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Yacine Chitour∗, Frédéric Jean†, Paolo Mason‡
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Abstract

In recent papers it has been suggested that human locomotion may be modeled as an inverse optimal

control problem. In this paradigm, the trajectories are assumed to be solutions of an optimal control

problem that has to be determined. We discuss the modeling of both the dynamical system and the cost

to be minimized, and we analyze the corresponding optimal synthesis. The main results describe the

asymptotic behavior of the optimal trajectories as the target point goes to infinity.

Keywords: human locomotion, inverse optimal control, Pontryagin maximum principle, stable manifold
theorem.

1 Introduction

Ask a person walking in a empty room to leave this room through a given door. Which path does that person
choose? The purpose of this paper is to deal with this issue, that is to understand the goal-oriented human
locomotion.

We follow the approach initiated in [1, 2, 3]. In this framework, the locomotor trajectories lie in the simple
3-D space of both the position (x, y) and the orientation θ of the body. The problem we want to address is
then the following one. Given an initial point (x0, y0, θ0) and a final point (x1, y1, θ1) (see Figure 1), which
trajectory is experimentally the most likely?

A nowadays widely accepted paradigm in neurophysiology is that, among all possible movements, the
accomplished ones satisfy suitable optimality criteria (see [15] for a review). One is then led to make the
assumption that the chosen locomotor trajectory is solution of some optimal problem, namely: minimize some
integral cost

C =

∫

L(x, y, θ, ẋ, ẏ, θ̇, . . . )dt

among all “admissible” trajectories joining the initial point to the final one. Two questions are in order. First,
what are the “admissible” trajectories? It is in particular necessary to precise both the dynamical constraints
applied to the locomotion, and the regularity of the trajectories (and so the order of derivation entering in the
cost function L). Secondly, how to choose the cost function? Once the set of admissible trajectories is defined,
the latter question takes the form of an inverse optimal control problem: given recorded experimental data,
infer a cost function L such that the recorded trajectories are optimal solutions of the associated minimization
problem.

In the theory of linear-quadratic control, the question of which quadratic cost is minimized in order to
control a linear system along certain trajectories was already raised by R. Kalman [10]. Some methods allowed
deducing cost functions from optimal behaviour in system and control theory (linear matrix inequalities, [7])
and in Markov decision processes (inverse reinforcement learning, [13]). However all these methods have
been conceived for very specific systems and they are not suitable in the general case. A new and promising
approach of the inverse optimal control problem has been developped in [6, 9] for the pointing movements of
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Figure 1: Goal-oriented human locomotion.

the arm. In that approach, based on Thom transversality theory, the cost structure is deduced from qualitative
properties highlighted by the experimental data. Thus, starting from the observation of inactivity intervals
of the muscles during pointing movements, it has been proven that their presence is a sort of necessary and
sufficient condition for the cost to be of a certain type (namely of “absolute work” type).

The method chosen in the present paper bears some resemblance with [6, 9]. However no strong qualitative
properties such as the inactivations come out in the registered data, which prevent the use of transversality
theory. We then choose a more direct approach, consisting of three steps:

1. Modeling step: use experimental observations to define the set of admissible trajectories and to reduce
the class of acceptable cost functions L; as a result, we obtain a class of optimal control problems indexed
by the cost function L.

2. Analysis step: make a qualitative analysis of the optimal synthesis of the above-defined problems; the
aim is mainly to exhibit properties characterizing the dependence on L of the synthesis.

3. Comparison step: through a numerical study based on the characteristic properties exhibited above and
a comparison with the trajectories experimentally recorded, determine which is the cost function L which
best fits the experimental data.

The last step is of different nature than the first two ones. It requires the processing of a large number
of registered data together with a numerical study. In this paper we will then be concerned only with the
first two steps, the last one being the object of a forthcoming study. Note that in the paper [5] we already
performed a similar analysis for a simplified model.

The modeling step will be addressed in Section 2 and comes up with an optimal control problem (OCP).
It is based on experimental observations together with two modeling assumptions, (A1) and (A2), and also
on technical hypothesis, (H1)–(H4).

Section 3 is dedicated to the analysis step, all the technical proofs being postponed to Section 4. We first
show the existence of optimal solutions and apply the Pontryagin maximum principle to Problem (OCP).
After a detailed analysis of the extremal flow, we show that the angle θ along an optimal trajectory is solution
of a fourth-order differential equation (OPT )p with parameter p. In case the initial point and the target are
far enough one from each other, we are able to compute the asymptotic value p∗ of the parameter and to
prove that the orbit corresponding to an optimal trajectory lies in the stable manifold of the (unique) unstable
equilibrium of (OPT )p∗ . This asymptotic behavior exactly provides the type of characteristic properties of the
trajectories of human locomotion we are looking for in order to test the adequacy of the model to registered
data. The latter task will be the subject of a future work.

Moreover, based on the above asymptotic property, one can device a numerical method for determining
the initial value of the adjoint vector and thus completely integrating the extremal flow. From the point of
view of optimal control, this geometric method is the main technical novelty of our paper. It belongs to the
realm of indirect methods, but is clearly of different nature than the shooting methods.
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Figure 2: The nonholonomic constraint.

2 Optimal control based modeling

The first task is to define what is the set of admissible trajectories. It is important here to precise the typical
situation we want to model, namely a person entering a room through one door and leaving by another one.
Hence, besides the fact that initial and final positions and orientations are fixed, the velocity is positive at the
extremities (the person walks in and out the room). Moreover the two doors, and so initial and final positions,
are supposed not too close one to the other.

Our modeling is based on three important experimental observations made in [2, 3].

(i) The velocity is perpendicular to the body (see Figure 2). Namely, denoting by θ the orientation of the
torso and by (x, y) the horizontal projection of the center of mass, the locomotion is submitted to the
classical nonholonomic constraint:

ẋ sin θ − ẏ cos θ = 0, i.e.

{

ẋ = v cos θ
ẏ = v sin θ

where v =
√

ẋ2 + ẏ2 is the tangential velocity.

(ii) The tangential velocity has a positive lower bound: v ≥ a > 0. As a consequence, all locomotion
trajectories can be parametrized by the arc-length. We are interested here in the geometric curves of
the human locomotion, not by their time-parametrized trajectories. We will then use the arc-length
parametrization, which amounts to set v ≡ 1.

It is worth to notice that, on recorded data, the tangential velocity is generally almost constant along
the trajectory. Thus, up to rescaling, arc-length and time parametrization approximately coincide.

(iii) The curvature varies continuously. That is, κ(t) = θ̇(t) is a continuous function.

It results from these observations that every locomotion trajectory satisfies

ẋ = cos θ, ẏ = sin θ, θ̇ = κ,

where κ is a continuous function. Thus ẋ, ẏ and all their derivatives only depends on θ and its derivatives. To
complete the description of the set of admissible trajectories, it only remains to precise in which functional
space is chosen the function θ. Remind that our main modeling assumption is that human locomotion is
governed by optimality criteria. It is then mandatory to choose a functional space for the trajectories together
with a class of cost functions so that one has general results ensuring the existence of optimal solution under
reasonable hypothesis. As for the functional space, it must be complete and the natural choice is that of the
Sobolev spaces W k,p. In other words, we assume that the locomotion trajectories are solutions of the control
system











ẋ = cos θ,

ẏ = sin θ,

θ(k) = u,

where u is a measurable function of finite Lp norm, for a certain integer p > 0, and k > 0 is an integer. As
for the cost functions L, the highest order of derivatives of θ actually appearing in L must be equal to k. The
observation (iii) above suggests that the order k is at least equal to two. We will make here the assumption
that it is exactly equal to two.
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(A1) The cost function L = L(x, y, θ, θ̇, θ̈) explicitly depends on θ̈, and the latter has a finite Lp norm.

To sum up, the control system modeling the dynamics of the locomotion writes as:



















ẋ = cos θ,

ẏ = sin θ,

θ̇ = κ,

κ̇ = u,

(2.1)

where X = (x, y, θ, κ) belongs to R2×S1×R and the control u is a measurable function defined on an interval
[0, T ], where T > 0 depends on u, and taking values in R.

As for the initial and final points X0, X1, the spatial and angular components (x, y, θ) are given by the
data of the goal-oriented locomotion problem we consider. Two reasonable conditions could be assumed on
the curvature:

• either κ is let free, the cost C(u(·)) being minimized among all the points X0, X1 with fixed spatial and
angular components;

• or it satisfies κ = 0 at X0, X1 (the trajectory starts and ends in straight line).

This second hypothesis corresponds to the particular experimental setting considered in [2]. In this paper
we will follow this assumption, however the other one essentially leads to the same results and we will mention
in Section 3.5 how they differ.

