
HAL Id: hal-00493452
https://hal.science/hal-00493452

Submitted on 18 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Topology-Based Mass/Spring System
Philippe Meseure, Emmanuelle Darles, Xavier Skapin

To cite this version:
Philippe Meseure, Emmanuelle Darles, Xavier Skapin. A Topology-Based Mass/Spring System. Com-
puter Animation and Social Agents 2010 (CASA), May 2010, St Malo, France. �hal-00493452�

https://hal.science/hal-00493452
https://hal.archives-ouvertes.fr


A Topology-Based Mass/Spring System∗

Philippe Meseure, Emmanuelle Darles, Xavier Skapin
Philippe.Meseure@sic.univ-poitiers.fr

University of Poitiers, XLIM-SIC CNRS 6172

Abstract
This paper presents how to design and
implement a simple mass/spring system
on a general-purpose topological struc-
ture. This way, topological inquiries or
changes can be handled robustly so that
the mesh remains consistent and a manifold.

Keywords: physically-based animation,
generalized maps, surgical simulation

Introduction

Among the various physically-based models for
animation, most of them need to include some
topological information that is usually partial
and dedicated to specific needs. However, in
different domains, the simulated body may un-
dergo topology changes whose consistency can-
not be fully guaranteed using a naive topologi-
cal model. Examples include fractures, fusion
and, in surgical simulation, cuttings or tearings.
These two last transformations can be handled in
two ways: (a) dissociation of volumes [1, 2] and
(b) removal of volumes [3]. A third approach
has been proposed these last years and consists
in duplicating volumes [4]. All these methods
heavily rely on adjacency relations in the mesh.
[5] showed that the simulated body should re-
main amanifoldduring the topological changes,
in order to avoid ill-structured elements. With-
out a topological model, guaranteeing the mani-
fold structure leads to complex and heavy treat-
ments of the mesh. Some studies have tried to

∗Proceedings of Computer Animation and Social Agents,
St Malo (France), 31 may-2 june 2010.

use specific topological models [6, 7] but are re-
stricted to dimension 2.

We aim at providing physical models with a
complete and versatile topological base which
guarantees robustness, versatility and avoids ill-
structured objects. The paper is organized as fol-
lows. After describing the generic topological
model we used, we present how a mass/spring
system can be based on a topological model and,
in the following section, the topological modi-
fications we have applied. Section 4 gives our
results and we conclude.

1 Topological models

We rely on generalized maps[8], since they
are equivalent to most of other3D topological
models [9]. They allow to represent orientable
or non-orientable quasi-manifolds. Their alge-
braic definition is homogeneous (in dimension
n) while their data structure is simple and intu-
itive to manipulate.

In the remainder of the paper, we will re-
fer to vertices, edges, faces and volumes re-
spectively as0-cells,1-cells,2-cells and3-cells.
An n-dimensional generalized map (denotedn-
g-map) is based on a unique abstract element,
calleddart, that, for3D-objects, roughly repre-
sents “a vertex on an edge of a face of a volume
of the object”.n-g-maps are defined as a set of
darts and applicationsαi defined on these darts
that allow to represent the various adjacency re-
lationships. Eachαi aims at “sewing” thei-cell
along a(i − 1)-cell (for instance, sewing two
faces by sharing a common edge). The image
by αi is defined for every dart of the sewed en-
tity. A formal definition can be found in [8]. An



“orbit” is the set of all darts that can be reached
starting from a given dartb, using a combination
of selected involutions. Ani-cell appears as the
orbit built using all involutions exceptαi.

The topological model only describes the
structure of the object. The geometric informa-
tion, such as the positions of the vertices, must
be added. For that purpose, it is possible to em-
bed information in the structure. An embedded
information can be attached to anyi-cell. In
practice, this means that all the darts of the given
i-cell share the same information. Any type of
information can be embedded: geometric, visual
or even mechanical in our context.

2 A topology-based spring system

2.1 Embeddings

To design our model, the first task consists in
embedding the topological model with mechan-
ical information. Without loss of generality, we
suppose here that the mesh is only composed of
tetrahedra. In a tetrahedron, we embed its mass.
In an edge, we embed the rest-length of the cor-
responding spring, the stiffness and, if needed,
a damping value. We select the outside faces of
the object and embed into them some details re-
quired by the rendering processes, such as the
normal for instance. Finally, in a vertex, we em-
bed the mass of the node (obtained by summing
the contribution of all the surrounding tetrahe-
dra), an ambient viscosity coefficient and the po-
sition and velocity of the node. It is wise, for op-
timization purposes, to also include the sum of
all the forces applied to the node. Note that the
structure of the mechanical mesh must be quasi-
manifold and that each spring is mapped to an
edge of the mesh.

