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Abstract

In this paper we address the problem of temporal alignment applied to captured

communicative gestures conveying different styles. We propose a representation space

that may be considered asrobustto the spatial variability induced by style. By extend-

ing a multilevel dynamic time warping algorithm, we show howthis extension can fulfil

the goals of time correspondence between gesture sequenceswhile preventing jerkiness

introduced by standard time warping methods.

Keywords: Animation, conversational agents, gestural communication, style translation

1



Introduction

Achievement of a virtual humanoid capable of performing realistic and pleasant movements

like the gestures involved in sign language communication is still a challenge within the

animation community.

In a conversational situation, style conveys useful hints to verbal and nonverbal fea-

tures of the discourse such as nuances, intensity, emphasispoints, speaker genre, cultural

background, and emotional state. Consequently, automaticgeneration of expressive human

motion requires methods that are capable of seamlessly handling a wide range of different

styles along the animation.

Many recent works provide new insights into motion style, and rely on motion capture

data to identify various components of motion. These works may provide animators with

tools to interactively edit and manipulate motion, or methods which can be integrated into

data-driven animation frameworks. Such approaches describe motion as the combination of

components representing respectively both the content andthe style. Our approach is in the

line of these works but focuses on communicative gestures.

We will now introduce the following definition of gestural style on which we will rely

during the rest of this paper: we consider that style is the variability observed among two

realizations of the same gestural sequence. This definitionis volontarily low level, signal

oriented as our investigations are motivated by motion signal analysis.

We worked on multiple realizations of a sequence of French Sign Language (FSL) ges-
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tures. To do so, we asked a professional signer to perform several motion capture records

of a predefined FSL sequence by varying several aspects of thediscourse: mood, emphasis

and speed.

Dealing with such data raises many difficulties. One of the most obvious is that a com-

municative gestural sequence (CGS) is by nature non periodic. A consequence of this par-

ticular limitation is that CGS falls out of the range of application of many existing meth-

ods that have proved to work over pseudo periodic motions like locomotion. On the other

hand, CGS elementary gestures are tightly linked together through a coarticulation1 process

which challenges both manual and automatic segmentation, especially when handling mul-

tiple styles. As illustrated in figure 1, critical aspects ofthe influence of style on CGS are

both of temporal and spacial aspects.

In this work, we aim at capturing the temporal features of several realizations of a CGS.

We rely on the assumption that there exists afundamental motionwhich is common to multi-

ple styled realizations of a CGS exists. Then we show that theWeighted PCA representation

space is compatible with thefundamental motionassumption. By emphasis this preliminary

result, we then propose a multi level dynamic time warping (DTW) algorithm that is well

suited for the problem of CGS alignment by resolving both local and global timing vari-

ances induced by style while preventing jerkiness and beingrobust to artifacts introduced

by the signer. We then illustrate our work by performing a temporal alignment between a

1Coarticulation is manifested by the fact that a motion primitive is highly influenced by the previous and

the following primitives in a CGS
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realization of a CGS performed in anas neutral as possiblemanner and other realizations

of this CGS performed according to different moods, emphasis and execution speeds.

The rest of this paper is organized as follows: in the first section, we present the existing

works that address the problem of styled motion edition, then we introduce the style robust

distance metric on which The Adaptive Fast Time Warping algorithm introduced in section

3 steps on. Section 4 introduces the sign language CGS that wehave captured for the

experiments detailed in section 5. Results are discussed insection 6. We then conclude by

drawing perspectives of this work.

Related works

In order to introduce the problem of style retrieval and analysis from captured motions, we

first show how model-based animation methods have somehow failed to produce yet natural

and convincing motions. We then present works concerned by the characterization of style in

motion sequences, and then give some insights on the temporal alignment problem between

two motions.

Model-based animation methods Studies on sign language which have been carried out

since the 60’s have lead to dedicated description/transcription systems [1]. Several gestural

generation systems inspired by this paradigm have appearedsince then. Lebourque & al.

[2] propose an expressive gesture synthesis system where the task is expressed as a discrete
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sequence of targets in the euclidian space around the virtual signer. The sequence of pos-

tures is then solved thanks to a sensory-motor inverse kinematics solver. More recently, the

ESIGN project [3] designed and set up a communicative gesture synthesis system driven by

sign language transcriptions.