The locomotion trajectories between two arbitrary configurations (x0, y0, θ0) and (x1, y1, θ1) then appear
as the solutions of an optimal control problem of the following form: minimize the cost

C(u(·)) =
∫ T

0

L(x, y, θ, κ, u)dt

among all admissible controls u(·) steering System 2.1 from X(0) = (x0, y0, θ0, 0) to X(T ) = (x1, y1, θ1, 0).
Notice that the time is free in this problem, T depends on u(·).

The inverse optimal control problem consists in finding the proper cost function L. Some elementary
remarks allows us to reduce the class of the candidates.

(i) The cost function is defined in an egocentric frame; the whole problem is then invariant by rototransla-
tions, and L is independent of (x, y, θ), that is,

L = L(κ, u).

(ii) Turning right or left are equivalent, hence the symmetry of L : L(−κ,−u) = L(κ, u).

(iii) The more one turns, the more it costs. In other words, the partial functions κ 7→ L(κ, u) and u 7→ L(κ, u)
are non-decreasing function of |κ| and |u| respectively.

(iv) Going in straight line has a positive cost, L(0, 0) > 0, which is the unique minimum of L. Since L is
defined up to a multiplicative constant, we can impose the normalization: L(0, 0) = 1 and L(κ, u) > 1
for (κ, u) 6= 0. As a consequence, the cost of a straight line is its Euclidean length.

(v) As already mentioned, the optimal control problem must have a solution, which requires some convexity
properties on L.

In this paper, we will restrict the class of cost functions satisfying the following assumption:

(A2) The cost function L depends separately on κ and u.
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We will then consider a cost

C(u(·)) =
∫ T

0

[1 + ϕ(κ(t)) + ψ(u(t))]dt. (2.2)

This cost appears as a compromise between the total time T (equivalently, the length to be covered) and an
“energy term” depending separately on κ and u.

To satisfy the properties listed above we assume that the functions ϕ and ψ verify the following technical
hypotheses.

(H1) ϕ and ψ are non negative, C2 and even functions defined on R, and are non decreasing on R+. Moreover,
ϕ(0) = ψ(0) = 0;

(H2) ψ is strictly convex and ψ′′(0) > 0;

(H3) there exist p > 1 and two positive constants C,R such that

ψ(r) ≥ C|r|p, for every r ∈ R such that |r| ≥ R. (2.3)

We next provide some explanations about these hypotheses.
Hypothesis (H1) directly results from properties (ii)–(iv) and is structural to the model, except for the

regularity assumption. However, if the cost was not differentiable, the phenomenon of “inactivation” would
appear in the optimal trajectories (see [9]). Since inactivation is not observed in the registered data, one must
assume some regularity property for the cost. Note that the C2 regularity of ϕ and ψ required in (H1) is
actually needed just for the development of the numerical method of Section 3.4, while the qualitative results
of Sections 3.2 and 3.3 are valid even if we assume that ϕ and ψ are just C1.

The convexity and the growth condition provided by Hypotheses (H2)–(H3) are classical assumptions
which ensure Property (v) (see Proposition 3.1 and Remark 3.2 below). The technical assumption ψ′′(0) > 0
ensures that, firstly the minimizers are locally unique; secondly they are solutions of an ODE (of pendulum-
type); and thirdly one can recover at least numerically the initial value of the adjoint vector (in an approach
based on the Pontryagin maximum principle). It is worth to notice that (H2)–(H3) define open conditions
on the set of functions ϕ and ψ satisfying (H1). This stability property is necessary due to the physiological
nature of the cost.

The purpose of Assumption (A2) is to ensure that Property (v) is satisfied with reasonable hypotheses like
(H2)–(H3) (see, for instance, [12] for a discussion about existence of minimizers under similar assumptions).

To summarize, the optimal control problem modeling the goal-oriented human locomotion is the following
one.

(OCP) Fix an initial point X0 = (0, 0, π/2, 0). For every final point of the formX1 = (x1, y1, θ1, 0),
for some (x1, y1, θ1) ∈ R2 × S1, find the trajectories of (2.1) steering the system from X0 to X1

and minimizing the cost (2.2), where ϕ and ψ verify hypothesis (H1)–(H4).

3 Qualitative analysis of the optimal trajectories

3.1 Notations

In the following we will make use of the following notations.
We will always assume without loss of generality that the difference α1−α2 between two angles α1, α2 ∈ [0, 2π]
takes values in the interval [−π, π]. In particular with this notation the modulus |α1 − α2| is a continuous
function of α1, α2 taking values in [0, π].
Given a subset S of [0, T ] we will denote its complement in [0, T ] by Sc.
The Lebesgue measure of a set S will be denoted by µ(S).
The scalar product in R2 is denoted by 〈·, ·〉.
The symbol B(x, r) indicates the ball of radius r centered at x.
As usual, given two subsets A,B of a certain vector space the set A+B is defined as

A+B = {x+ y : x ∈ A, y ∈ B}.
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3.2 Existence of optimal trajectories

The existence of solutions to problem (OCP) is guaranteed by the following result.

Proposition 3.1. For every choice of X0 and X1 in R2 × S1 × R there exists a trajectory X̄(·) of (2.1),
defined on [0, T̄ ], associated to some control ū(·) and minimizing C(u(·)) among all the trajectories starting
from X0 and reaching X1.

Proof. Consider a minimizing sequence un(·) : [0, Tn] → R, that is

lim
n→∞

C(un(·)) = inf
u(·)

C(u(·))

where un(·), u(·) steer the system from X0 to X1. Since C(un(·)) is uniformly bounded, one easily deduces
from Hypothesis (H1) and (H3) that Tn and ‖un‖Lp([0,Tn]) must be uniformly bounded, and therefore, up
to a subsequence, we can assume that Tn converges to T̄ . Let us extend un(·) on [0,∞) by taking un(t) = 0
if t > Tn. Then, still up to subsequences, un(·) converges to some ū(·) ∈ Lp([0, T̄ ]) in the weak topology

of Lp([0, T̄ ]). Moreover, the functions κn(t) =
∫ t

0
un(s)ds are uniformly continuous by Hölder’s inequality

and they converge pointwise to κ̄(t) =
∫ t

0
ū(s)ds since un(·) ⇀ ū(·) in Lp. By Ascoli-Arzelà theorem, κn

converge to κ̄ uniformly on [0, T̄ ]. Therefore, from the equation (2.1), we immediately get that the trajectories
Xn(·) corresponding to un(·) converge uniformly to the trajectory X̄(·) corresponding to ū(·) and, since these
trajectories are uniformly equi-continuous, X̄(T̄ ) = limn→∞Xn(Tn) = X1. Moreover, we deduce that the

sequence
(

∫ Tn

0 ϕ(κn(t))dt
)

n
converges to

∫ T̄

0 ϕ(κ̄(t))dt.

Let us denote L0(u(·), T ) =
∫ T

0
ψ(u(t))dt. It remains to prove that L0(ū(·), T̄ ) = limn→∞ L0(un(·), Tn).

For this purpose, we first observe that the convexity of ψ(·) immediately implies the convexity in Lp([0, T̄ ])
of the functional L0(·, T̄ ). It is well-known that the weak lower semi-continuity of a convex functional is
equivalent to its strong lower semi-continuity (see for instance [8, Corollaire III.8]). From this fact, and since
L0(un(·), T̄ ) ≤ L0(un(·), Tn), to conclude the proof of the proposition it is enough to show that L0(·, T̄ ) is
strongly lower semi-continuous in Lp([0, T̄ ]). Let us consider a sequence (vk)k≥1 in Lp([0, T̄ ]) converging in the
Lp norm to a function v. In particular we can extract a subsequence (vkj )j≥1 converging almost everywhere
to v and such that limj→∞ L0(vkj (·), T̄ ) = lim infk→∞ L0(vk(·), T̄ ). According to Egoroff theorem there exists
a sequence (Ah)h≥1 of open nested subsets of [0, T̄ ] such that limh→∞ µ(Ah) = 0 and the convergence vkj → v
is uniform in [0, T̄ ] \Ah. We get

L0(v(·), T̄ ) = lim
h→∞

(

L0(v(·), T̄ )−
∫

Ah

ψ(v(τ))dτ

)

= lim
h→∞

lim
j→∞

(

L0(vkj (·), T̄ )−
∫

Ah

ψ(vkj (τ))dτ

)

≤ lim
j→∞

L0(vkj (·), T̄ )

which concludes the proof of the proposition. �

Remark 3.2. The argument we provided is inspired from the proof of Theorem 8, p. 209 of [12]. Let us
stress that it is not difficult to show through appropriate examples that the convexity of ψ required by
Hypothesis (H2) is crucial for the existence of a minimizer.

