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Abstract

Over the past decade, many research fields have real-

ized the benefits of motion capture data, leading to an ex-

ponential growth of the size of motion databases. Conse-

quently indexing, querying, and retrieving motion capture

data have become important considerations in the usability

of such databases. Our aim is to efficiently retrieve mo-

tion from such databases in order to produce real-time an-

imation. For that purpose, we propose a new database ar-

chitecture which structures both the semantic and raw data

contained in motion data. The performance of the overall

architecture is evaluated by measuring the efficiency of the

motion retrieval process, in terms of the mean time access

to the data.

1 Introduction

With the development of new technologies for motion

capture, databases of human motions have become more

accessible and yielded new methods for motion indexing,

and retrieval, and computer-generated animation. As these

databases become larger and more difficult to maintain,

there is a need to develop more efficient and accurate ways

to store, access, and process the data. The challenge has

become even more important as the number of potential

applications has increased, including the video game and

animated films industries, gesture analysis of sport perfor-

mances, and action recognition in computer vision based

frameworks. The problem addressed here is the real-time

access and retrieval of motion stored in large motion capture

databases. Our goal is to use motion chunks extracted from

the database in a motion synthesis loop that produces new

animations from previously captured motions, as depicted

in Figure 1. Such an animation system requires the ability

to query the database at interactive framerates, constituting

a particularly appealing challenge, since motion databases

can contain several hours of captured motions to be assimi-

lated in multidimensional time series.

Figure 1. Creating animation from motion
chunks extracted from the database.

A key aspect of motion data is that it contains multiple

levels of information, from the semantic level to the time

series level. Semantic labels (i.e., metadata) can be used de-

pending on the type of movement: for example we may find

labels such as gait, jump, or others that correspond to every-

day motion or sport actions; for expressive motion such as

dance labels can define key postures, or identify meaning-

ful units of conversational gestures. Motion retrieval tech-

niques may choose to exploit either the whole movement

sequence, or some motion segments after temporal segmen-

tation, the segments having been identified by their labels or

time stamps. In all cases, and whatever the type of motion,

we may consider that they contain both raw information

(motion files) and semantic information (segmented and an-

notated motion files). The current objective is to propose a

new database architecture which exploits both information,

and to measure the performance of different motion queries.

The final aim is to search within the database for specific

movement sequences that answer the conditions expressed

as semantic values in a query, and to select the motion chunk



that can best adapt to the animation context. The overview

of the different processes is depicted in Figure 2.

To achieve these goals, different factors that influence

access to the database are studied. Among these factors, we

consider the database architecture and implementation, the

different access modes to the raw data, and the structure of

the semantic data.

The outline of this paper is as follows: Section 2 presents

related work in the area of motion representation and re-

trieval techniques. Section 3 details the database architec-

ture, separating the raw database, the semantic database,

and the way both databases can be simultaneously used for

animation. Section 4 is dedicated to results obtained using

our architecture. Finally Section 5 is devoted to a conclu-

sion and to possible future research directions.

2 Related Work

The brute-force search in a large motion database

(which consists of comparing paired-wise each frame in the

database) makes the process of retrieving motion captured

data highly costly in computation time. Thus, several mo-

tion representation methods have been proposed in an at-

tempt to solve this problem. One of these methods is clus-

tering, used by Basu et al. in [2], to construct cluster graphs

in which they grouped similar frames from one or more mo-

tion clips in nodes, and to sort frames within every node by

clips and time. Liu et al. used in [12] a method that clusters

poses from a motion database into groups. Geometric fea-

tures are used in [11], where Lin cuts motions into segments

and group motions based on a class of geometric features.

Also in [14], Müller et al. propose to pre-process the mo-

tion database by dividing motions using qualitative geomet-

ric features. Dimensionality reduction techniques are an-

other motion representation method used to reduce compu-

tational time; in [5], Forbes and Fiume project the data into

a weighted Principal Component Analysis (wPCA) space.

Another example of dimensionality reduction is the Isomet-

ric feature mapping used by Xiang et al. in [15]. Annota-

tion is another way of presenting motion data, consisting of

cutting a motion sequence into smaller motion chunks and

labeling them with semantic information. Kendon proposes

in [7] a manual segmentation method based on identifying

movement phases in a video sequence. In [9], Kita et al.

extend the work from [7] by applying the idea of movement

phase identification to sign language video sequences. In

[1], Arikan et al. use a semi-automatic annotation algorithm

divided into two parts: the first part consists of a manual an-

notation, and the second uses the Support Vector Machine

(SVM). In [3], Chao et al. present a different annotation

approach for Tai Chi Chuan movements, which consists of

building a Motion Index Table composed of Motion Clips

and defining a Basic Motion Text as a set of sentences. An-

Figure 2. Overview of the architecture

other method that Morales uses in [13], consists of storing

motion captured data by converting it to an XML format.