More style-centric studies around human motion appeared bythe end of theXIXe century

and have been continued and enhanced until today [4]. The underlying theory derived from

those works served as a base for procedural motion synthesissystems [5]. Other procedural

systems step on psycho cognitive studies [6] in order to convey stylistic features [7].

Procedural systems have proved to be capable of providing understandable expressive

gestures with a great level of control. However, such generative models, by relying on kine-

matics models, have failed to produce natural, smooth motions. This failure was partially

solved by intensive use of captured motions. As a consequence, many recent works related

to human motion style rely on motion capture.

Data driven style characterization characterization and extraction of the style for motion

captured data is tightly linked to motion editing methods. The first works which focus on

this particular aspect are inspired by signal processing. Unuma & al. [8] apply Fourier

decomposition to motion signal and identify style featureslike briskness or the amount of

weariness in the motion. Bruderlin & al. [9] perform frequency decomposition of motion

signal by using multiresolution filtering. Motion blendingis then obtained by separately

handling motion frequency components. Amaya & al introduced the notion ofemotion
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between aneutral motion and anemotionally chargedmotion [10]. The method is able

to endow an arbitraryneutral motionwith the emotion embeded in the initialemotional

motion. Several methods based on captured data exploit structuredbases of motion segments

[11, 12, 13]. By finding the best sequence of segments matching user-defined tasks or

constraints, the system is able to produce arbitrary long motions. However, those methods

do not directly address style editing, as the style of generated motion is bounded to the inner

style of the captured motion.

In parallel, style caracterization has motivated the use ofstatistical methods like inde-

pendant component analysis (ICA) [14, 15], PCA [16] or factorization models [17, 18].

Other works are inspired by generative approaches based either on structure dicovery and

mapping of discrete states embedded in two styled motions [19, 20]. While these methods

reveals to efficiently perform spacial style translation ofeither body or facial motion, they

do not directly address the temporal variations induced by style.

Temporal characterization of style It has been well accepted that style affects both tem-

poral and spacial characteristics of human motion. As far aswe know, those two concerns

have been addressed in a separate manner. Temporal and spacial aspects of style are charac-

terized separately and recombined together during the motion generation step. Characteri-

zation of temporal stylistic features is by itself a non trivial problem and has been addressed,

in most cases by relying on a well known non linear time alignment method: dynamic time

warping (DTW) [21]. Bruderlin [9] adopted Sederberg’s shape based algorithm to vectors
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of postures described as Euler angles. Witkin & al. [22] adopted a motion curve based

warping scheme over euler-angular posture vectors confining the motion editing process to

a set of chosen articular trajectories. Rose [23] performs time warping over motion curves

described as uniform cubic B-spline curves defined by their control points. Gleicher [24]

adopts constrained dynamic time warping to align motions toperform relevant blending.

Hsu & al. [25] propose an iterative time warping algorithm which directly operates on pos-

ture vectors. Most recently, Shapiro [15] proposes an interactive motion editing tool that lets

the user choose a relevant joint defined in Euclidean coordinates to perform time alignment

over two styled motions.

Forbes & al. [26] introduce a motion search algorithm based on aweighted PCA-based

pose representation. This algorithm evaluates a time-warpdistance between sequences of

postures by performing bi-directional DTW from a seed pointin a distance matrix built

over thePCA-basedrepresentation space. Theweighted PCA-basedrepresentation space

fits well with our need of splitting a CGS into two parts: thefundamental motionthat con-

veys the meaningful part of a gesture sequence and thestylistic contentof the motion wich

conveys stylistic and emotional charge of the motion. Although all the temporal alignment

methods described above have given satisfying results on motion sequences that are either

cyclic (locomotion) or relatively short (martial arts moves), they are challenged when ap-

plied to long realizations of a CGS. The issue is actually well described by Keogh [27], who

proposes an interesting discussion focused on the temporalaspects of human motion. He

highlights the fact that temporal variability observed as both a local and a global influence.

7



His work introduces the need to deal with many different temporal variations levels. This

leads us to design a new temporal alignment scheme that is multi-level.