3.3 Application of the Pontryagin maximum principle

In order to apply the classical Pontryagin maximum principle (PMP) [14], one needs to know that the optimal
control ū(·) is bounded in the L∞ topology. At the present stage of the analysis, we do not possess that
information and we therefore must rely on more sophisticated versions of the PMP. For instance, one readily
checks that (OCP) meets all the hypotheses required in Theorem 2.3 of [4] and we get the following.

Proposition 3.3. Let X̄(·) be an optimal trajectory for (OCP), defined on [0, T̄ ] and associated to the control
ū(·). Then this trajectory satisfies the PMP.
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Let us associate to System (2.1) the Hamiltonian function

H = H(X, p, u, ν) = p1 cos θ + p2 sin θ + p3κ+ p4u− ν(1 + ϕ(κ) + ψ(u)), (3.1)

where p = (p1, p2, p3, p4) ∈ R4 is the adjoint vector and ν ∈ R.
The PMP writes as follows. Let u(·) be an optimal control defined on the interval [0, T ] and X(·) the

corresponding optimal trajectory, whose existence is guaranteed by Proposition 3.1. Then X(·) is an extremal
trajectory, i.e. it satisfies the following conditions. There exists an absolutely continuous function p : [0, T ] →
R4 and ν ≥ 0 such that the pair (p(·), ν) is non-trivial, and such that we have:

{

Ẋ(t) = ∂H
∂p (X(t), p(t), ν, u(t)),

ṗ(t) = −∂H
∂X (X(t), p(t), ν, u(t)).

(3.2)

The maximization condition writes:

H(X(t), p(t), u(t), ν) = max
v∈R

H(X(t), p(t), v, ν) for a.e. t ∈ [0, T ]. (3.3)

As the final time is free, the Hamiltonian is zero (see [16]):

H(X(t), p(t), u(t), ν) = 0, ∀t ∈ [0, T ]. (3.4)

The equation on the covector p, also called adjoint equation, becomes:



















ṗ1 = 0,

ṗ2 = 0,

ṗ3 = p1 sin θ − p2 cos θ,

ṗ4 = −p3 + νϕ′(κ).

(3.5)

If ν 6= 0 we can always suppose, by linearity of the adjoint equation, that ν = 1. In this case (resp., if
ν = 0) a solution of the PMP is called a normal extremal (resp., an abnormal extremal). It is easy to see that
all optimal trajectories are normal extremals. Indeed, if ν = 0, then p4 ≡ 0 by the maximization condition
(3.3). From ṗ4 = 0, we immediately deduce that p3 ≡ 0 and, from ṗ3 = 0, it remains p1 sin θ − p2 cos θ ≡ 0.
From H = 0, one also has p1 cos θ + p2 sin θ ≡ 0 and thus p1 = p2 = 0. That contradicts the non-triviality of
(p, ν).

Consequently, Equation (3.4) becomes

p1 cos θ + p2 sin θ + p3κ+ p4u− (1 + ϕ(κ) + ψ(u)) = 0. (3.6)

As regards the maximization condition (3.3), the optimal control is given by

uopt(t) = (ψ′)−1(p4(t)) for t ∈ [0, T ]. (3.7)

Note that the strict convexity and the growth condition on ψ imply that ψ′ realizes a bijection from R to R

and thus its inverse is a continuous and strictly increasing function from R to R.
From (3.5), we get that p1 and p2 are constant. Let us write (p1, p2) = ρ(cosφ, sin φ) for some φ ∈ [0, 2π)

and ρ > 0. Therefore from the Hamiltonian system (3.2) we get that, along an optimal trajectory, the following
equation, independent of u, is satisfied for a.e. t ∈ [0, T ] and for a suitable choice of (ρ, φ) ∈ R× [0, 2π),



















θ̇ = κ,

κ̇ = (ψ′)−1(p4),

ṗ3 = ρ sin(θ − φ),

ṗ4 = −p3 + ϕ′(κ) .

(3.8)

Note that this equation implies that the function θ is solution of a fourth order differential equation of pendulum
type depending on the parameters (ρ, φ).

Setting (x1, y1) = |(x1, y1)|(cosα, sinα) for some α ∈ [0, 2π), a careful analysis of this equation yields the
following results.
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Proposition 3.4. There exists R > 0 and C > 0 such that, for every optimal trajectory with |(x1, y1)| ≥ R
one has

‖(κ, p3, p4)‖L∞ ≤ C and ‖u‖L∞ ≤ C.

Remark 3.5. The boundedness on ‖κ‖L∞ is valid without any hypothesis on |(x1, y1)|.
Proposition 3.6. For every η > 0 there exists Rη > 0 such that for every optimal trajectory with |(x1, y1)| ≥
Rη one has

|φ− α| ≤ η and |ρ− 1| ≤ η

Theorem 3.7. Let us associate to any extremal trajectory X(·) of (OCP) the function Z(t) = (θ(t), κ(t), p3(t), p4(t)).
Given ν > 0 there exist τν > 0 and σν > 2τν such that, for every optimal trajectory with final time T > σν ,
one has

|Z(t)− (α, 0, 0, 0)| < ν for t ∈ [τν , T − τν ].

The proof of these results is rather long and technical, it is postponed to Section 4.3 for Propositions 3.4
and 3.6, and Section 4.4 for Theorem 3.7.

3.4 Numerical study of the asymptotic behavior

The main information provided in the previous section concerning optimal trajectories, solutions of (OCP),
can be summarized as follows:

(1) if the norm of the spatial components (x1, y1) of X1 is large enough then optimal trajectories can be
decomposed in three pieces corresponding to time intervals [0, t̄], [t̄, T − t̄], [T − t̄, T ], where t̄ can be
thought independent of X1 and the arc of the trajectory on [t̄, T − t̄] is approximately a segment (the
accuracy of the approximation depends on the size of t̄);

(2) for any optimal trajectory there exist two scalars (ρ, φ) such that Z(·) = (θ(·), κ(·), p3(·), p4(·)) satisfies
Equation (3.8). Also, the relation

Ĥ(θ, κ, p3, p4) := ρ cos(θ − φ) + p3κ+ p4(ψ
′)−1(p4)− 1− ϕ(κ)− ψ

(

(ψ′)−1(p4)
)

= 0 (3.9)

holds along the trajectory. Moreover, if (x1, y1) is large enough, ρ is close to 1 and φ is close to the angle
α such that (x1, y1) = |(x1, y1)|(cosα, sinα).

The qualitative properties stressed above do not allow neither to understand the local behavior of optimal
trajectories, in particular on the intervals [0, t̄], [T − t̄, T ] defined by the above Condition (1), nor to find them
numerically. However they detect some non-trivial asymptotic behavior of the pair (ρ, φ) and of the initial
data of (3.8), for large values of (x1, y1). The analysis carried out in this section arises from the observation
that, in order to understand the asymptotic shape of the optimal trajectories on [0, t̄], [T − t̄, T ], it would
be enough to complete the information about the initial data of (3.8). Indeed, as far as the initial datum of
the equation is close to its asymptotic value (if it exists) and (ρ, φ) is close to (1, α), we know, from classical
continuous dependence results for the solutions of differential equations, that the solution of (3.8). will in turn
be close (on compact time intervals) to the solution of the asymptotic equation















θ̇ = κ,
κ̇ = (ψ′)−1(p4),
ṗ3 = sin(θ − α),
ṗ4 = −p3 + ϕ′(κ).

(3.10)

where we take as initial value the asymptotic value of the initial data for (3.8). In other words, a precise
knowledge of the asymptotic behavior of such initial data, for large (x1, y1), would provide a tool to study
numerically, through (3.10), the asymptotic shape of optimal trajectories on [0, t̄] (and, by symmetry, on
[T − t̄, T ]).
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Let us first notice that an asymptotic value for p4(0) is simply provided by evaluating (3.9) at time 0, with
the approximation (ρ, φ) = (1, α). More precisely p4(0) coincides with a solution z of the equation

cos(π/2− α) + z (ψ′)−1(z)− 1− ψ
(

(ψ′)−1(z)
)

= 0 . (3.11)

Since the map η 7→ ψ′(η)η − ψ(η) =
∫ η

0
(ψ′(η) − ψ′(µ)) dµ is strictly increasing for η ≥ 0, strictly decreasing

for negative η and goes to infinity for |η| going to infinity, because of the strict convexity of ψ, and since
ψ ∈ C1, we know that the previous equation has exactly one positive solution and one negative solution. Since
u(0) = (ψ′)−1(p4(0)), this suggests the existence of two asymptotic behaviors for the trajectories of (3.8), each
one corresponding to a candidate solution for (OCP). These two trajectories start from X0 by turning on
opposite directions.