Chung et al. apply the same concept in [4] using a stan-

dard mark-up language MCML (Motion Capture Mark-up

Language).

Our method stands out from the methods mentioned

above, as it permits us to retrieve motions in real-time by

simultaneously querying both a semantic and raw database.

3 Database Architecture

The proposed architecture, shown in Figure 2, is divided

into two parts: data representation, and data retrieval and

selection. The original methodology used for the data rep-

resentation makes the motion retrieval faster, and presents

the data in two formats: raw data and semantic data.

3.1 Data Representation

In this section, we detail motion data in the databases.

The use of two different databases (a raw database and a

semantic database) is justified by the fact that the two types

of data (non-segmented raw data and segmented semantic

data) are handled differently.

3.1.1 Raw Database

Motions are traditionally stored on the hard drive with var-

ious formats (.bvh, .fbx, .asf/amc, etc.). Interpreting those

files amounts to building an internal representation of the

motion in CPU memory. In our system, this internal rep-

resentation is a collection of poses, each pose being com-

posed of a root position and an ordered vector of quater-

nions (joint rotations). This representation is globally con-



Figure 3. Different access modes to the database

sistent, provided that all the poses share a common hier-

archical structure which is commonly named ”bind pose”.

The time needed to read a motion file into this internal rep-

resentation depends on the complexity of the parser and

the amount of geometrical computation (for instance, cu-

mulation of local transforms, switching from Euler angles

to quaternions, etc.). This time is usually far from being

negligible, and prevents dynamic loads in interactive ap-

plications. In our system, such files are loaded and inter-

preted one time, and stored as a sequence of bits in our

database. We wrote our own serialization process for this

purpose. Traditional databases function with a set of paired-

value data: one key, preferably unique, is associated to the

useful data, in our case the motion. The simplest way to

proceed is to associate for instance the whole motion file

with a unique key which can be chosen as the name of the

original data file. The whole sequence is then handled by

the database manager, and stored on the hard drive. This

approach assumes that when retrieving the motion, all the

data will be reconstructed in the CPU memory. In the con-

text of a real-time animation controller, where small pieces

of the motion are dynamically combined to achieve a de-

sired goal, this policy is no longer efficient. Our database

is designed to handle several access modes to the data. The

following modes, depicted in Figure 3, determine particu-

lar fragmentation policies that are more or less suited to a

particular type of query:

• FullAccess - one single motion is associated with one

unique key. The first part of the value is the bind pose,

followed by a sequence of poses formed by a root po-

sition and one quaternion per joint.

• ByFrame:p - the whole sequence of frames is divided

into packets of p frames; one motion will produce
[

n

p

]

entries in the database if n is the total number of frames

in the motion.

• ByJoint - the whole motion is divided into m pack-

ets, each one corresponding to a given joint of the bind

pose. The first joint usually also contains the root posi-

tion, though this may change if several joints also have

some translational degrees of freedom.

• ByJointandFrame:p - the whole motion is decomposed

into packets that account for the motion of one joint

over a sequence of p frames. One motion will produce

m ∗

[

n

p

]

entries in the database if n is the total number

of frames and m the number of joints in the motion.

Fragmenting motions in the database is interesting because

only a small portion of the motion (containing the query re-

sults) is reconstructed in the memory. However, this opera-

tion has a cost because it can multiply the number of entries

in the database, thus increasing the search time and the in-

dex size. In our framework we allow the online modification

of how data is stored in the database, effecting the best ac-

cess mode for a given application. Hence, if the application

is likely to access only specific subparts of the skeleton (like

the hand for instance) over entire motions, the ByJoint ac-

cess mode is optimal. We propose some quantitative results

and compare between those modes in the experimentation

section of the paper.

3.1.2 Semantic Database

One way to more easily access significant data in motion

data files is to segment and annotate these files. The seg-

mentation process identifies a set of elementary motion

units that may be associated with meaningful semantic in-

formation. If we only consider a description of the motion,

such motion units can either affect the whole body or spe-

cific parts of the body. In the latter case, a multi-channel



segmentation can be defined, with each channel being as-

sociated to a group of articulators (upper-body, arm, hand,

etc.). For example, when describing phonological segments

of sign languages, it might be interesting to separate the

hand configuration from the arm movement [6]. Moreover,

it is possible to distinguish specific phases on each channel,

the boundaries of which are characterized by time stamps

and are the result of a segmentation process, either man-

ual or automatic. We propose both a spatial and tempo-

ral structure of the segmented motion data in our semantic

database. The spatial structure refers to a multi-channel de-

composition, whereas the temporal structure refers to phase

description. We use an XML hierarchical description lan-

guage which is provided by existing annotation tools such

as ANVIL1 or ELAN2. Once the annotation process is fin-

ished, the XML annotation documents are stored in the se-

mantic database.

