to the study of the random symmetry-breaking of a multimode vector soliton induced by collision. Our results show that collision between vector and scalar solitons gives rise to new spatial or polarization dynamics that could be useful for realizing various all-optical switching functionalities.

Theoretical and numerical analysis

Vector propagation

Assuming a lossless and dispersionless nonlinear medium, monochromatic vector propagation in a single mode planar Kerr waveguide can be modeled by the usual system of 1 + 1D coupled nonlinear Schrödinger equations (NLSE) that reads [START_REF] Chen | Comparison of nonlinear effects of linearly and circularly polarized picosecond pulses propagationg in optical fibers[END_REF]:

∂ E x ∂z = i 2k x ∂ 2 E x ∂ x 2 + iγ |E x | 2 + (1 -B) E y 2 E x + BE 2 y E ⋆ x e 2i kz (1a) ∂ E y ∂z = i 2k y ∂ 2 E y ∂ x 2 + iγ E y 2 + (1 -B) |E x | 2 E y + BE 2 x E ⋆ y e -2i kz (1b)
where z is the spatial coordinate along the longitudinal propagation direction and x is the spatial coordinate along the free unguided transverse direction of the waveguide. E x , E y are the transverse electric (TE) and magnetic (TM) orthogonal linearly polarized components of the electric field, respectively, while k x and k y are the wave vectors and k = k yk x is the wave vector mismatch due to the intrinsic linear birefringence. γ = 2πn 2 /λ 0 is the nonlinear coefficient with n 2 = 3.5 × 10 -18 m 2 W -1 the nonlinear refractive index in CS 2 (see, e.g., Cambournac et al. 2002a)andλ 0 = 532 nm the wavelength in vacuum. B = χ xyyx /χ xxxx represents the polarization susceptibility ratio. As the Kerr nonlinearity of CS 2 mainly relies on the molecular reorientation effect in the sub-nanosecond regime, B = 3/4 [START_REF] Boyd | Nonlinear Optics[END_REF]).

Terms on the right hand side of Eq. 1 stand for diffraction, self-phase modulation (SPM), cross-phase modulation (XPM), and degenerate four-wave mixing (so-called FWM term), respectively. FWM is a coherent coupling process which can lead to strong energy exchange between E x and E y depending on the magnitude of k. In isotropic or low-birefringence media for which k ≃ 0, the energy transfer can be very efficient, thus leading to nonlinear effects such as polarization instability [START_REF] Winful | Self-induced polarization changes in birefringent optical fibers[END_REF][START_REF] Wang | Influence of soliton propagation on the beam-polarization dynamics in a planar waveguide[END_REF], whereas in highly birefringent media, no efficient energy exchange occurs.

In isotropic media, k x = k y = k and Eq. 1 can be rewritten in a more convenient way in the basis of circular polarizations as:

∂U ∂z = i 2k ∂ 2 U ∂ x 2 + iγ (1 -B) |U | 2 + (1 + B) |V | 2 U (2a) ∂ V ∂z = i 2k ∂ 2 V ∂ x 2 + iγ (1 -B) |V | 2 + (1 + B) |U | 2 V , (2b) 
where U, V = E x ± iE y / √ 2 are the left-handed and the right-handed circularly polarized components of the electric field, respectively. The family of vector solitons in isotropic Kerr media can be easily described using this basis (Haelterman and Sheppard 1994a;[START_REF] Haelterman | Bound-vector solitary waves in isotropic nonlinear dispersive media[END_REF]) because of the incoherent coupling between U and V (see Eq. 2). The phase difference between U and V has no influence on the existence of theses bound states. It corresponds to different values of the polarization angle in the cycle of polarization rotation of these vector solitons (Haelterman and Sheppard 1994b;[START_REF] Delqué | Polarization dynamics of the fundamental vector soliton of isotropic Kerr media[END_REF].

