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Abstract

In this paper we address the problem of temporal alignmepliezpbto captured
communicative gestures conveying different styles. Wg@@se a representation space
that may be considered asbustto the spatial variability induced by style. By extend-
ing a multilevel dynamic time warping algorithm, we show hibwg extension can fulfil
the goals of time correspondence between gesture sequehitepreventing jerkiness

introduced by standard time warping methods.
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I ntroduction

Achievement of a virtual humanoid capable of performindiséia and pleasant movements
like the gestures involved in sign language communicatsostill a challenge within the
animation community.

In a conversational situation, style conveys useful hiotsdrbal and nonverbal fea-
tures of the discourse such as nuances, intensity, empbaisis, speaker genre, cultural
background, and emotional state. Consequently, automatieration of expressive human
motion requires methods that are capable of seamlesslyihgradwide range of different
styles along the animation.

Many recent works provide new insights into motion stylej agly on motion capture
data to identify various components of motion. These worky provide animators with
tools to interactively edit and manipulate motion, or melhavhich can be integrated into
data-driven animation frameworks. Such approaches desgrotion as the combination of
components representing respectively both the contenttemnstyle. Our approach is in the
line of these works but focuses on communicative gestures.

We will now introduce the following definition of gesturaly& on which we will rely
during the rest of this paper: we consider that style is threakdity observed among two
realizations of the same gestural sequence. This defingionlontarily low level, signal
oriented as our investigations are motivated by motionadignalysis.

We worked on multiple realizations of a sequence of Frengh Sanguage (FSL) ges-



tures. To do so, we asked a professional signer to perforeraewmotion capture records
of a predefined FSL sequence by varying several aspects digbeurse: mood, emphasis
and speed.

Dealing with such data raises many difficulties. One of thestobvious is that a com-
municative gestural sequence (CGS) is by nature non periéddconsequence of this par-
ticular limitation is that CGS falls out of the range of aggliion of many existing meth-
ods that have proved to work over pseudo periodic motioreslbkomotion. On the other
hand, CGS elementary gestures are tightly linked togetineugh a coarticulatiorprocess
which challenges both manual and automatic segmentaspecelly when handling mul-
tiple styles. As illustrated in figure 1, critical aspectstloé influence of style on CGS are
both of temporal and spacial aspects.

In this work, we aim at capturing the temporal features oesarealizations of a CGS.
We rely on the assumption that there existsredamental motiowhich is common to multi-
ple styled realizations of a CGS exists. Then we show thaiikighted PCA representation
space is compatible with tHendamental motioassumption. By emphasis this preliminary
result, we then propose a multi level dynamic time warping\() algorithm that is well
suited for the problem of CGS alignment by resolving bothalaand global timing vari-
ances induced by style while preventing jerkiness and beabgst to artifacts introduced

by the signer. We then illustrate our work by performing apenal alignment between a

!Coarticulation is manifested by the fact that a motion piiireiis highly influenced by the previous and

the following primitives in a CGS



realization of a CGS performed in @s neutral as possiblmanner and other realizations
of this CGS performed according to different moods, empghaisd execution speeds.

The rest of this paper is organized as follows: in the firstisecwe present the existing
works that address the problem of styled motion editiom thie introduce the style robust
distance metric on which The Adaptive Fast Time Warping @idlgm introduced in section
3 steps on. Section 4 introduces the sign language CGS thétawe captured for the
experiments detailed in section 5. Results are discusssetiion 6. We then conclude by

drawing perspectives of this work.

Related works

In order to introduce the problem of style retrieval and gsialfrom captured motions, we
first show how model-based animation methods have somelied fa produce yet natural
and convincing motions. We then present works concernelébgttaracterization of style in
motion sequences, and then give some insights on the tehgtigrament problem between

two motions.

M odel-based animation methods Studies on sign language which have been carried out
since the 60’s have lead to dedicated description/trgotsmni systems [1]. Several gestural
generation systems inspired by this paradigm have appsared then. Lebourque & al.

[2] propose an expressive gesture synthesis system wheetagkiis expressed as a discrete



sequence of targets in the euclidian space around the Maityrzer. The sequence of pos-
tures is then solved thanks to a sensory-motor inverse kitiessolver. More recently, the
ESIGN project [3] designed and set up a communicative gestmthesis system driven by
sign language transcriptions.
More style-centric studies around human motion appeardtdognd of theX 7 X century
and have been continued and enhanced until today [4]. Theriyimh theory derived from
those works served as a base for procedural motion synthesisms [5]. Other procedural
systems step on psycho cognitive studies [6] in order toepstylistic features [7].
Procedural systems have proved to be capable of provididgratandable expressive
gestures with a great level of control. However, such geiverenodels, by relying on kine-
matics models, have failed to produce natural, smooth mstid his failure was partially
solved by intensive use of captured motions. As a conseguemany recent works related

to human motion style rely on motion capture.