3.2 Data Retrieval and Selection

Retrieving data in the database is divided into two parts.

The first part of the process consists of querying the se-

mantic database, allowing us to extract information con-

tained in the segmented files. Retrieving data from the se-

mantic database is achieved by specifying one-condition or

multiple-condition queries, called PhaseQuery. The query

results are expressed as sequences of segments, each seg-

ment being characterized by time stamps expressing the

start and end boundaries and the name of the phase. A

simple one condition query, indeed, will probably return

a great number of motion candidates, whereas a multiple-

condition query will return fewer candidates. In the second

part of the process, the query results are interpreted so that

each segment triggers access to the raw database, giving the

corresponding motion frames. Concerning the time access

to the whole database, we expect that there is a compro-

mise between the time-processing of the semantic data and

the time-processing of the raw data, the complexity of the

request being directly linked to the number of potential re-

sults. As the way in which the query is processed may glob-

ally affect the query’s performance time, we propose two

evaluation modes inspired from those available with Oracle

Berkeley DB3, the Eager and the Lazy modes. In the Eager

mode, the query results are derived and stored in-memory;

as for the Lazy mode, minimal processing is performed and

the remaining processing is adjourned, thus making it faster

in computational time. In our real-time motion synthesis

context, choosing among the possible results of the XML

query amounts to find a motion which is a good continua-

tion of the previous motion. While ”a good continuation”

1http://www.anvil-software.de
2http://www.lat-mpi.eu/tools/elan
3http://www.oracle.com/database/berkeley-db

is somehow difficult to define and may result on different

acceptations, we used a commonly accepted notion in the

computer animation field which use an elastic distance to

compare short sequences of motion. This elastic distance,

obtained through dynamic time warping, is also well known

in the context of time series indexation as well as human

motion indexation [8]. In our implementation, we use a

simple similarity metric between motion frames defines as

the sum of geodesic distances between each pairs of cor-

responding rotations [10] to compute the similarity matrix.

This operation is conducted on the final frames of the ref-

erence motion and the equivalent number of first frames of

the candidate motion. This operation allows to select a can-

didate motion which will be easy to concatenate with the

current motion with traditional animation techniques.

Algorithm 1 Selection Algorithm

M Frames ⇐ last 10 frames of the CurrentMotion

repeat

Candidate C ⇐ Process Query

C Frames ⇐ 10 first frames of C

DTW distance(M Frames,C Frames)
until DTW distance is smaller than threshold

return C

In the selection algorithm the query is executed and the

first result, a potential candidate, is processed. The DTW is

applied to calculate the distance between the first 10 frames

of the potential candidate, frames retrieved from the raw

database, and the 10 ending frames of the current motion. If

the distance is larger than a threshold (which is experimen-

tally fixed), then the second result of the query becomes the

potential candidate and is then processed. This operation is

repeated until the distance is less than the threshold.

4 Experiments

We measured the computational time needed to retrieve

motions in order to analyze the efficiency of our proposed

architecture; specifically, the time to retrieve motions from

the raw database, the time to retrieve motions from the

semantic database, and the overall time. We tested our

database system over the whole Carnegie Mellon Univer-

sity’s (CMU) Graphic Lab motion capture database4, which

includes 2548 bvh files with a total size of 3 GB. The

following experiments use annotations of basketball mo-

tion capture files; these files correspond to subject ”06”

in the CMU’s database which were stored in our seman-

tic database with a size of 600 KB. The experiments have

run on a Macbook Pro dual core 2.4 GHz running with Mac

OSX 10.5.5 equipped with 4 GB of memory. As for the

4http://mocap.cs.cmu.edu



Figure 4. Get time for random access in the

database with a full access mode.

choice of databases, we tested two different APIs: Oracle

Berkeley DB and Tokyo Cabinet 5; both engines led to ap-

proximately similar results. In all our tests a hash map was

used as an index structure to recover the data.

4.1 Raw Database

4.1.1 Global Access Performances

We first tested the global performance on the entire database

configured with the Full Access mode; i.e., one key–one

motion. The total database size including the index was 5

GB. The following procedure was applied: for each pairing

of number of joints and number of frames, we picked 20

random keys and measured the total time to get the infor-

mation back in the CPU memory. Averaging those values

finally gives the different results presented in Figure 4. As

expected, increasing the number of joints and the number

of frames at the same time, leads to an increase in the total

Get Time. For instance, getting 4000 frames for one joint

took on average 20 ms, while getting 4000 frames of the en-

tire skeleton (38 joints) was done in approximately 140 ms.