Figure 1(a) depicts the first member of the family, called elliptically polarized fundamental soliton (Haelterman and Sheppard 1994b), which was recently observed (Delqué et al. 2005a[START_REF] Delqué | Polarization dynamics of the fundamental vector soliton of isotropic Kerr media[END_REF]. It is the only stable member of the family. Higher-order vector solitons as those represented in Fig. 1(b,c) are unstable and give rise to spatial left-right symmetry breaking instability that was also recently evidenced (Cambournac et al. 2002b;Delqué et al. 2005b). The polarization and spatial behavior of these solitons make them particularly interesting for all-optical signal processing systems. We will see in the following that collisions makes these dynamics even more useful in such systems.

Equations of the collision

In this paper, we focus on the study of collisions between a scalar soliton and a multicomponent vector soliton. The aim of our study is to observe the inelastic collision features previously described for single-component solitons [START_REF] Cao | All-optical switching by means of collisions of spatial vector solitons[END_REF]. We also would like to know how these collisions will alter the vector properties of the soliton, as it has been suggested for the case of Manakov soliton [START_REF] Radhakrishnan | Efficient control of the energy exchange due to the Manakov vector-soliton collision[END_REF][START_REF] Tchofo Dinda | Energy-exchange collision of the Manakov vector solitons under strong environmental perturbations[END_REF].

More precisely, we experimentally study two types of collisions between a scalar infrared soliton (1,064 nm) and a vector green soliton (532 nm) in a isotropic Kerr planar waveguide. Using two different wavelengths with large frequency shift for soliton ensures an incoherent coupling. Moreover, from an experimental point of view, it is more convenient to independentely analyze the two solitons. The infrared soliton will always be single component (in the E x , E y basis) and we will see that the collision with a vector soliton will not modify the state of polarization on the infrared beam. Instead, the polarization and spatial dynamics induced by collision will only be noticeable on the green beam.

To numerically account for these multicomponent and multicolor interactions together, we use the model described in [START_REF] Tran | Multi-frequency spatial solitons in Kerr media[END_REF]). Because the wavelengths of the colliding fields are quite different, the coherent terms containing these two fields can be neglected contrary to polarization coherent ones (FWM in Eq. 1). The only effective multicolor coupling terms are incoherent cross-phase modulation ones. In our case, the cross-phase modulation coefficient between different frequencies equals 2 for linearly-polarized components and -1 for orthogonally-polarized components. This is relevant of re-orientational molecular nonlinearity, as in CS 2 . Thus we define the multicolor XPM m terms: XPM m and XPM m⊥ .The NLS describing the evolution of one component of the green vector soliton writes:
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where j = x, y and l = y, x. F x , F y stand for the infrared components. To make the system equation complete, the same equation must be written for F j ( j = x, y) by exchanging E and F in Eq. 3. As we said previously, F y = 0 is an input condition.

Experiments

Collision between single-hump solitons

In a first experiment, the linearly-polarized infrared soliton enters into collision in the nonlinear waveguide with a circularly-polarized green one and we analyze at the waveguide's output the induced polarization change on both beams. As previously said, circular basis is more convenient to describe vector solitons in an isotropic Kerr medium. This experiment aims at studying the result of such a collision on a single component in this basis.

The experiment, schematically sketched in Fig. 2, is performed in a 7 cm-long CS 2 liquid planar slab waveguide. The step-index waveguide is made of a 15 µm-thick CS 2 layer sandwiched between two SK5 glass plates, whose index difference is n = 0.04 (Cambournac et al. 2002b). A beat length of L = 1.8m much longer than the waveguide length was measured, which ensures a quasi isotropic regime. As a pump laser, we used a compact passively Q-switched powerchip Nd:YAG laser emitting 450 ps Gaussian pulses at a repetition rate of 1 kHz and at a wavelength of 1,064 nm (mean power is 90 mW). The laser beam is frequency The infrared soliton is polarized along the free transverse x direction of the waveguide and crosses the straight route of the green circularly polarized beam. Input spatial profiles are showninFig.3(a). We see the infrared and the green input gaussian profiles separated by a distance of 220µ m. Figure 3(b) shows the output profiles when beams are injected independently, i.e., when no collision occurs. We clearly see the generation of the sech-shaped infrared soliton through the measure of the beam widths: x IR in = 80µ ma n d x IR out = 75µ m. In comparison with its input transverse position, it has moved apart from the green beam towards x < 0b ya l m o s t-400µ m. This corresponds for 7-cm propagation to a collision angle of ∼1.8 × 10 -3 π rad, which is in the range of angles studied in [START_REF] Kang | Weak-beam trapping by bright spatial solitons in AlGaAs planar waveguides[END_REF]. Figure 3(b) also shows that the green beam does not reach exact soliton propagation. Indeed

x in = 75µ ma n d x out = 100µ m. However, purely linear propagation would result in x out ≈ 140µ m, thus we are in between soliton and linear propagation. As expected from isotropic condition, Fig. 3(b) shows that its state of polarization remains circular at the output of the waveguide since no energy appears in the V component.