Datadriven stylecharacterization characterization and extraction of the style for motion
captured data is tightly linked to motion editing method$.eTirst works which focus on
this particular aspect are inspired by signal processingunih & al. [8] apply Fourier
decomposition to motion signal and identify style featuies briskness or the amount of
weariness in the motion. Bruderlin & al. [9] perform freqogrdecomposition of motion
signal by using multiresolution filtering. Motion blendimg then obtained by separately

handling motion frequency components. Amaya & al introdutiee notion ofemotion



between aneutral motion and aremotionally chargednotion [10]. The method is able
to endow an arbitraryeutral motionwith the emotion embeded in the initiamotional
motion Several methods based on captured data exploit strudiasess of motion segments
[11, 12, 13]. By finding the best sequence of segments majaser-defined tasks or
constraints, the system is able to produce arbitrary lontjams. However, those methods
do not directly address style editing, as the style of gdedmamotion is bounded to the inner
style of the captured motion.

In parallel, style caracterization has motivated the usstatistical methods like inde-
pendant component analysis (ICA) [14, 15], PCA [16] or fa&tion models [17, 18].
Other works are inspired by generative approaches badesf @ih structure dicovery and
mapping of discrete states embedded in two styled motiohsd]. While these methods
reveals to efficiently perform spacial style translatioredher body or facial motion, they

do not directly address the temporal variations inducedylg.s

Temporal characterization of style It has been well accepted that style affects both tem-
poral and spacial characteristics of human motion. As fave@g&now, those two concerns
have been addressed in a separate manner. Temporal aral appeicts of style are charac-
terized separately and recombined together during theomgeneration step. Characteri-
zation of temporal stylistic features is by itself a noniahproblem and has been addressed,
in most cases by relying on a well known non linear time aligniomethod: dynamic time

warping (DTW) [21]. Bruderlin [9] adopted Sederberg’s shdyased algorithm to vectors



of postures described as Euler angles. Witkin & al. [22] add motion curve based
warping scheme over euler-angular posture vectors cogfthie motion editing process to
a set of chosen articular trajectories. Rose [23] perfoime tvarping over motion curves
described as uniform cubic B-spline curves defined by thamtrol points. Gleicher [24]
adopts constrained dynamic time warping to align motionpadorm relevant blending.
Hsu & al. [25] propose an iterative time warping algorithmigéhdirectly operates on pos-
ture vectors. Most recently, Shapiro [15] proposes anaatere motion editing tool that lets
the user choose a relevant joint defined in Euclidean coatelto perform time alignment
over two styled motions.

Forbes & al. [26] introduce a motion search algorithm based weighted PCA-based
pose representation. This algorithm evaluates a time-@istance between sequences of
postures by performing bi-directional DTW from a seed pama distance matrix built
over thePCA-basedepresentation space. Theighted PCA-baserkpresentation space
fits well with our need of splitting a CGS into two parts: tlimdamental motiothat con-
veys the meaningful part of a gesture sequence anstyfistic contenbf the motion wich
conveys stylistic and emotional charge of the motion. Alido all the temporal alignment
methods described above have given satisfying results diom&equences that are either
cyclic (locomotion) or relatively short (martial arts m@yethey are challenged when ap-
plied to long realizations of a CGS. The issue is actuallyt detcribed by Keogh [27], who
proposes an interesting discussion focused on the temaspalkts of human motion. He
highlights the fact that temporal variability observed athla local and a global influence.
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His work introduces the need to deal with many different terapvariations levels. This

leads us to design a new temporal alignment scheme that tsleudl.

Style robust representation space

It is difficult to formulate a precise definition of style aglstis tightly mixed with captured
motion data. An actor may perform a predefined motion sequancording to different
moods, speeds, or expressivity clues, but, even when ashsslds neutral as possible, the
actor will still convey his owrkinematic signatureSitill, each realization of a CGS will at
least contain a common subpart that conveys the semantie @&S. Identification of this
subpart motivates our investigations towards a low din@rairepresentation subspace for
CGS. The construction of a style robust distance functiomagivated by the assumption
that the meaningful part of the gesture is embedded in theeswhich presents the greatest

variance.