2.2 Behavior computation

Since the different mechanical properties and
state variables are embedded into the structure,
all the usual algorithms must be designed ac-
cordingly. Indeed, neither the nodes nor the
springs appear as arrays that we only have to
parse. On the contrary, each algorithm must rely
on an adapted coverage of the topological struc-
ture.

To cover all thei-cell for a giveni, we basi-
cally check every dart, treat the corresponding
i-cell and mark all the darts that belong to the
samei-cell orbit. While parsing the structure,
only the unmarked darts are taken into account
before they are marked. At the end, all the darts
are marked. At this stage, a global coverage of
the structure aims at unmarking the darts.

To compute the deformation forces, we cover
all the edges of the structure. Letb a dart that
belongs to an edge orbit. We can easily get the
extremity nodes of the spring:b belongs to the
vertex orbit of one of the nodes, andα0(b) to the
other one. We can then compute the deformation
force relying on the position and velocity of the
extremity nodes and apply this force to them.

The force integration and state variables com-
putation require to cover all the vertices in a sim-
ilar way. The process is rather straightforward
for explicit integration schemes such as Euler or
Runge Kutta. However, more elaborate integra-
tion methods rely on linear algebra. For such
methods, it is recommended to associate each
vertex with an index in the state variables vec-
tor. A final walk through the structure allows
each vertex to pick up its new position and ve-
locity in the state vector.

Finally, because the collision process can be
handled in different ways, we cannot make a
complete inventory of all the possibilities. De-
pending on the chosen approach, the vertices,
the faces or the volumes must be parsed. Any-
way, the topological model always allows us to
find the concerned vertices, get their position
and velocity to compute the collision correctly
and apply the resulting forces to them.

3 Topological Operations

Among the topological changes used in surgical
simulation, let us consider the volume separa-
tion, namely “face split” first. Using g-maps,
this operation only corresponds to theα3-unsew
operation between the two volumes and is really
straightforward: The algorithm walks through
the darts of the face (exploringα0 andα1 links),
and discards theα3 links. During this process,
the cancellation ofα3 may induce vertex and/or
edge split, as shown in figure 1 in the 2D case.
This can be easily detected, since in this case,



Figure 1: Mechanical adaptation after the split-
ting of a vertex and an edge.

two unsewed darts no longer belong to the same
vertex/edge orbit. This is checked when the face
split is over.

When a vertex is split, we must prevent the
two resulting vertices from sharing the same
embedding. We therefore duplicate the posi-
tion and velocity but have to compute the new
masses. The mass of a vertex is obtained by
summing up the mass contribution of all the ad-
jacent tetrahedra (for the sake of simplicity, we
suppose that a tetrahedron provides each of its
vertex with1/4 of its mass). This way, we en-
sure that the sum of the masses of the two ver-
tices is always the mass of the original split ver-
tex. We then consider that the ambient viscos-
ity is proportional to the computed mass. Note
that if the vertices have an index toward a state
vector, we have to supply one of the appearing
vertices with a new index (the other vertex keeps
the index of the split vertex).

The edge split process is rather similar. If
two unlinked darts no longer belong to the same
edge orbit, an edge split has occurred. We then
consider all the adjacent tetrahedra of the two
resulting edges and sum up all their contribution
to obtain the resulting stiffness. This way, the
sum of the stiffness of the two edges is the same
as the stiffness of the initial split edge, as stated
by the Kirchhoff law applied to parallel combi-
nation of springs.

The other operation we have considered is
volume deletion. A straightforward but naive
approach consists in erasing all the darts of the
volume. However, it can be quite hazardous to
control embeddings correctly using such an ap-
proach. When a dart is deleted, all its embed-
dings are dispatched on other darts belonging to
the initial i-cell of the dart. However, as seen

(a) (b)

Figure 2: Tetrahedron removals and face splits.

previously, the mechanical embeddings should
be adapted according to the destruction, a task
that becomes tricky because of the loss of infor-
mation implied by the deletion of the darts. It
is more convenient to isolate the volume first,
by iterating on all its faces and applying the
previously-defined face split. Such a technique
guarantees to share masses, stiffnesses and so
on where needed. When the volume is isolated,
all its darts and corresponding embeddings can
be deleted. Note that the unsewed faces of the
tetrahedra surrounding the removed tetrahedron
become3-free and must be taken into account
in the rendering step (since they belong to the
boundary of the object).