To complete the information about the asymptotic value of the initial data for (3.8) we need to investigate
the possible values of p3(0). For this purpose we will develop below a numerical method based on the existence
of a stable manifold for (3.10).

An equilibrium for (3.10) is given by (θ, κ, p3, p4) = (α, 0, 0, 0) and we know from Theorem 3.7 that, for
solutions of (OCP) with (x1, y1) far enough from the origin, the corresponding values of (θ(·), κ(·), p3(·), p4(·))
are close to this equilibrium on some interval [t̄, T − t̄] for large t̄ and T , which suggests some stability property
of the equilibrium. It is actually easy to see that Zeq = (α, 0, 0, 0) is not a stable equilibrium of the system.
Indeed the linearized system around Zeq is

Ż = J(Z − Zeq) , J =









0 1 0 0
0 0 0 1/ψ′′(0)
1 0 0 0
0 ϕ′′(0) −1 0









, Z ∈ R4, (3.12)

where the matrix J has exactly two eigenvalues λ1, λ2 with negative real part, corresponding to some eigen-
vectors v1, v2, while the other two eigenvalues µ1, µ2, with corresponding eigenvectors w1, w2, have positive
real part. Therefore Zeq is a stable equilibrium for the linearized dynamics restricted to Zeq + V , where V is
the two dimensional real subspace of R4 spanned by v1, v2 (notice that v1, v2 can be assumed either real or
complex conjugate).

The classical stable manifold theorem (see for instance [11]) ensures the existence of a manifold Ws of
dimension 2, called stable manifold, which is tangent to V and which contains all the trajectories converging
to the equilibrium (exponentially fast). Note that, since the continuous function Ĥ , with (ρ, φ) = (1, α), is a
first integral of the dynamics (3.10) and Ĥ(Zeq) = 0 we have Ws ⊂ Ĥ−1(0).

On a small neighborhood of the equilibrium all the trajectories that are not contained in Ws diverge from
it exponentially fast (see Figure 3). Let us fix such a neighborhood U . From Theorem 3.7 we know that

9
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Figure 4: Asymptotic behavior of optimal trajectories with final point far from the origin.

there exists t̄ such that, if Z(·) is a trajectory of (3.8) associated to a solution of (OCP), then Z(t) ∈ U
for every t ∈ [t̄, T − t̄], provided that (x1, y1) is far enough from the origin. In particular if we consider a

sequence of final points X
(n)
1 for (OCP) with spatial components (x

(n)
1 , y

(n)
1 ) = n(cosα, sinα) we deduce that,

for the corresponding sequence of trajectories Z(n)(·), the limit Z̄ of Z(n)(t̄) exists (up to a subsequence) and
is contained in Ws. Continuous dependence results for the solutions of differential equations guarantee that
the limit of Z(n)(0) coincides with Z̄(0), where Z̄(·) is the solution of (3.10) such that Z̄(t̄) = Z̄. In particular
it must be Z̄(0) = (π/2, 0, p̄3, p̄4) where p̄4 satisfies (3.11).

The previous reasoning suggests a method to study numerically the possible values of p̄3 at time 0. Indeed if
U is small enough then Ws is well approximated by the affine space Zeq+V . Consequently one can numerically
look for solutions of the asymptotic equation (3.10) with

Z(t̄) ∈ (Zeq + V ) ∩ U

and such that θ(0) = π/2, κ(0) = 0. More precisely a simple numerical method can be specified as follows. Let
us fix a closed curve γ(s) = ε (cos(s)v̄1 + sin(s)v̄2), where v̄1, v̄2 are real vectors spanning V and ε is a small
constant (the precision of the method increases as ε goes to zero). Since all the trajectories converging to the
equilibrium must cross this curve (in the approximation Ws ≃ Zeq + V ) we can recover them by following
backwards in time the solutions of (3.10) starting at Z(0) = Zeq + γ(s) up to a time t̃ < 0 such that κ(t̃) = 0.
The candidate approximate asymptotic trajectories we are looking for are then determined by the values of
s for which, for a reasonably not too large |t̃| such that κ(t̃) = 0, we also have θ(t̃) = π/2. The value Z(0)
is then a candidate value for the initial datum of a trajectory of (3.8) associated to a solution of (OCP), for
large values of (x1, y1). Moreover this simple method allows to approximate numerically the initial arc of such
optimal trajectories (see Figure 4 which considers the case ϕ ≡ 0, ψ(z) = z2).

An effective method to globally construct solutions of (OCP) for large values of (x1, y1) is the following.
Define a further closed curve γ̂(ŝ) = ε̂ (cos(ŝ)w̄1 + sin(ŝ)w̄2), where w̄1, w̄2 are real vectors generating the
unstable subspace W (defined similarly to V ). Assume that ε̂ ≪ ε ≪ 1 and consider the solutions of (3.8)
with φ = 0 and starting from Z(0) = γ(s) + γ̂(ŝ), for suitable choices of ρ, ε, ε̂, s, ŝ such that Ĥ(Z(0)) = 0.
For a fixed small enough ε > 0 and fixed s ∈ [0, 2π] it turns out that the trajectory on intervals [t1, 0], with
t1 < 0 not too large, is subjected to small variations with respect to the choice of ε̂ ≪ ε, ŝ ∈ [0, 2π], ρ such
that Ĥ(Z(0)) = 0. In other words the trajectory approximately only depends on ε, s on the interval [t1, 0].
Similarly as before, the value s and the time t1 can be chosen in such a way that κ(t1) = 0 and, at the same
time, θ(t1) = π/2− φ, for a prescribed value φ.

On the other hand for positive time the components along the stable subspace V decrease exponentially
as far as the components along W are small so that, after a certain time, the trajectory evolves close to the
unstable manifold Wu (see Figure 3). The dynamics at this stage essentially depends on the initial choice of

10
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Figure 5: Candidate optimal trajectories for large values of (x1, y1).

ε̂ and ŝ, where the first parameter determines the range of time such that the trajectory is confined inside U ,
while the second one essentially determines the final angle.

This method gives rise, up to a rotation of an angle φ and appropriate translations, to solutions of (OCP).
Figure 5 depicts a set of candidate solutions of (OCP) constructed by using the previous method, for a
particular choice of the angle φ and in the case ϕ ≡ 0, ψ(z) = z2.

3.5 The case with free curvature at the extremities

In the definition of the optimal control problem (OCP) given in Section 2, we have chosen to take the initial
and final values of the curvature equal to 0. Another reasonable condition would be to let these values free.
In this case, the optimal control problem writes as follows.

(ÕCP) Fix an initial point Q0 = (0, 0, π/2) in coordinates (x, y, θ). For every final point Q1 =
(x1, y1, θ1) ∈ R2×S1, find the trajectoriesX(·) = (x(·), y(·), θ(·), κ(·)) of (2.1) such that (x(0), y(0), θ(0)) =
Q0 and (x(T ), y(T ), θ(T )) = Q1, and minimizing the cost (2.2) under hypotheses (H1)–(H4).

The analysis of (ÕCP) leads essentially to the same results than the one of (OCP). The only noticeable
differences are the following ones.

• When applying the PMP, in addition to the Hamiltonian equations (3.2), one obtain also a transversality
condition on (p(0), p(T )), namely

p4(0) = p4(T ) = 0.

These conditions play the same role than the condition κ(0) = κ(T ) = 0 in (OCP).

• In Section 3.4, the relation (3.9) on the Hamiltonian allows to characterize the asymptotic value κ(0)
(and not the one of p4(0) through Equation (3.11) as in (OCP)), in function of p3(0). Indeed, since
p4(0) = 0, one has, for the asymptotic values:

cos(π/2 − α) + p3(0)κ(0)− 1− ϕ(κ(0)) = 0.

The numerical methods presented in Section 3.4 have to be slightly modified in accordance with the
changes above.

11
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Figure 6: The function κ(·) associated to the control function of Proposition 4.1

Note also that the proof of Lemma 4.8 has to be modified (see Remark 4.9).

4 Proofs of the main results

4.1 Comparison with reference trajectories

In order to obtain a first rough estimate of the optimal cost, we exhibit particular trajectories of (2.1) steering
the system from X0 to X1.