Introducing Weighted PCA

The motion representation that we have designed to chamethe motion data in a re-
duced but still accurate orthogonal subspace is directlyired from the work by Forbes &
al. [26]. The weighted PCA-based representation has tharsgdge of providing a coarse
to fine representation that is driven by the amount of vagavtzserved by each principal

component in the original space. Furthermore, the weightb@me fits well with our re-



guirement: the meaningful content of an CGS is mainly driggrthe actor’s upper limbs.
It thus makes sense to introduce a weighting scheme thalidtigharm and hand motion.
We thus consider both hands, upper body an lower body as tdstrsictures of respec-
tive global weights{1.0,1.0,1.0,0.5}. Inside a substructure, weights are derived from the

relative amound of body mass influenced by each joint.

Motion data description

Motion data is composed by series of quite large vectors. Asleal with full body pos-
ture descriptions (hands + body), a posture vector is desgtitby63 unit quaternions. The
quaternion representation is then centered and lineattiseks to the method presented in
Johnson’s PH.D thesis [28]. This prepossessing step leabitear real valued representa-
tion of our posture sequences described by a matriaf 189 rows and. columns where:

is the number of frames in the CGS realization. Among ourlzega of motions, the mean

frame number of a CGS realization7800.

Eigenposture base extraction

PCA is a linear basis transformation that basically decaapdhe original data so that any
number of components accounts for as much as possible oataevdriance. Mathemati-
cally, the principal components are the eigenvectors ottivariance matrix of the original

data set. To perform PCA decomposition, we rely on the sarguhlue decomposition



(SVD) which, when applied to a reference CGS realizatiorrmat,. ; leads to:

M,y = Urefzref‘/yz]f-

WhereV,.; andU,.; are orthogonal unit matrice8..; is an orthonormal eigenposture
base ofR'® whoser first columns give the basisgl, 2, ... of the optimal hyperplane of
dimensionr. X, is al89 x n matrix with non-negative decreasing singular values on its
diagonal. Then, thé/; subsequent realization of a CGS are projected onto the apiasis
extracted from\/,.;.

VT — E+ UT

g ref refMi

WhereX | s is the transpose df,.; with every nonzero entry replaced by its reciprocal.
This projection leads to a common representation spacesketevery realization of a CGS.
In this representation space, a realizatidn of a CGS is described by thefirst rows of

matrix V;. The distance between two poses is obtained by calculdtanguclidian distance

between their first scaled coordinates 6f,.

Projecting the motion onto an optimal subspace

Projecting an arbitrary motion on an eigenposture spaaessylif the projected motion is
not included in the construction of the eigenposture baBisminimize the error induced

by the projection, Forbes & al [26]. constructed the motiearsh space on an eigenposture
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basis obtained from a motion sequence that conveyed the vagability: the range of
motion (ROM) that had been used to calibrate the motion cagtardware. Such a choice
is legitimate when no a-priori knowledge is available onringion data to be projected.

Or we have a strong a-priori on the content of the motion datadeal with: each
motion clip is a single realization of a CGS. As a consequgihceakes sense to build the
projecting space upon a reference CGS realization thatlglosatches the motions we wish
to compare rather than an exhaustive ROM. This decompodgmds to a more accurate
representation space. In other words, fewer eigenpostutielse necessary to provide an
accurate reconstruction of the projected motion. Theegftawer coordinates are required
to provide a faithful estimation of thiandamental motionin our experiments, we found
that takingr = 4, was sufficient to convince the overall meaning of any rediin of a
CGS. We thus define our distance functibhetween two postureg andc; belonging to

two coordinates matriceg andC' expressed in the reference b&ge. (>, .r) as:

g, it = \/(qz(l) —¢i(1))2+ .+ (q:(4) —¢;(4))?
This distance function serves as a base to the construdtmistance matrix that will

be handled by the adaptive DTW algorithm we introduce in & section.
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Time alignment

Accurate matching of human motion data requires takingiplaltevels of temporal mis-

alignment into account, from uniform scaling along larggusnces to small local misalign-
ments. This fact has also been identified as well in biomechband computer animation
[27]. To handle this issue, we rely on a multilevel strateggt titeratively adjusts both the
search space and the slope constraint of the well known DO ighm [21]. By doing so,

it becomes possible to avoid the trade-off between globadllacal adjustments. We show
that this methods prevents discontinuous jumps from oswywhile preserving sufficient

accuracy in time correspondence.