Figure 3(c) depicts the experimental output profiles when the collision enters into play. What we first see is that the infrared soliton has not been altered by this collision, neither in its spatial nor in its polarization characteristics. On the other hand, the polarization of the green beam is substantially modified after collision leading to the generation of an opposite right-handed circular polarization component V . Figure 3(c) shows that the intensity of this component is close to the U one (Note that we plot the V intensity profile with an offset to clearly distinguish the two components). Moreover, the width of the total green beam becomes narrower than the previous case ( x out = 75µ m) although the input power is the same as in Fig. 3(b). This can be explained by the fact that the green soliton undergoes self-focusing after collision owing to the strong state of polarization change. This collision-induced polarization change is confirmed by the numerical simulations in Fig. 4 that shows the input and output of both the infrared soliton (gray scale) and the green soliton (solid and dashed lines). The agreement with experimental profiles of Fig. 3 is very good. The physical explanation of this effect is quite simple in terms of nonlinearly-induced birefringence. Actually, the infrared soliton induces through XPM m a strong nonlinear birefringence which is seen by the green soliton. Thus the green soliton does not propagate in an isotropic medium anymore where the collision occurs, and its polarization changes resulting in the appearance of the V component. This means that its polarization is no longer circular, resulting in a more efficient self-focusing and a smaller beam width at the waveguide's output. The green soliton will in turn induce a nonlinear birefringence leading to a polarization change of the infrared one. But the experimental and numerical results of Figs. 3 and4 do not show this phenomena. Indeed, at the beginning of the collision, the green beam is circularly polarized and induces no birefringence. Its polarization has efficiently changed only at the very end of the collision, that's why the infrared soliton does not noticeably suffer the induced birefringence. To verify this hypothesis, we have performed additional numerical simulations with longer interaction lengths (i.e., smaller angles) that demonstrate that the infrared polarization can also be modified. The most interesting feature of this experiment relies on the fact that the green beam remains self-guided and spatially stable while suffering polarization change. Given the diversity of the collision parameters, namely, relative powers of the solitons, collision angle, relative polarization, we can expect a wide variety of output polarization states of the green beam.

Collision between scalar and higher-order vector solitons

Another interesting application of vector soliton collision is to induce the symmetry-breaking of multimode vector solitons as those shown in Fig. 1(b) and (c) [START_REF] Silberberg | Rotating vector solitary waves in isotropic fibers[END_REF]Cambournac et al. 2002b). As previously demonstrated for the case of the bimodal vector soliton [START_REF] Kockaert | Stability and symmetry breaking of soliton bound states[END_REF], this instability results from the exponential amplification of pertubative modes, leading to an efficient left-right energy switching between the two modes of the soliton. Since the instability can start from a very small perturbation, e.g., quantum noise, it is difficult to control it, and this therefore leads to a random left-right output [START_REF] Lantz | Quantum fluctuations and correlations of spatial scalar or multimode vector solitons in Kerr media[END_REF]). The aim of the present work is to induce through collision the symmetry-breaking dynamics before such random dynamics develop. Thus we can expect a full control of the vector soliton symmetry breaking in view of potential applications to all-optical N→1 junctions (Cambournac et al. 2002b;Delqué et al. 2005b).