Proposition 4.1. Given σ > 0, a pair (λ0, λ1) ∈ R3
+ and T ≥ 2λ0 + 2λ1 we define the control function

u(t) =























−σ t ∈ [0, λ0]
+σ t ∈ (λ0, 2λ0]
0 t ∈ (2λ0, T − 2λ1]

+σ t ∈ (T − 2λ1, T − λ1]
−σ t ∈ (T − λ1, T ]

. (4.1)

Then, for every choice of X1 = (x1, y1, θ1, 0) with |(x1, y1)| ≥ 8
√

π/σ, there exists a pair (λ0, λ1) ∈ [0,
√

3π/σ]×
[0,

√

5π/σ] and T ≥ 2λ0 +2λ1 such that the trajectory of (2.1) with u(·) given by (4.1) starting at X0 reaches
X1 at time T .

Proof. First, let us observe that κ = 0 along the arc corresponding to u = 0, which is therefore a segment,
and κ(0) = κ(T ) = 0 (see Figure 6). Also, since θ̈ = u, one can easily check that θ(t) = θ0 − σλ20 between 2λ0
and T − 2λ1 and that θ(T ) = θ0 − σλ20 + σλ21. Therefore, since it must be θ = θ1 at the final time, and up to
assuming without loss of generality that θ1 − θ0 ∈ [0, 2π), we can assume that λ1 is the following continuous
function of λ0 ∈ [0,

√

3π/σ]:

λ1 = λ1(λ0) =

√

θ1 − θ0
σ

+ λ20 .

Let us denote by γ0(·) the trajectory of (2.1) corresponding to u(·) starting at X0 at time 0 and by γ1(·) the
trajectory of (2.1) corresponding to u(·) based at X1 at time T . Our aim is to prove that, for an appropriate
choice of (λ0, T ), these trajectories coincide. For this purpose it is enough to prove that their projections on
the plane coincide.

Let us consider the points P0 and P1 which are the projections on the plane of γ0(2λ0) and γ1(T − 2λ1)
(see Figure 7). Since for both γ0(·) and γ1(·) the angle θ(·) is constantly equal to α(λ0) := θ0 − σλ20 on the
interval [2λ0, T − 2λ1], we deduce that the two curves coincide, up to an appropriate choice of T > 0, if and
only if the angle β(λ0) between the vector P1 − P0 and the horizontal axis is equal to α(λ0) (up to a multiple
of 2π).

Let us observe that λ0 + λ1 ≤
√

3π/σ +
√

5π/σ ≤ 4
√

π/σ. Since |P0| < 2λ0 and |P1 − (x1, y1)| < 2λ1
when λ0 6= 0 and λ1 6= 0, if |(x1, y1)| ≥ 8

√

π/σ then

〈(x1, y1), P1 − P0〉 = 〈(x1, y1), P1 − (x1, y1)〉+ 〈(x1, y1), (x1, y1)〉 − 〈(x1, y1), P0〉
≥ |(x1, y1)|2 − 2(λ0 + λ1)|(x1, y1)|
≥ 0 .
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Figure 7: Proposition 4.1, construction of the reference trajectory

This implies that β(·) takes values on an interval of length less than π. Moreover, since P0 and P1 are
continuous functions of λ0, the map β(·) is also continuous. It follows that the range of the continuous
function α(·)− β(·) is an interval whose length is larger or equal than 2π and therefore it contains a multiple
of 2π, i.e. there exists λ0 ∈ [0,

√

3π/σ] such that α(λ0) = β(λ0) up to a multiple of 2π, as required. �

Comparison with the reference trajectories defined above leads to relevant estimates as shown by the following
proposition.

Proposition 4.2. There exists a constant Cϕ,ψ only depending on ϕ, ψ such that the following holds: if
|(x1, y1)| ≥ 8

√
π and if uopt(·) is an optimal control defined on [0, T ] steering the system from X0 to X1 =

(x1, y1, θ1, 0) the following relations hold

|(x1, y1)| ≤ T ≤ C(uopt(·)) ≤ |(x1, y1)|+ Cϕ,ψ . (4.2)

Consequently,
∫ T

0

(

ϕ(κ(t)) + ψ(uopt(t))
)

dt ≤ Cϕ,ψ . (4.3)

Proof. If |(x1, y1)| ≥ 8
√

π/σ we know from Proposition 4.1 that there exists u(·) defined as in (4.1) and
steering the system from X0 to X1. If P0, P1 are defined as in the proof of Proposition 4.1 we have the
following estimates

C(u(·)) = T + 2(λ0 + λ1)ψ(σ) + 2
( ∫ λ0

0 ϕ(σt)dt +
∫ λ1

0 ϕ(σt)dt
)

≤ T + 8
√

π/σ
(

ψ(σ) + ‖ϕ‖L∞([0,
√
5πσ])

)

= |P1 − P0|+ 8
√

π/σ
(

1 + ψ(σ) + ‖ϕ‖L∞([0,
√
5πσ])

)

≤ |(x1, y1)|+ |P1 − (x1, y1)|+ |P0|+ 8
√

π/σ
(

1 + ψ(σ) + ‖ϕ‖L∞([0,
√
5πσ])

)

< |(x1, y1)|+ 8
√

π/σ
(

2 + ψ(σ) + ‖ϕ‖L∞([0,
√
5πσ])

)

.

Thus, by choosing σ = 1 and since C(uopt(·)) ≤ C(u(·)), we deduce the explicit bounds (4.2), (4.3), with
Cϕ,ψ = 8

√
π
(

2 + ψ(1) + ‖ϕ‖L∞([0,
√
5π])

)

. �

Remark 4.3. For every ε > 0 and every optimal control uopt defined on [0, T ], let Ueps be the subset of [0, T ]
given by

Uε = {t ∈ [0, T ] : |uopt(t)| ≥ ε} .
From Equation (4.3) and the strict convexity of ψ, we deduce that for every ε > 0 there exists a positive
constant Cϕ,ψ such that for every uopt defined on [0, T ], µ(Uε) ≤ Cϕ,ψ.

As a consequence of (4.3) we easily get the uniform equicontinuity of the κ components of the optimal
trajectories, solutions of (OCP). This is a particular case of the following lemma, that will also be useful in
the next sections.
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Lemma 4.4. For every Γ > 0 and ε > 0 there exists δε,Γ > 0 such that |s1 − s2| ≤ δε,Γ implies |κ(s1) −
κ(s2)| ≤ ε for every [s1, s2] ⊂ [t1, t2], whenever t1, t2 and u(·) are such that

∫ t2
t1
ψ(u(s))ds ≤ Γ. Moreover

limΓ→0 δε,Γ = +∞.

Proof. By using condition (H3) and (4.3) we get

|κ(s2)− κ(s1)| ≤
∫ s2

s1

|u(τ)|dτ

≤
∫ s2

s1

(

(|u(τ)| −R)+ +R
)

dτ

≤
(

∫ s2

s1

(

(|u(τ)| − R)+
)p
dτ

)1/p

|s2 − s1|1/q +R|s2 − s1|

≤
( 1

C

∫ s2

s1

ψ(u(τ))dτ
)1/p

|s2 − s1|1/q +R|s2 − s1|

≤
(

Γ

C

)1/p

|s2 − s1|1/q +R|s2 − s1| , (4.4)

where, for a real valued function f(·), we define f+(t) = max{0, f(t)} and q is such that 1/p + 1/q = 1.
To conclude the proof of the lemma it is enough to observe that (H3) actually holds for arbitrary small R,
provided that C is also chosen small enough. �

Comparisons with reference trajectories also give estimates of the cost of pieces of trajectories that are
close to a line segment.

Lemma 4.5. For every C > 0 there exists δ > 0 and R > 0 large enough such that the following holds. Let
W0 = (x̄0, ȳ0, θ0, κ0), W1 = (x̄1, ȳ1, θ1, κ1), and set (x̄1 − x̄0, ȳ1 − ȳ0) = Γ(cos θ̄, sin θ̄) for some Γ > 0 and
θ̄ ∈ [0, 2π]. Then, if |θi − θ̄| < δ, |κi| < δ for i = 0, 1 and Γ ≥ R, any optimal trajectory connecting W0 to W1

satisfies C(u(·)) ≤ |(x̄1 − x̄0, ȳ1 − ȳ0)|+ C.