In practice, the search time in the database index is rather

small compared to the time spent in allocating the resources

in the CPU memory. This seems to be an explanation of the

fact that the different databases which we tested behaved

roughly the same.

4.1.2 Random Access on a Single Large File

In the second experiment, we tested random access on a ran-

dom number of frames to a single long motion. This motion

was a long sequence of ”tai chi” motions (file ID 12 04)

in the CMU mocap database, which is made of more than

5http://tokyocabinet.sourceforge.net

18000 frames. Three access modes were tested: Full Ac-

cess, byFrame:10 and byFrame:200. In our tests, the first

loads of the motion took more time because the database

cache was filled with data. The cache size was set up so

that the entire motion could be present in the cache. This

explains why, in the case of byFrame Access modes, other

loads were needed before the whole motion was present in

the cache. As expected in the case of Full Access mode, the

general trend was linear: whatever the number of frames re-

quired in the query, the whole motion is reconstructed back

in the CPU memory and then cut according to the query. In

the two cases of the byFrame Access modes, both decom-

positions led approximately to the same results: a linear in-

crease with respect to the query number of frames. In all

cases, it is interesting to note that for each access mode, it

is possible to bound the access times.

4.2 Semantic Database

Data stored in the semantic database was retrieved with

the use of a query. For that matter, we performed two types

of queries to evaluate the performance of our indexation

method. The first type of query is a one-condition Phase-

Query, where the condition operates on a specific phase of

one channel (associated to a part of the body). The second

type is a two-condition PhaseQuery where the conditions

correspond to two phases, each phase being associated to a

specific channel. For instance, the query used to search for

all the phases of forward basketball dribbles (”ForwardD”)

present in the semantic database is a one-condition Phase-

Query corresponding to the following:

for $a in (”SemanticDatabase”) where

$a/@*[../attribute=”ForwardD”] return

$a/@start, $a/@end, $a/@key

The results returned by the above PhaseQuery consist of

a set of 79 pairs of time stamps that begin and end each

of the forward basketball dribble segments, as well as the

key corresponding to the annotated file. It should be noted

that multiple condition queries involve a multi-layer search

process in the hierarchical semantic database.

Regarding the two modes of processing a query we men-

tioned in section 3.2, we executed nine queries in order for

us to compare the performance time of the two modes: three

one-condition PhaseQueries and six two-condition Phase-

Queries. Moreover, the number of iterations indicates the

number of candidates, resulting from the query, used for the

selection process. Table 1 show that it is preferable to use

the Lazy query evaluation mode for real-time application.

4.3 Overall Architecture

Overall, in Table 1 we evaluate the entire path of the

PhaseQueries through the databases. First, the PhaseQuery



Table 1. Querying the Databases

Condition(s) Num. of Eager Num. of Lazy Total

Results Query(ms) Iterations Query(ms) Time(ms)

ForwardD 79 133 7 106 220

ForwardD 52 3410 8 908 1047

& Rhand

ForwardD 27 3342 3 626 694

& Lhand

BackwardD 24 125 4 110 178

BackwardD 21 1150 4 339 438

& Rhand

BackwardD 3 1129 1 935 1052

& Lhand

StillD 26 128 8 116 256

StillD 24 1248 8 515 687

& Rhand

StillD 2 1220 1 1225 1235

& Lhand

D stands for Dribble, R for Right, and L for Left

Figure 5. Overall Time Evaluation

is executed, then the selection algorithm is applied, and fi-

nally the frames corresponding to the selected candidate

are retrieved. The overall process time (expressed by the

query, the DTW, and the Get Time computational time) is

presented in Figure 5, which shows that the retrieving time

is much smaller than the query process time.

5 Conclusion

The work described here stems from the problem con-

fronted when retrieving motions in real-time from large mo-

tion capture databases. We proposed a new methodology,

simultaneously using a semantic and a raw motion database,

taking into account the way motion data are indexed in these

two databases. We evaluated the efficiency of the indexation

by computing the database access and retrieval time, and fi-

nally, we proposed an overall architecture combining the

different processes, from the querying of the semantic and

raw database to the data selection process. The experimen-

tal results show that our proposed architecture is suitable

for real-time applications. It is important to note that we are

not evaluating the quality of the animation system but the

retrieval efficiency in real-time. In future work, we hope

to implement different motion retrieval techniques, produce

real-time motion animations, and evaluate these animations

from a quantitative as well as from a qualitative point of

view.
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