The experimental setup is depicted in Fig. 5. It is very similar to the previous one, in particular concerning the infrared beam. As regards the green one, we insert in the setup a Michelson-type interferometer to independently generate the symmetric U and antisymmetric V components of the bimodal vector soliton. In the first arm, we only use a slit in order to tune the width of U . In the other one, a phase-shift mirror ensures that the sides of V are π-out of phase. The end of the setup is the same as in Fig. 2. Experimental profiles and corresponding numerical simulations are summarized in Fig. 6. In this figure we compare the stable propagation of the multimode vector soliton alone Figure 6(b) shows that the soliton collision induces the symmetry-breaking of the multimode vector soliton, as expected. Once again this can be physically understood on the basis of the nonlinear birefringence induced by the infrared soliton. We must stress that the data plotted on this figure are averaged over tens of pulses. As the propagation is unstable due to symmetry-breaking, these results only have a statistical meaning and do not correspond to one-shot output profiles. When the green vector soliton propagates alone, the random nature of its breaking dynamics results in symmetric output statistics, as shown in top of Fig. 6(a). This means that as many left and right symmetry-breaking events are observed, along with stable soliton bound-state events (Cambournac et al. 2002b). When the collision occurs, however, the statistics clearly changes. We also observe in the top of Fig. 6(b) energy exchanges between U and V as in the previous section. To get better insight into the breaking dynamics, we performed shot-to-shot analysis.

Numerical results of such an analysis are described in Fig. 7. We ran as many numerical simulations (70) as experimental corresponding data recorded and represented in Fig. 8. Every single simulation includes a different small input random amplitude noise. In Fig. 7 we show the position of the maxima of both green components, with and without the collision in order to identify on which side the energy switches. Figure 7(a,b) show the positions of these maxima without collision. These figures show the random left-right spatial dynamics corresponding to the spontaneous symmetry-breaking instability. Figure 7(c,d) represent the collision in the same conditions as in Fig. 7(a, b). We now see that the collision suppresses the random nature of the symmetry-breaking. The vector soliton bound-states always follows the same breaking dynamics towards x > 0.

Figure 8 illustrates the corresponding experimental observations. We show in Fig. 8(a,b) the left-right random symmetry-breaking dynamics of the unperturbed multimode vector soliton. In Fig. 8(c,d), we cannot observe the same results as in the simulations of Fig. 7(c,d). We see that the breaking statistics has dramatically changed, but we could not erase the random behavior. Indeed a preferred direction of switching can be identified around x =-20µ m but the dispersion of the values is as large as in the collisionless configuration.

This can be easily understood by considering the random phase difference of the vector soliton U and V components. Let us recall that the interaction between the infrared and the green soliton are assumed incoherent thus their relative phase has no influence. But, as the collision acts through XPM m and XPM m⊥ (XPM m = XPM m⊥ ), the result depends on the exact polarization state of the green beam. This state strongly depends on the relative phase between U and V which defines its orientation angle [START_REF] Delqué | Polarization dynamics of the fundamental vector soliton of isotropic Kerr media[END_REF]). Unfortunately, our experimental conditions did not allow for the achievement of the full control of the relative phase difference between the two components U and V of the vector soliton. As a result, we obtain random shot-to-shot polarization angle, inducing random collision results, as observed in Fig. 8(c,d). Note that this random polarization orientation has no effect on the green soliton generation, as it corresponds to different steps in the polarization rotation cycle of the same soliton, but it prevents us from suppressing the random behavior.

This explanation has been confirmed by additional simulations as in Fig. 7 but taking into account the random phase relation between U and V . The results of these simulations are depicted in Fig. 9. We observe that in such configuration, the collision does not prevent from random behavior and that the dispersion of the output positions is as large as in the collisionless case. Finally, these results show that a full control of symmetry breaking instability can be achieved by phase locking the two components of the vector soliton.

4C o n c l u s i o n

In this paper, we reported two examples of vector soliton collision in isotropic Kerr media. We first demonstrated the ability of such collisions to achieve all-optical polarization control of a self-guided beam. This ability was explained as resulting from the nonlinearly-induced birefringence between the solitons. Then we investigated the control of the symmetry breaking instability of multimode vector solitons by collision. We achieved experimentally the modification of the symmetry-breaking dynamics of theses solitons but not the total suppression of the random nature, owing to the random phase difference between the components of the vector soliton. Finally, these two examples showed that the collisions between vector and scalar solitons give rise to new spatial or polarization dynamics that could be useful in various all-optical switching techniques.
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