Proof. The proof of the lemma relies on the construction of a special trajectory satisfying the hypotheses of
the lemma, for suitable values of δ and R, and such that C(u(·)) ≤ |(x̄1 − x̄0, ȳ1 − ȳ0)|+ C. Consider control
functions of the form:

u(t) =























δ0 t ∈ [0, τ1] ,
−δ0 t ∈ (τ1, τ2] ,

0 t ∈ (τ2, T − τ3] ,
δ1 t ∈ (T − τ3, T − τ4] ,

−δ1 t ∈ (T − τ4, T ] ,

for some choices of τi > 0 , i = 1, 2, 3, 4, of T > 0 and with δi ∈ {δ,−δ} for i = 0, 1. Let us consider the
two trajectories γ0(·) = (x0(·), y0(·), θ0(·), κ0(·)) and γ1(·) = (x1(·), y1(·), θ1(·), κ1(·)) corresponding to u(·)
and such that γ0(0) = W0 and γ1(T ) = W1, respectively. If we suppose that τ2 = 2τ1 + κ0/δ0 then a simple
computation shows that κ0(t) = 0 on [τ2, T − τ3]. We compute the value of θ(·) on [τ2, T − τ3]

θ(t) = θ0 + δ0

[(

τ1 +
κ0
δ0

)2

− κ20
2δ0

]

, t ∈ [τ2, T − τ3] ,

and we observe that, for every fixed θ0, κ0 satisfying |θ0−θ̄| < δ and |κ0| < δ and for every value θ̃ ∈ [θ̄−δ, θ̄+δ]
there exists δ0 ∈ {−δ, δ} and τ1 ∈ [0, 1+

√

5/2] such that τ2 = 2τ1 + κ0/δ0 ∈ [0, 1 +
√
10], θ(t) = θ̃. Therefore

we can associate to each value θ̃ ∈ [θ̄ − δ, θ̄ + δ] a value of τ2 and, as a consequence, we can construct a
continuous map associating θ̃ ∈ [θ̄ − δ, θ̄ + δ] to a point (x0(τ2), y

0(τ2)).
Let us now consider the trajectory γ1(·). If we set τ3 = 2τ4 + κ1/δ1 we have that κ1(t) = 0 on [τ2, T − τ3].

Moreover we have

θ(t) = θ1 − δ1

[(

τ4 +
κ1
δ1

)2

− κ21
2δ1

]

, t ∈ [τ2, T − τ3] .

Again, it is possible to associate to each value θ̃ ∈ [θ̄ − δ, θ̄ + δ] corresponding values of δ1 ∈ {−δ, δ} and
0 ≤ τ4 ≤ τ3 ≤ 1 +

√
10 in such a way that (x1(T − τ3), y

1(T − τ3)) varies continuously with respect to θ̃.
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We want now to prove that γ0(·) and γ1(·) coincide, up to the choice of T , for a suitable value of θ̃.
Since it is easy to see that (x0(τ2), y

0(τ2)) = (x̄0, ȳ0) + τ2(cos θ̄, sin θ̄) +O1(δ) and (x1(T − τ3), y
1(T − τ3)) =

(x̄1, ȳ1)− τ3(cos θ̄, sin θ̄) +O2(δ) with |Oi(δ)| < Mδ for some universal constant M we have that

(x1(T − τ3), y
1(T − τ3))− (x0(τ2), y

0(τ2)) = (Γ− τ2 − τ3)(cos θ̄, sin θ̄)−O1(δ) +O2(δ)

= Γ′(cos θ′, sin θ′)

for some θ′ with |θ′− θ̄| < δ and Γ′ > 0, provided that R is large enough (independently of δ). In particular θ′

can be thought as a continuous function of θ̃, and we conclude that θ′− θ̃ = 0 for some value of θ̃ ∈ [θ̄−δ, θ̄+δ].
This implies that γ0(·) = γ1(·), up to choosing T = Γ′ + τ2 + τ3.

We have therefore constructed a trajectory (x(·), y(·), θ(·), κ(·)) = γ0(·) = γ1(·) corresponding to u(·) and
connecting W0 to W1.

Let us estimate the cost corresponding to this trajectory. We have that

∫ T

0

(

ϕ(κ(t)) + ψ(u(t))
)

dt < 2(1 +
√
10)

(

‖ϕ‖
L∞

(

[0,δ(2+
√

5/2 )]
) + ψ(δ)

)

,

where the right-hand side can be made arbitrarily small by appropriately choosing δ. It remains to compare T

with the difference |(x̄1− x̄0, ȳ1− ȳ0)|. We know that |(x̄1− x̄0, ȳ1− ȳ0)| =
∫ T

0 cos(θ(t)− θ̄)dt. Since |θ(t)− θ̄| ≤
Mδ for a suitable M > 0 we have that

∫ τ2
0 cos(θ(t)− θ̄)dt > τ2(1−M2δ2/2) and that

∫ T

T−τ3 cos(θ(t)− θ̄)dt >

τ3(1−M2δ2/2). Moreover
∫ T−τ3
τ2

cos(θ(t) − θ̄)dt is the projection of the segment between P1 = (x(τ2), y(τ2))

and P2 = (x(T − τ3), y(T − τ3)) on the line l connecting (x̄0, ȳ0) to (x̄1, ȳ1). In particular since the distance
among the points Pi and the line l is bounded by Mδ for a suitable M > 0, it is easy to verify that if
T − τ3 − τ2 > 4M2 then the difference among the length of the segment between P1 and P2 and the length of

its projection on l is bounded by δ2. In other words
∫ T−τ3
τ2

cos(θ(t) − θ̄)dt > T − τ3 − τ2 − δ2. By choosing δ
small enough we then conclude the proof of the lemma.

�

4.2 Some preliminary lemma

Let α ∈ [0, 2π) be such that (x1, y1) = |(x1, y1)|(cosα, sinα) and let us write as (p1, p2) = ρ(cosφ, sinφ), for
some φ ∈ [0, 2π), the first two components of the covector associated to an optimal trajectory and by θ(·) the
corresponding angle. Note that the evolution of p3 is described by the equation

ṗ3(t) = ρ sin(θ(t) − φ) . (4.5)

We have the following lemma.

Lemma 4.6. For every ε > 0 there exists Tε > 0 such that, for every optimal trajectory, one has µ(Jε) ≤ Tε,
where the set Jε is defined as

Jε = {τ ∈ [0, T ] : |α− θ(τ)| ≥ ε} .

Proof. Let us first note that |(x1, y1)| = 〈(cosα, sinα), (x1, y1)〉. Since (x1, y1) =
∫ T

0 (cos θ(t), sin θ(t))dt we
therefore get

|(x1, y1)| =
∫ T

0

cos(α− θ(t))dt .

In particular if ε is small enough we have

|(x1, y1)| =
∫

Jε

cos(α− θ(t))dt +

∫

Jc
ε

cos(α− θ(t))dt <
(

1− ε2

4

)

µ(Jε) + µ(Jcε ) = T − ε2

4
µ(Jε).

Since from the uniform bound (4.2) we have T − Cϕ,ψ ≤ |(x1, y1)| for |(x1, y1)| large enough the lemma is
proved with Tε = 4Cϕ,ψ/ε

2. �

Lemma 4.7. Fix η > 1 and k̄ > 0 and, for any optimal trajectory and any k ≥ k̄ define Sk = {t ∈ [0, T ] :
|κ(t)| ∈ [k, kη]}. Then there exists Cϕ,ψ > 0, independent of k, such that µ(Sk) ≤ Cϕ,ψ.
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Proof. Note that Sk is the union of two sets S+
k and S−

k defined respectively by the sign of κ.
For the sequel, we only provide estimates for S+

k since the same ones hold true for S−
k . For δ > 0, let Kδ,k

be the union of all disjoint subintervals of S+
k of length at least δ. We first prove that there exists Cδϕ,ψ > 0

such that µ(Kδ,k) ≤ Cδϕ,ψ for any optimal trajectory and k ≥ k̄.

Assume without loss of generality that δ < 2π/k̄ and fix ε̄ = δk̄/3. Notice that for every measurable set
S ⊂ S+

k such that
∫

S θ̇(t)dt =
∫

S κ(t)dt = l for some l > 0 one has µ(S) ≥ l/(kη).

It turns out that if [t1, t2] ⊂ S+
k is such that

∫ t2
t1
κ(t)dt = 3ε̄ then µ([t1, t2] ∩ Jε̄) ≥ ε̄/(kη), where Jε̄ is

defined as in Lemma 4.6. Clearly t2 − t1 ≤ 3ε̄/k ≤ 3ε̄/k̄ = δ. Let now I ⊂ S+
k be an interval such that

µ(I) ≥ δ and m ≥ 1 be the largest integer such that 3ε̄m/k ≤ µ(I). Since µ(I) ≤ 3ε̄(m + 1)/k ≤ 6ε̄m/k it
turns out that

µ(I ∩ Jε̄) ≥
ε̄m

kη
≥ µ(I)

6η
.

