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ABSTRACT

In this paper, we present the use of differential geometry for

the segmentation of multispectral images, which allows us to

unify several known methods including projecting onto a par-

ticular axis or a particular plan. This is done by choosing a

metric tensor on the feature space computing the pullback of

the metric tensor and applying standard Di Zenzo algorithm.

Index Terms— metric tensor, Riemannian manifold,

metric pullback

1. INTRODUCTION

Edge detection is a basic step for image understanding and

computer vision. Since abrupt gray-level changes occur at

edge points, most edge detection algorithms use image gra-

dient information. Edge detection for color image presents

some challenges. The common technique is to look for

discontinuities in luminance component and while ignoring

chrominance information.

This paper proposes to review and to extend multicom-

ponent classical method with differential geometry. This

method contains two steps: metric tensor caculation and edge

detection with Di Zenzo’s algorithm. The choice of a partic-

ular metric tensor on the space feature will induce different

edge detection methods. The synthetic image we use serve as

a proof-of-concept.

The outline of the paper is as follows. Section 2 reviews

the classical approach of the gradient. Section 3 describes the

Riemannian tools used to detect particular edges, and various

color difference equations. Section 4 shows the performance

of the edge detection algorithm. Section 5 presents conclud-

ing remarks.

2. THE CLASSICAL POINT OF VIEW

A gradient of a multi-image introduced in [1] relies on some

tools of differential analysis. A m-dimensional image is in-

deed proposed to be viewed as a map f from a domain D ⊂
R

2 to the so called space feature R
m. The set ϕ(D) is then
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a sub-manifold of R
m provided that the Jacobian is of rank 2

everywhere and that f is injective.

f : D −→ R
m

(x, y) 7−→ (f1(x, y), . . . , fm(x, y))

Let f1 = (∂f1

∂x
, . . . , ∂fm

∂x
) and f2 = (∂f1

∂y
, . . . , ∂fm

∂y
). A

tensor T on ϕ(D) is then introduced:

T =

(

‖f1‖
2 f1 · f2

f1 · f2 ‖f2‖
2

)

,

which can be written

JT J where JT =

(

∂f1

∂x
· · · ∂fm

∂x
∂f1

∂y
· · · ∂fm

∂y

)

.

Edges of the image are detected by maximizing this tensor.

We remark that these tensors given on each point of the image

define no more than a metric on the domain D.

The function f can be slightly modified as pointed out in

[2] by adding two space coordinates:

ϕ : D −→ R
m+2

(x, y) 7−→ (x, y, ϕ1(x, y), · · · , ϕm(x, y))

The application ϕ is then an embedding.

3. RIEMANNIAN TOOLS

3.1. Concepts

A mathematical approach can be seen in [3, 4] where Rieman-

nian tools are used. We still have the embedding ϕ but the

metric tensor T is viewed as the pullback of a metric tensor g

defined on R
m+2. Let us recall some mathematical facts. Let

Mm and Nn two Riemannian manifold and ϕ : Mm −→ Nn

an embedding of Mm in Nn. Given a (pseudo-)Riemannian

metric g on N , we can construct one on M called the pull-

back of g and denoted ϕ∗g. The expression of ϕ∗g is given

by:

ϕ∗g = JT gJ,

where J is the Jacobian of ϕ.



3.2. Application with various metrics

In this section, we will show that choosing a particular uni-

form metric on the space feature will induce different known

methods.

Suppose m = 1, we have a grey-level image of intensity

I . Then,

ϕ : D −→ R
3

(x, y) 7−→ (x, y, I(x, y))

and

J =





1 0
0 1
Ix Iy



 ,

where ∂I
∂x

is denoted by Ix and ∂I
∂y

by Iy . If R
3 is endowed

with the (pseudo-)metric,

g =





0 0 0
0 0 0
0 0 1



 ,

then we get:

ϕ∗g =

(

I2
x IxIy

IxIy I2
y

)

which is the metric tensor on D obtain by Di Zenzo. This

tensor is then obtained by choosing the metric tensor





0 0 0
0 0 0
0 0 1





on the space feature.