Fast DTW

FastDTW algorithm has been introduced by Salvador & al. 28] was initially designed
to cut-off the computational cost of the well known DTW [2d&ich is ofn? in its standard
implementation. FastDTW basically consists in splittihg tomplexity of standard DTW
by recursively down-sampling the time series. The warp pathd at each iteration of the
algorithm is then projected onto the higher resolutiontayel serves as a guide that reduces
computational complexity by spatially reducing the areadted by dynamic programming,
as illustrated in figure 2b, FastDTW complexity(§n), and is known to find an accurate
minimum-distance warp path between two time series thaasly optimal. Unfortunately,

the warp path obtained via FastDTW contains many consexhtvizontal or vertical steps.
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This leads to jerkiness, high discontinuities or long syepdstures over warped gesture

sequences.

Constrained DTW

The constrained DTW has been introduced to limit the numbeowsecutive horizontal or
vertical steps and provides a smoother match.Q.andC' be two time series of respective
lengthm andn. Letd be a distance function between any elemgmtf () and any element
c; of C. Letk > 1 be a real coefficient. Constrained DTW can then be recussdefined

as:

ai, ¢} = 0{qi, ¢} +min(v{qi—1,cj—1}, kv{gi-1, ¢}, kv{di, cj—1)})

DTW(Q, C) = ’Y{QW% Cn}

k prevents the warp path from leaving the main diagonal of ibi@dce matrix between
(@ andC'. Constrained DTW limits the number of consecutive horiabot vertical steps and
provides a smoother match. The drawback of constrained Dsltéislope limitation which
is introduced. Slope limitation may prevent constrained\Dffom finding a warp path that

is faithful to the optimal warp path if the temporal variatibas a too wide influence.
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Adaptive DTW

Adaptive time warping was motivated by the wish to provideoastrained version of the
DTW algorithm which could be adapted to the many temporaaiigiement levels observed
in the realizations of CGS. Existing time warping methodsidbhandle the trade trade-off
between warp path smoothness and minimization of the watlp giatance. To answer
this limitation, a coarse to fine approach is adopted. Th@gch relies on a multilevel
strategy that iteratively adjusts both the search spacérenslope constraints of DTW. We
thus extend FastDTW algoritm in order to take an adaptivpeskupport at each iteration
into account. The pseudo code in figure 2a describes theitdligor

The implementation is recursive and the base case occuns @ree of the input motions
becomes shorter than the window length we set in the parasneftéddaptive DTW. First,
two new lower-resolution motion series are created that Helf as many poses as the
input motion series (Fig. 1, |. 5-6) Slope constraint is thpdated (. 7-9). Next, a low
resolution pathp, ¢] is found for the coarsened motion series (. 10) and projetdea
higher resolution (I. 11). This projected path is then exjehby radius cells to create a
search window that will be passed to the constrained DTWrdhgo (Fig. 1, I. 12 and
Fig. 2). The constrained DTW algorithm refines the warp phtt tvas projected form
the lower resolution. The result of this refinement is thenmmeed. The execution of the
AdaptiveDTW algorithm repeatedly runs lines 5-9 in recrggialls to lower resolutions.

When the base case is reached, it is executed only onceyaffter lines 11-12 are executed
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for each recursive call (or resolution) on the stack.

Application

Communicative Gesture Sequence description

The earliest part of our work was dedicated to collectinghdamguage motion data per-
formed according to various styles.

We then asked a professional signer to perform severakeg@lns of the same weather
forecast presentation in French sign language (FSL) bytadpgifferent styles. The mean
duration of a sequence was 60 seconds and the CGS realgatioa done according to the
following style: neutral (twice), emphasis, angry anddirg/e took as reference realization

the first sequence performed according to neutral style.

Results

We preprocessed and merged the data to obtain one unit gisat@osture matrix per CGS
realization. We then projected the motions on the eigempediasis extracted from the
reference CGS realization. Finally, we applied standaréd\Dand Adaptive DTW to the
obtained matrices. Figures 3 and 4 depict the most evoaatbudts.

Figure 3 compares a temporal alignment obtained thanksssiclal DTW, constrained

DTW and the Adaptive DTW. The plots show the evolution of thfitience of the first eigen-
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posture vector for each motion in the eigenposture reptasen space. The two motions
are respectively the first neutral sequence and the secartichhgequence.