Thus, by definition of Kδ,k and the previous inequality, one gets

Tε̄ ≥ µ(Jε̄) ≥ µ(Kδ,k ∩ Jε̄) ≥
µ(Kδ,k)

6η
,

hence proving that the measure of Kδ,k is bounded by Cδϕ,ψ = 6ηTε.
To conclude the proof of the lemma let us define Ŝ+

k = {t ∈ [0, T ] : κ(t) ∈ [k/ν, kην]} for some ν > 1 and

define K̂δ,k similarly as before. Let us observe that [k/ν, kην] ⊃ [k, kη] + B(0, ε⋆) for some ε⋆ > 0 and for
every k ≥ k̄. According to Lemma 4.4, there exists δ⋆ such that |κ(s)−κ(t)| ≤ ε⋆ if |s− t| ≤ δ⋆ for s, t ∈ [0, T ].
One deduces that S+

k ⊂ K̂δ⋆,k. Since, as proved above, K̂δ⋆,k has uniformly bounded measure, we get the
conclusion.

�

Lemma 4.8. There exists a constant Γϕ,ψ > 0 such that for any optimal trajectory ‖κ(t)‖L∞([0,T ]) ≤ Γϕ,ψ.
Moreover, for every ε > 0, there exists Tε > 0 such that, for every optimal trajectory, one has µ(Kε) ≤ Tε,
where the set Kε is defined as

Kε = {τ ∈ [0, T ] : |u(τ)| ≥ ε or |κ(τ)| ≥ ε} .

Proof. Fix η > 1. Given an optimal trajectory, define k̂ = ‖κ(t)‖L∞([0,T ])/η. Since κ is continuous and

κ(0) = κ(T ) = 0, the inverse image of [k̂, k̂η] under κ contains a segment [s, t] such that |κ(s)−κ(t)| = k̂(η−1).

From Lemma 4.7 there exists a positive constant Ĉϕ,ψ independent of k̂ such that |s− t| ≤ Ĉϕ,ψ. Therefore,
the uniform equicontinuity characterized in Lemma 4.4 (or, more directly, Equation (4.4)) yields a uniform

bound on |κ(s)− κ(t)| and thus on k̂. The first part of the lemma is proved.
As regard the second part of the lemma, by using Remark 4.3, it is enough to prove that the set Cε :=

{τ ∈ [0, T ] : |κ(τ)| ≥ ε} has uniformly bounded measure. This easily follows from Lemma 4.7 by noticing
that Cε = {τ ∈ [0, T ] : |κ(τ)| ∈ [ε, ηε]} with η = Γϕ,ψ/ε.

�

Remark 4.9. In the case where the curvature at the extremities is free, the bound on ‖κ(t)‖L∞([0,T ]) only holds
when T is greater than a positive constant Tϕ,ψ > 0. Indeed, at the beginning of the proof of the lemma, the

existence of a segment [s, t] such that |κ(s)−κ(t)| = k̂(η− 1) can not be ensured for any trajectory when κ(0)
and κ(T ) are not equal to 0. However such a segment exists as soon as T is greater than the constant Cϕ,ψ
given by Lemma 4.7. The rest of the proof is unchanged.

We need now a simple technical lemma.

Lemma 4.10. For every m ∈ N there exist µm > 0 and λm ∈ (0, 1) such that, for every t1, t2 ∈ R, C > 0
and f ∈ Cm([t1, t2]) satisfying |f (m)(t)| > C there exists a subinterval of [t1, t2] of length λm(t2 − t1) where

|f(t)| > µmC(t2 − t1)
m. In particular we can take λm = 4−m and µm = 4−

m(m+1)
2 .

Proof. The proof goes by induction. Clearly the lemma is true for m = 0. Assume that the lemma is true
up to m = m̂ and let us prove it for m = m̂ + 1. By the inductive hypothesis we know that |f (m̂+1)(t)| > C
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implies that |f ′(t)| > µm̂C(t2 − t1)
m̂ on a certain subinterval of [t1, t2] of length λm̂(t2 − t1). For simplicity,

and without loss of generality, let us identify this subinterval with [0, τ ], where τ = λm̂(t2 − t1), and let us
assume that f is increasing on it.

We claim that |f(t)| > µm̂λm̂C
4 (t2 − t1)

m̂+1 either in [0, τ/4] or in [3τ/4, τ ]. Indeed if this is not true then,

since f is increasing, we would have f(τ/4) ≥ −µm̂λm̂C
4 (t2− t1)m̂+1 and f(3τ/4) ≤ µm̂λm̂C

4 (t2− t1)m̂+1, which

implies f(3τ/4) − f(τ/4) ≤ µm̂λm̂C
2 (t2 − t1)

m̂+1 = µm̂C(t2 − t1)
m̂ τ

2 and which contradicts the hypothesis
|f ′(t)| > µm̂C(t2 − t1)

m̂. The lemma is therefore proved by taking λm̂+1 = λm̂/4 and µm̂+1 = µm̂λm̂/4.
�

As a consequence, we obtain a bound on the L∞ norm of (p3, p4).

Lemma 4.11. There exist two positive constants Cϕ,ψ and Tϕ,ψ such that, for every optimal trajectory defined
on [0, T ] with T > Tϕ,ψ, one has ‖(p3, p4)‖L∞([0,T ]) ≤ Cϕ,ψ(1 + ρ), where we recall that ρ := |(p1, p2)|.

Proof. Define γl := pl/(1 + ρ) for l = 3, 4. Then one has

γ̇3 = sin(θ − φ), γ̇4 = −γ3 + ϕ′(κ)/(1 + ρ),

along any optimal trajectory defined on [0, T ]. Notice that |γ̇3(t)| ≤ 1 and, from Lemma 4.8, we have
|ϕ′(κ)|/(1 + ρ) ≤ Kϕ,ψ for some constant Kϕ,ψ. From the dynamics of γ4, if t0 is such that |γ3(t0)| =
‖γ3‖L∞([0,T ]), one gets that |γ̇4(t)| ≥ ‖γ3‖L∞([0,T ]) − |t − t0| − Kϕ,ψ for t ∈ [0, T ]. From Lemma 4.10, we
deduce that, if ‖γ3‖L∞([0,T ]) is not uniformly bounded for T large enough then equation (4.3) cannot hold
true. Therefore we get a uniform bound on |γ̇4| which, still according to (4.3) and a standard argument by
contradiction, implies the uniform boundedness of γ4. The proof of the lemma is complete.

�

We use the previous lemma to obtain the following one.

Lemma 4.12. For every ν > 0 there exists Tϕ,ψ > 0 such that, for any optimal trajectory defined on [0, T ]
with T ≥ Tϕ,ψ one has ρ ≥ 1− ν.

Proof. We argue by contradiction and assume that |(p1, p2)| ≤ 1 − ν. For ε > 0 and t0 ∈ [0, T ] \Kε, where
Kε is defined in Lemma 4.8, the Hamiltonian at time t0 writes

H = p1 cos θ(t0) + p2 sin θ(t0) + p3(t0)κ(t0) + p4(t0)u(t0)− (1 + ϕ(κ(t0)) + ψ(u(t0)))

≤ −1 + |(p1, p2)|+ 2Cϕ,ψε

≤ −ν + 2Cϕ,ψε.

Take now ε = ν/4Cϕ,ψ, and T > µ(Kε) in the contradiction assumption, so that [0, T ]\Kε 6= ∅. One therefore
gets that H < 0, which contradicts the PMP. Hence the conclusion.

�

The next proposition will be crucial in order to prove our main asymptotic results.

Proposition 4.13. For every η > 0 there exists Rη > 0 such that for every optimal trajectory with |(x1, y1)| ≥
Rη one has |φ− α| ≤ η and ρ ≤ 1 + η.

Proof. We first establish the fact that |φ − α| ≤ η if |(x1, y1)| is large enough. Assume that |φ − α| > η.
Then, our aim is to prove that there exists Tη such that T < Tη. One has, for every t, s ∈ [0, T ],

|θ(t) − θ(s)| ≤ Cϕ,ψ|t− s|,

where Cϕ,ψ is provided by Lemma 4.8. Set ε = η/3 and δε = ε/Cϕ,ψ. Let Jε be the set defined in Lemma 4.6
and consider the set

J̃ε :=
(

J2ε +B(0, δε)
)

∩ [0, T ] .

Clearly, from the definition of δε, we have that J̃ε ⊂ Jε. Therefore from Lemma 4.6 we have that µ(J̃ε) < Tε.
Moreover for every t ∈ J̃ε \ ([0, δε] ∪ [T − δε, T ]) there exists a neighborhood in [0, T ] of diameter at least 2δε
and completely contained inside J̃ε. We deduce that J̃ε is the union of a finite number of intervals and that
the number of these intervals is bounded by Tε/(2δε) + 1. As a consequence the complement J̃cε is also the
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union of at most nε := Tε/(2δε) + 2 ≤ Tε/δε intervals. Since µ(J̃cε ) ≥ T − Tε ≥ T
2 if T is large enough, we get

the existence of a subinterval I of J̃cε such that

µ(I) ≥ µ(J̃cε )

nε
≥ Tδε

2Tε
=:MεT .