Style robust representation space

It is difficult to formulate a precise definition of style as style is tightly mixed with captured

motion data. An actor may perform a predefined motion sequence according to different

moods, speeds, or expressivity clues, but, even when asked to be as neutral as possible, the

actor will still convey his ownkinematic signature. Still, each realization of a CGS will at

least contain a common subpart that conveys the semantic of the CGS. Identification of this

subpart motivates our investigations towards a low dimensional representation subspace for

CGS. The construction of a style robust distance function ismotivated by the assumption

that the meaningful part of the gesture is embedded in the subset which presents the greatest

variance.

Introducing Weighted PCA

The motion representation that we have designed to characterize the motion data in a re-

duced but still accurate orthogonal subspace is directly inspired from the work by Forbes &

al. [26]. The weighted PCA-based representation has the advantage of providing a coarse

to fine representation that is driven by the amount of variance observed by each principal

component in the original space. Furthermore, the weightedscheme fits well with our re-
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quirement: the meaningful content of an CGS is mainly drivenby the actor’s upper limbs.

It thus makes sense to introduce a weighting scheme that highlights arm and hand motion.

We thus consider both hands, upper body an lower body as four substructures of respec-

tive global weights{1.0, 1.0, 1.0, 0.5}. Inside a substructure, weights are derived from the

relative amound of body mass influenced by each joint.

Motion data description

Motion data is composed by series of quite large vectors. As we deal with full body pos-

ture descriptions (hands + body), a posture vector is described by63 unit quaternions. The

quaternion representation is then centered and linearizedthanks to the method presented in

Johnson’s PH.D thesis [28]. This prepossessing step leads to a linear real valued representa-

tion of our posture sequences described by a matrixM of 189 rows andn columns wheren

is the number of frames in the CGS realization. Among our database of motions, the mean

frame number of a CGS realization is7000.

Eigenposture base extraction

PCA is a linear basis transformation that basically decomposes the original data so that any

number of components accounts for as much as possible of the data variance. Mathemati-

cally, the principal components are the eigenvectors of thecovariance matrix of the original

data set. To perform PCA decomposition, we rely on the singular value decomposition
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(SVD) which, when applied to a reference CGS realization matrix Mref leads to:

Mref = UrefΣrefV
T
ref .

WhereVref andUref are orthogonal unit matrices,Uref is an orthonormal eigenposture

base ofR189 whoser first columns give the basisu1, u2, ... of the optimal hyperplane of

dimensionr. Σref is a189 × n matrix with non-negative decreasing singular values on its

diagonal. Then, theMi subsequent realization of a CGS are projected onto the optimal basis

extracted fromMref .

V T
i = Σ+

refU
T
refMi

WhereΣ+

ref is the transpose ofΣref with every nonzero entry replaced by its reciprocal.

This projection leads to a common representation space between every realization of a CGS.

In this representation space, a realizationMi of a CGS is described by ther first rows of

matrixVi. The distance between two poses is obtained by calculating the euclidian distance

between their firstr scaled coordinates ofVi.

Projecting the motion onto an optimal subspace

Projecting an arbitrary motion on an eigenposture space is lossy if the projected motion is

not included in the construction of the eigenposture basis.To minimize the error induced

by the projection, Forbes & al [26]. constructed the motion search space on an eigenposture
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basis obtained from a motion sequence that conveyed the mostvariability: the range of

motion (ROM) that had been used to calibrate the motion capture hardware. Such a choice

is legitimate when no a-priori knowledge is available on themotion data to be projected.

Or we have a strong a-priori on the content of the motion data we deal with: each

motion clip is a single realization of a CGS. As a consequence, it makes sense to build the

projecting space upon a reference CGS realization that closely matches the motions we wish

to compare rather than an exhaustive ROM. This decomposition leads to a more accurate

representation space. In other words, fewer eigenpostureswill be necessary to provide an

accurate reconstruction of the projected motion. Therefore, fewer coordinates are required

to provide a faithful estimation of thefundamental motion. In our experiments, we found

that takingr = 4, was sufficient to convince the overall meaning of any realization of a

CGS. We thus define our distance functionδ between two posturesqi andcj belonging to

two coordinates matricesQ andC expressed in the reference base(UrefΣref) as:

δ{qi, cj} =
√

(qi(1) − cj(1))2 + ... + (qi(4) − cj(4))2

This distance function serves as a base to the construction of a distance matrix that will

be handled by the adaptive DTW algorithm we introduce in the next section.
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Time alignment

Accurate matching of human motion data requires taking multiple levels of temporal mis-

alignment into account, from uniform scaling along large sequences to small local misalign-

ments. This fact has also been identified as well in biomechanical and computer animation

[27]. To handle this issue, we rely on a multilevel strategy that iteratively adjusts both the

search space and the slope constraint of the well known DTW algorithm [21]. By doing so,

it becomes possible to avoid the trade-off between global and local adjustments. We show

that this methods prevents discontinuous jumps from occurring while preserving sufficient

accuracy in time correspondence.

Fast DTW

FastDTW algorithm has been introduced by Salvador & al. [29]and was initially designed

to cut-off the computational cost of the well known DTW [21],which is ofn2 in its standard

implementation. FastDTW basically consists in splitting the complexity of standard DTW

by recursively down-sampling the time series. The warp pathfound at each iteration of the

algorithm is then projected onto the higher resolution layer and serves as a guide that reduces

computational complexity by spatially reducing the area handled by dynamic programming,

as illustrated in figure 2b, FastDTW complexity isO(n), and is known to find an accurate

minimum-distance warp path between two time series that is nearly optimal. Unfortunately,

the warp path obtained via FastDTW contains many consecutive horizontal or vertical steps.
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This leads to jerkiness, high discontinuities or long steady postures over warped gesture

sequences.

Constrained DTW

The constrained DTW has been introduced to limit the number of consecutive horizontal or

vertical steps and provides a smoother match. LetQ andC be two time series of respective

lengthm andn. Let δ be a distance function between any elementqi of Q and any element

cj of C. Let k > 1 be a real coefficient. Constrained DTW can then be recursively defined

as:

γ{qi, cj} = δ{qi, cj} + min(γ{qi−1, cj−1}, kγ{qi−1, cj}, kγ{qi, cj−1)})

DTW (Q,C) = γ{qm, cn}

k prevents the warp path from leaving the main diagonal of the distance matrix between

Q andC. Constrained DTW limits the number of consecutive horizontal or vertical steps and

provides a smoother match. The drawback of constrained DTW is the slope limitation which

is introduced. Slope limitation may prevent constrained DTW from finding a warp path that

is faithful to the optimal warp path if the temporal variation has a too wide influence.
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Adaptive DTW

Adaptive time warping was motivated by the wish to provide a constrained version of the

DTW algorithm which could be adapted to the many temporal misalignment levels observed

in the realizations of CGS. Existing time warping methods donot handle the trade trade-off

between warp path smoothness and minimization of the warp path distance. To answer

this limitation, a coarse to fine approach is adopted. This approach relies on a multilevel

strategy that iteratively adjusts both the search space andthe slope constraints of DTW. We

thus extend FastDTW algoritm in order to take an adaptive slope support at each iteration

into account. The pseudo code in figure 2a describes the algorithm.

The implementation is recursive and the base case occurs when one of the input motions

becomes shorter than the window length we set in the parameters of Adaptive DTW. First,

two new lower-resolution motion series are created that have half as many poses as the

input motion series (Fig. 1, l. 5–6) Slope constraint is thenupdated (l. 7–9). Next, a low

resolution path[p, q] is found for the coarsened motion series (l. 10) and projected to a

higher resolution (l. 11). This projected path is then expanded by radius cells to create a

search window that will be passed to the constrained DTW algorithm (Fig. 1, l. 12 and

Fig. 2). The constrained DTW algorithm refines the warp path that was projected form

the lower resolution. The result of this refinement is then returned. The execution of the

AdaptiveDTW algorithm repeatedly runs lines 5–9 in recursive calls to lower resolutions.

When the base case is reached, it is executed only once, afterwards lines 11–12 are executed
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for each recursive call (or resolution) on the stack.

Application

Communicative Gesture Sequence description

The earliest part of our work was dedicated to collecting sign language motion data per-

formed according to various styles.