4 Results

In our implementation, we have used the
MOKA library (freely available athttp://moka-
modeller.sourceforge.net) to handle g-maps.
The mechanics and the interaction tools are
handled within a home-made dynamic simula-
tor [10], using penalty methods between the
tetrahedra to handle collision. The figure 2
shows result of an object (a liver) after several
tetrahedron removals. Using a dual core 2.8GHz
processor, we need 8 ms to compute an evolu-
tion step of a deformable body including 564
nodes, 2850 springs and 1856 tetrahedra (using
Runge Kutta 4).

Note that various optimizations are required.
Marking only a subset of the darts while walking
through the structure should be avoided since
this subset has to be covered once more to erase
the marks. We have used a property of the
MOKA library which consists in embedding in-
formation of an orbit only in a single dart of the
orbit and provide the other darts with shortcuts
to this information. Thus, to cover alli-cells,



it is sufficient to check all the darts and only
consider the ones that include thei-cells embed-
ding. This way, no marker is required, and most
implemented walks through the structure have a
linear complexityw.r.t. the number of darts. We
also include all the node embeddings in a list
to speed up the loops that use these information
without requiring any adjacency relationships.

We have compared the computation time of
our model to the one of a mass/spring model
only based on indexed structures (with no topol-
ogy change). The indexed mass/spring body
needs 2ms for a time step. In other words, our
topologically-based model is four times as slow
as the indexed model. This is mainly due to
the number of darts that need to be covered at
each step of the algorithm, in our example 44544
darts (each tetrahedron requires 24 darts).

Conclusion and Future work

In this paper, we have presented how to base
a mass/spring system on a generalized-map
model. The computation of neighborhood prop-
erties is simplified as well as the design of oper-
ations. We have also shown how to compute the
new embeddings when some topological change
is applied. We find that our model is four times
as slow as a naive indexed approach. It is how-
ever possible to get better results. In particu-
lar, a straightforward implementation of g-maps
heavily relies on pointers and leads to a frag-
mentation of the memory that an optimized im-
plementation would avoid. In the future, we also
intend to implement topology inquiries (check-
ing the connexity of the model) and more com-
plex operations.

Acknowledgment

This work has been funded by the French Re-
search Agency through the VORTISS Project
(ANR-06-MDCA-015). We also want to thank
the IRCAD (Strasbourg) for the liver model and
G. Damiand for helping us to use MOKA.

References

[1] S. Frisken-Gibson. Using linked volumes
to model object collisions, deformation,
cutting, carving and joining.IEEE Trans.
on Visual. and Comp. Graph., 5(4):333–
348, 1999.

[2] H.W. Nienhuys and A.F. van der Stap-
pen. Combining finite element defor-
mation with cutting for surgery simula-
tions. InEUROGRAPHICS’00, pages 43–
51, 2000.

[3] S. Cotin, H. Delingette, and N. Ayache.
A hybrid elastic model allowing real-time
cutting, deformation and force-feedback
for surgery training and simulation.The
Visual Comp., 16(8):437–452, 2000.

[4] N. Molino, Z. Bao, and R. Fedkiw.
A virtual node algorithm for changing
mesh topology during simulation. In
ACM Trans. on Graph. (SIGGRAPH), vol-
ume 23, pages 385–392, 2004.

[5] C. Forest, H. Delingette, and N. Ay-
ache. Removing tetrahedra from manifold
tetrahedralisation: application to real-time
surgical simulation. Med. Im. Analysis,
9(2):113–122, April 2005.

[6] B. G. Baumgart. A polyhedron represen-
tation for computer vision. InAFIPS’75,
pages 589–596, 1975.

[7] H. Delingette, G. Subsol, S. Cotin, and
J. Pignon. A craniofacial surgery sim-
ulation testbed. InVisual. and Biomed.
Comp., pages 607–18, 1994.

[8] P. Lienhardt. N-dimensional generalized
combinatorial maps and cellular quasi-
manifolds. Int. J. of Comp. Geom. and
App., 4(3):275–324, 1994.

[9] P. Lienhardt. Topological models for
boundary representation: a comparison
with n-dimensional generalized maps.
Computer Aided Design, 23:59–82, 1991.

[10] P. Meseure et al. A physically-based vir-
tual environment dedicated to surgical sim-
ulation. In Int. Symp. on Surg. Sim. and



Soft Tissue Mod., volume 2673 ofLNCS,
pages 38–47, June 2003.