Suppose now the case of a color image with m = 3:

ϕ : D −→ R
5

(x, y) 7−→ (x, y, I1(x, y), I2(x, y), I3(x, y))

where I1, I2, I3 correspond respectively to the red, green and

blue component of the image. Different algorithms will be

applied to the synthetic image 1:

Fig. 1. Synthetic test image.

We can perform marginal methods simply by choosing a

metric of the form:

g =













0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0













, (1)

so

ϕ∗g =

(

(I1
x)2 I1

xI1
y

I1
xI1

y (I1
y )2

)

.

Fig. 2. Di Zenzo algorithm with metric (1).

In this case, we are only looking at the red component so

there no distinction between red and yellow.

In this example, we are interested in another particular

direction that is the grey axis. This is done by choosing:

g =













1 0 0 0 0
0 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1













(2)

The pullback metric is:

ϕ∗g =













1 +

3
∑

i=1

(Ii
x)2

3
∑

i=1

Ii
xIi

y

3
∑

i=1

Ii
xIi

y 1 +

3
∑

i=1

(Ii
y)2













,

which give the following expected result: edges between re-

gion with same luminance (red and green) are not detected.

Fig. 3. Di Zenzo algorithm with metric (2).

More generally, we can choose a particular direction on

which to project. Let u = (a, b, c)T a unit vector. Take the



quadratic form Q = uuT . We have Q(u) = uT Qu = 1 and

Q(v) = 0 for any vector orthogonal to u. The metric is then

of the form:

g =

(

1 0
0 1

)

⊕





a2 ab ac

ab b2 bc

ac bc c2



 (3)

The metric (2) can then be found up to a scalar by choosing

u = 1√
3
(1, 1, 1)T .

In the last example we choose a metric that will only take

into account the chromaticity of the color. More generally

we are looking for a quadratic form that is degenerate along

one direction and Euclidean on the space orthogonal to that

direction. Let u that degenerate direction and v, w so that

(u, v, w) is an orthonormal frame. Let Q = vvT + wwT ,

then Q(u) = 0 and Q(v) = Q(w) = 1. If we suppose u =
1√
3
(1, 1, 1)T then:

g =

(

1 0
0 1

)

⊕
1

3





2 −1 −1
−1 2 −1
−1 −1 2



 (4)

Fig. 4. Di Zenzo algorithm with metric (4).

Marginal methods, intensity methods and chromaticity

methods can be performed simply by choosing a particular

matrix, computing the pullback and applying the usual algo-

rithm. The interesting thing here is that we can mix these

methods and apply at a point of a given color one method and

one other method at some other location.

4. EDGE DETECTION WITH SPATIAL

ADAPTATIVE METRICS

In the previous section, we have seen some examples using

uniform metrics. But metrics can be computed locally to im-

prove edge detection. For example, we are considering in this

section a metric of the form (3). The direction u(x, y) is set

to the first principal component of pixels located in a window

of fixed size centered in (x, y).
Let us consider the following synthetic image where the

noise is orthogonal to the principal direction of the image.

We apply the usual algorithm corresponding to the Eu-

clidean metric. The edge is not detected because the noise is

considered by the Euclidean metric as edges.

Fig. 5. Noisy image.

Fig. 6. Di Zenzo algorithm with Euclidean metric.

On the other hand, when we choose metric of the form (3)

where u is the principal direction of the image, the noise is

reduced because it is orthogonal to the principal direction.

Fig. 7. Di Zenzo algorithm with SVD metric.

5. CONCLUSION

This paper presents a framework based on some mathemat-

ical concepts that allows us to consider simultaneously sev-

eral edge detection methods. Marginal method and luminance

method can be reduced to the choice of a 3×3 matrix. Differ-

ent methods can be spatially combined. We have processed a

synthetic image, to illustrate the potential of this framework.

We would like to investigate further with hyperspectral im-

ages using a tensor metric field depending on spectral signa-

tures.
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