We then asked a professional signer to perform several realizations of the same weather

forecast presentation in French sign language (FSL) by adopting different styles. The mean

duration of a sequence was 60 seconds and the CGS realizations were done according to the

following style: neutral (twice), emphasis, angry and tired. We took as reference realization

the first sequence performed according to neutral style.

Results

We preprocessed and merged the data to obtain one unit quaternion posture matrix per CGS

realization. We then projected the motions on the eigenposture basis extracted from the

reference CGS realization. Finally, we applied standard DTW and Adaptive DTW to the

obtained matrices. Figures 3 and 4 depict the most evocativeresults.

Figure 3 compares a temporal alignment obtained thanks to classical DTW, constrained

DTW and the Adaptive DTW. The plots show the evolution of the influence of the first eigen-
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posture vector for each motion in the eigenposture representation space. The two motions

are respectively the first neutral sequence and the second neutral sequence.

Those sequences actually provide an interesting benchmark. On one hand, the se-

quences are very close, since they were performed accordingto the same style. On the

other hand, they suffer from heavy artifacts since the signer messed up a couple of signs

between frame 2200 and frame 3800.

The second plot from the top of figure 3 highlights the temporal alignment found by

classical DTW. It appears that classical DTW actually finds an optimal time warp path which

minimizes DTW cumulative distance. Unfortunately, the obtained warp path introduces

many discontinuities, especially in the disordered part ofthe sequences. As a consequence,

the warped motion obtained thanks to DTW contains many discontinuities.

The third plot from the top depicts the temporal alignment obtained thanks to constrained

DTW. For the experiment, the maximum number of consecutive horizontal or vertical steps

has been set to 2, as described in [24]. Although the warped motion presents satisfying

continuity, It appears that constrained DTW is challenged when the temporal variations

have a too wide influence over the motion to be warped. Adaptive DTW shows its ability to

find a smooth but still accurate warp path between the two motions.

Figure 4 illustrates the time alignment obtained by aligning the angry styled CGS perfor-

mance onto the reference CGS performance. On one hand, the spacial variations introduced

by angry style are not negligible (notice the differences between the overall postures and the

amplitude of the movements). On the other hand, angry style introduces rhytmic repetitions
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of some specific movements which ADTW is not designed to handle. The postures depicted

in figure 4 are equally sampled and the curves represent the evolution of the influence of the

first the eigenposture vectors along frames. This figure highlights the capability of Adaptive

DTW to provide a smooth and accurate match despite the spacial variations and repetitions

introduced by the angry style.

Conclusion

Using communication gestures obtained through motion capture raises a number of difficul-

ties that are inherent to the nature of these motions: difficult automatic or manual segmen-

tation and strong variability between the execution of two realizations of a communicative

gesture sequence (CGS). In this paper we have proposed a motion alignment method that

has proved to be robust to the spacial variabilities that areinduced by differently styled re-

alizations of a relatively long CGS. This information can beexploited in a variety of ways:

motion editing, blending, segmentation or style translation. Our hypothesis lies on a pos-

sible decomposition of communicative gesture between a fundamental motion (common to

all realizations) and a style content. This decomposition is obtained through weighted PCA

decomposition methods. This decomposition is then used as input of an adaptive dynamic

time warping algorithm which provides smooth alignment between sequences. Style may

introduce rhytmic repetitions of some specific movements. ADTW is not designed to handle

such repetitions, but answering this limitation contitutes a challenging extention.
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Figure 1: FSL signer performing the sign ”look at me” on the top sequence, he was asked to

be as neutral as possible, on the bottom one, he was asked to simulate angryness. The two

sequences are displayed along the same time basis
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Figure 2: (a) The Adaptative DTW algorithm. (b) At each iteration, as the Warp path is pro-

jected onto the higher resolution, the slope constraint of the DTW algorithm is incremented
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Figure 3: Comparison between standard DTW algorithm, constrained DTW and Adaptive

DTW (bottom): ADTW does not find an temporal alignment that minimises DTW distance,

but, rather a smooth path that prevents jerkiness along the warped motion. moreover, ADTW

recovers both global and local time variations.
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Figure 4: Pose representation along three sign sequences. From top to bottom. The two

upper sequences are captured from original performances according to neutral and angry

style, respectively. The third sequence represent the original angry sequence warped along

the original neutral sequence.
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