In particular, since J̃cε ⊂ Jc2ε implies that |φ−θ(t)| ≥ |φ−α|− |α−θ(t)| > ε on I, we have that, if |(x1, y1)|
is far enough from the origin, one gets according to (4.5) and Lemma 4.12,

|ṗ3| >
1

2
sin ε, on I. (4.6)

By Lemma 4.10, there exists a subinterval I ′ of I with µ(I ′) ≥ MεT/4 and |p3| > NεT on I ′, where Nε
only depends on ε. We immediately deduce from Lemma 4.8 and the equation of p4 that |ṗ4| > NεT/2 on
I ′ for T large enough. Again, by Lemma 4.10, there exists a subinterval I ′′ of I ′ with µ(I ′′) ≥ MεT/16 and
|p4| > NεMεT

2/16 on I ′′. That contradicts Remark 4.3 and we deduce that |φ − α| ≤ η for |(x1, y1)| large
enough.

As for the second one, this is an immediate consequence of the above results. Indeed, for every ε > 0, there
exists T̄ large enough such that every optimal trajectory defined on [0, T ] with T ≥ T̄ satisfies |θ(t0)−φ| < ε,
|κ(t0)| < ε and |u(t0)| < ε, for some t0 ∈ [0, T ]. Then, from H = 0, we get

0 = ρ cos(θ(t0)− φ) + p3(t0)κ(t0) + p4(t0)u(t0)− (1 + ϕ(κ(t0)) + ψ(u(t0)))

≥ ρ(1− ε2/2)− 2Cϕ,ψ(1 + ρ)ε− 1− ‖ϕ(·)‖L∞([0,ε]) − ψ(ε)

= ρ(1− 2Cϕ,ψε− ε2/2)− 1− 2Cϕ,ψε− ‖ϕ(·)‖L∞([0,ε]) − ψ(ε),

and, by taking ε small enough, the proof of the lemma is concluded.
�

4.3 About Propositions 3.4 and 3.6

One immediately deduces from Lemma 4.11 and Proposition 4.13 that p3, p4 and u are uniformly bounded
for T large enough over all optimal trajectories. This, together with Lemma 4.8, establish Propositions 3.4.
Proposition 3.6 results from Lemma 4.12 and Proposition 4.13.

At first sight it seems reasonable to conjecture that the previous results can be improved in the following
directions:

(a) extending the uniformity results to all optimal trajectories, i.e. independently of the final time T ;

(b) as the terminal point (x1, y1) goes to infinity, the corresponding optimal control u(·) tends to 0.

However, the next two remarks show that it is not the case.

Remark 4.14. Disproving Conjecture (a) amounts to show that the control function u(·) associated to optimal
trajectories reaching points in a neighborhood of the origin is not uniformly bounded. More precisely, we will

exhibit a sequence of points X
(n)
1 =

(

x
(n)
1 , y

(n)
1 , θ

(n)
1 , 0

)

with limn→∞ |(x(n)1 , y
(n)
1 )| = 0 such that the optimal

controls u(n)(·) steering the system from X0 to X
(n)
1 satisfy limn→∞ ‖u(n)(·)‖∞ = ∞. For ε > 0, let us consider

uε(t) =

{

ūε t ∈ [0, ε/2] ,
−ūε t ∈ (ε/2, ε] ,

where ūε > 0 verifies εψ(ūε) = m, where m is a positive constant to be fixed later. Note that ūε tends to
infinity as ε goes to 0 and ūε ≤ C0(m/ε)

1/p for C0 independent of ε and m, provided that ε/m is not too
large. It implies that ϕε :=

∫ ε

0
ϕ(ūεs)ds tends to 0 as ε goes to 0.

We remark that, for every t ∈ [0, ε] the angle θε(t) corresponding to uε(t) maximizes θ(t) under the
constraints ‖u‖∞ ≤ ūε, θ(0) = π/2, κ(0) = 0 and κ(ε) = 0. Indeed, for every such u(·), one has κ(t) =
∫ t

0 u(s)ds ≤
∫ t

0 uε(s)ds, for every t ∈ [0, ε]. Notice also that θε(ε) = π/2 + ūεε
2/4. Assuming that we start

from the origin we also have that

y(t) =

∫ t

0

sin θ(t)dt >

∫ t

0

sin θε(t)dt = yε(t) and x(t) =

∫ t

0

cos θ(t)dt >

∫ t

0

cos θε(t)dt = xε(t)
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where θ(·) is associated with a control u(·) satisfying the previous constraints and not almost everywhere equal
to uε(·). This implies that, in order to reach the point (xε(ε), yε(ε)) at time T with a control u(·) 6= uε(·)
satisfying the previous constraints, it must be T > ε and y(ε) > yε(ε) so that there exists t̄ ∈ [ε, T ] such that
ẏ(t̄) < 0, i.e. θ(t̄) ∈ (π, 2π). Let us prove that the corresponding trajectory cannot be optimal. First we note
that the total cost corresponding to uε(·) is m+ ε+ 2ϕε. Therefore, if we assume by contradiction that u(·)
is optimal we must have T < m+ ε+ 2ϕε and

∫ t

0 ψ(u(τ))dτ < m+ ε+ 2ϕε for every t ∈ [0, T ]. From Hölder

inequality, we deduce that |κ(t)| < C1[m+ε+2ϕε]
1/pt1−1/p, which implies that |θ(t̄)−π/2| < C1[m+ε+2ϕε]

2,
for some C1 > 0 independent of m and ε small enough. By taking m =

√

π/(3C1) we reach a contradiction.
Therefore, any optimal control connecting X0 to X1 = (xε(ε), yε(ε), θε(ε), 0) must satisfy ‖u‖∞ > ūε for ε
small enough.

Remark 4.15. We next show that Conjecture (b) is false by disproving that, for every ε > 0, there exists Rε
such that ‖u‖∞ ≤ ε for every optimal triple (X(·), u(·), T ) with |(x1, y1)| > Rε. Indeed, if α is defined as in
Section 4.2 and |(x1, y1)| is large enough the previous results say that p2 is arbitrarily close to sinα, and thus
different from 1 in general. On the other hand, H ≡ 0 and θ(0) = π/2 imply u(0)ψ′(u(0))− ψ(u(0)) = 1− p2
and therefore u(0) is not close to 0 in general.

4.4 Proof of Theorem 3.7

We will prove the theorem by showing separately that the functions θ(·) − α, κ(·), p3(·), p4(·) can be made
arbitrarily small by choosing large enough τν , σν .

From Lemmas 4.6 and 4.8 we have that, given δ′ > 0 and if T > 2Tδ′ for a suitably large Tδ′ , there exists
t0 ∈ [0, Tδ′ ] and t1 ∈ [T − Tδ′ , T ] such that, |α − θ(ti)| < δ′ and |θ̇(ti)| < δ′. If we set W0 = X(t0) and
W1 = X(t1) and we let θ̄ be as in Lemma 4.5 then, if T is large enough (depending only on δ′), we have that
|α − θ̄| < δ′ and the hypotheses of Lemma 4.5 are satisfied with δ = 2δ′. From Lemma 4.5, and for a fixed

C > 0, we have that the optimal control u(·) must be such that
∫ t1
t0
ψ(u(t))dt ≤ C, if δ is small enough.

Let us fix ε > 0. If C is small enough then, from Lemma 4.4, we can assume that |s1 − s2| ≤ 4Tε
implies |κ(s1) − κ(s2)| ≤ ε̃ := 4ε

Tε
, where Tε is defined by Lemma 4.6. By contradiction it is then easy to see

that ‖κ(·)‖L∞([t1,t2]) ≤ 2ε̃ if T is large enough. Indeed, otherwise we would have |κ(t)| > ε̄ on an interval
of length larger than 4Tε and then, as a consequence of Lemma 4.10, we would get |θ(t) − θ̄| > ε on an
interval of length larger than Tε contradicting Lemma 4.6. Moreover, since ‖κ(·)‖L∞([t1,t2]) ≤ 2ε̃ we have
‖θ(·)− θ̄‖L∞([t1,t2]) ≤ ε+ 2ε̃/Tε, again as a consequence of Lemma 4.6.

It remains to prove that ‖(p3(·), p4(·))‖L∞([t1,t2]) can be made arbitrarily small by an appropriate choice of
τν , σν . For this purpose it is enough to observe that ‖ṗ3‖L∞([t1,t2]) can be made arbitrarily small, and, again,
a simple argument by contradiction based on Lemma 4.10 and Remark 4.3 leads to the conclusion.

�
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