Those sequences actually provide an interesting benchm@rk one hand, the se-
guences are very close, since they were performed accotditite same style. On the
other hand, they suffer from heavy artifacts since the sigmessed up a couple of signs
between frame 2200 and frame 3800.

The second plot from the top of figure 3 highlights the tempalgnment found by
classical DTW. It appears that classical DTW actually findsjatimal time warp path which
minimizes DTW cumulative distance. Unfortunately, theadh¢d warp path introduces
many discontinuities, especially in the disordered pathefsequences. As a consequence,
the warped motion obtained thanks to DTW contains many disuaities.

The third plot from the top depicts the temporal alignmentoted thanks to constrained
DTW. For the experiment, the maximum number of consecutbrezbntal or vertical steps
has been set to 2, as described in [24]. Although the warpatdmpresents satisfying
continuity, It appears that constrained DTW is challengdwnvthe temporal variations
have a too wide influence over the motion to be warped. AdaRiVW shows its ability to
find a smooth but still accurate warp path between the twoansti

Figure 4 illustrates the time alignment obtained by aligriime angry styled CGS perfor-
mance onto the reference CGS performance. On one hand atialsgariations introduced
by angry style are not negligible (notice the differencesveen the overall postures and the
amplitude of the movements). On the other hand, angry styleduces rhytmic repetitions

16



of some specific movements which ADTW is not designed to reanthe postures depicted
in figure 4 are equally sampled and the curves represent theten of the influence of the
first the eigenposture vectors along frames. This figureligigts the capability of Adaptive
DTW to provide a smooth and accurate match despite the $paciations and repetitions

introduced by the angry style.

Conclusion

Using communication gestures obtained through motiorucaptises a number of difficul-
ties that are inherent to the nature of these motions: diffexttomatic or manual segmen-
tation and strong variability between the execution of tealizations of a communicative
gesture sequence (CGS). In this paper we have proposed amnadiinment method that
has proved to be robust to the spacial variabilities thatrateced by differently styled re-
alizations of a relatively long CGS. This information canexgloited in a variety of ways:
motion editing, blending, segmentation or style transtatiOur hypothesis lies on a pos-
sible decomposition of communicative gesture between ddomental motion (common to
all realizations) and a style content. This decompositarhitained through weighted PCA
decomposition methods. This decomposition is then usedpag of an adaptive dynamic
time warping algorithm which provides smooth alignment@sn sequences. Style may
introduce rhytmic repetitions of some specific movemeni3TW is not designed to handle

such repetitions, but answering this limitation contitudechallenging extention.
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Look at me, angry style
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Look at me, neutral style
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Figure 1: FSL signer performing the sign "look at me” on the $equence, he was asked to
be as neutral as possible, on the bottom one, he was askedutat angryness. The two

sequences are displayed along the same time basis
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AdaptiveDTW (XY radius,K)
Require:
X - a projected motion
Y - a projected motion
radius - distance to search out of the projected warp path from the pre-
vious resolution
K - slope constraint at the finest resolution
Ensure:
[p,q] a warp path along the motions X and Y

1: minTSsize = radius 4+ 2 \\ The min size of the coarsest resolution
2: if length(X) < minTSsize OR length(Y) < minTSsize then
3:  RETURN DTW(X.Y .K)
4: else
5. shrunkX = downsample(X) \\ length(shrunkX) = 1/2 x length(X)

6:  shrunkY = downsample(Y)

7. if K >1 then

8: K = K —1\\ Adjust slope constraint for coarser resolution

9: end if

10:  (p,q) = AdaptiveDTW (shrunkX,shrunkY radius,K)

11:  window = ExpandResWindow(p,q,X,Y radius)

122 RETURN DTW(X.Y . window,K)
(a) 13: end if

Figure 2: (a) The Adaptative DTW algorithm. (b) At each iteva, as the Warp path is pro-

jected onto the higher resolution, the slope constraint@fTW algorithm is incremented
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Figure 3: Comparison between standard DTW algorithm, caimgd DTW and Adaptive

DTW (bottom): ADTW does not find an temporal alignment thahimises DTW distance,

but, rather a smooth path that prevents jerkiness alongahges motion. moreover, ADTW

recovers both global and local time variations.
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Figure 4: Pose representation along three sign sequencesh tbp to bottom. The two
upper sequences are captured from original performanaesdacg to neutral and angry
style, respectively. The third sequence represent thénatigngry sequence warped along

the original neutral sequence.
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