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Abstract

This article describes a new kind of processing chain based on a non-
uniform sampling scheme provided by a level-crossing ADC. The chain
implements IIR filters which process directly the non-uniform samples
without resampling in a regular scheme. The non-uniformity in the sample
times leads to choose a state representation for the filters. The stability
is studied and the performances of various numerical schemes used to
implement the filters in this representation are compared.

Keywords: Non-uniform sampling, IIR filter, numerical schemes for ODEs,
stability.

1 Introduction

In many applications such as electronic embedded systems, there is a need for
low consuming devices. One way to achieve this goal is to use asynchronous
circuits, in which no clock rules the functioning. In these devices, components
do not wait for clock signals, instead they each treat information as fast as
they can and use specific protocols to communicate with other components.
The consequence (as the components work asynchronously) is that the slowest
component does not determine anymore the performances of the entire system.
Moreover, the asynchronous circuits are event-driven which means they consume
energy only if they have data to process.

The classical sampling scheme which consists in taking signal samples at reg-
ular clock times has no interest and meaning any more with these asynchronous
systems. In order to be compliant with these asynchronous circuits, the sig-
nals can be sampled in a dual way. In classical synchronous systems, sampling
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times are known precisely and the amplitudes are quantized (with an amplitude
quantization error). In asynchronous systems thresholds are predefined within
the amplitude dynamical range and known precisely. The time instants are
quantized with a local clock (with a time quantization error). This procedure
is called the level crossing sampling scheme.

Samples are therefore only taken when the signal has some meaningful vari-
ation. This induces a lot of precision in active parts of the signal and no activity
when the signal is constant (asynchronous circuits are event-driven), implying
low consumption for the targeted applications and also other advantages like
low electromagnetic pollution.

There are a lot of applications where it can be useful to have such a sam-
pling. This is the case when the signal activity is significant only on short times
compared to the total duration of the signal, such as speech, electro-cardiogram
signals, seismic signals, etc.

The design flow has to be completely redefined for these systems including
signal processing tools which are our concern in this paper. Indeed, the general
goal is not only to treat level crossing sampled signals but to treat them using
asynchronous systems. We address here only IIR filtering for non-uniformly
sampled signals. We also do not address the implementation with asynchronous
chips, which has been done in [2]. Other approaches in processing non-uniform
sampled signals may be found e.g. in [10] or [12].

In Section 2 we describe our non-uniform data, the IIR filters in the state
representation and the standard numerical schemes in the literature (Euler, bi-
linear, integral). In Section 3 we point out stability as a criterion to choose
a proper scheme and give a design flow which takes it into account, both for
unconditionally and conditionally stable schemes. In Section 4 we give other
possible schemes and compare them for three types of low-pass filters (Butter-
worth, elliptic and Chebyshev) in terms of stability, efficiency and algorithmic
complexity.

2 State of art

2.1 Definitions and notations

The output of a level-crossing ADC consists in a sequence of couples (an, dtn)
(see Fig. 1). The amplitude an of the signal is captured each time the signal
crosses some predefined quantization levels. The time delay elapsed since the
last sample dtn is computed by a local timer with precision TC . From an initial
time t0, we may reconstruct the time tn of the n th input sample using the
recurrence relation tn = tn−1 +dtn. This value is used to describe our approach
but not in the algorithms since it is not available in practice. We will also define
the half-time between samples n and n+ 1 by tn+1/2 = (tn + tn+1)/2.
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Figure 1: Non-uniform sampling scheme

Such a non-uniform sampling was first introduced in [11]. An asynchronous
implementation, called A-ADC (for asynchronous ADC), has been defined in [3]
and analyzed in terms of signal-to-noise ratio. In digital signal processing we are
interested in filtering an input signal i(t) represented by the samples (in, dtn)
to obtain an output signal o(t) represented by the samples (on, dtn). Keeping
the same time delays is not convenient for FIR filters, where the output delays
depend on the input and the impulse response samples (see [1], [9]). We are
interested in IIR filters for which the output is given at some later time than
the input due to computational delay, but it can be considered as constant and
does not affect time delays. A closer study of this point would necessitate to
consider an effective asynchronous implementation of the schemes, which is not
our goal here but is discussed in [2].

2.2 State representation for an IIR filter

The aim is not to design asynchronous filters. Instead we use standard filters.
Usually a uniformly sampled input signal I(s) is written in the Laplace domain
and filtering consists only in multiplying by the filter transfer function

H(s) =

∑N
j=0 αjs

j∑N
j=0 βjs

j

and obtaining the output filtered signal O(s) = H(s)I(s). This is based on
efficient Laplace transforms which are not available for non-uniformly sampled
signals. Therefore, we use the state representation of the filter where all the
signals (input i, output o) are written in the time domain. This necessitates the
use of a vector-valued state variable x:

dx(t)
dt

= Ax(t) +Bi(t), (1)

o(t) = Cx(t) +Di(t), (2)
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where

A =


0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1
−β0 −β1 · · · −βN−2 −βN−1


is the N ×N state matrix, B = (0 · · · 0 1)t is the command vector, C = (α0 −
αNβ0 · · · αN−1 − αNβN−1) is the observation vector and D = αN the direct
link coefficient.

The integral form for Eq. (1) is given by

x(t) = eAtx(0) +
∫ t

0

eA(t−τ)Bi(τ)dτ. (3)

The characteristic polynomial of the state matrix A reads

det(λId−A) = λN + βN−1λ
N−1 + . . .+ β1λ+ β0,

(where Id is the N ×N identity matrix) and the poles of the transfer function
are exactly the zeros (or eigenvalues) of the state matrix. We can define a linear
change of basis P for the state vector in Rn and replace it by y(t) = P−1x(t)
such that Ã = P−1AP is the Jordan form of matrix A (if all the roots of A are
distinct, Ã is diagonal). If we further define B̃ = P−1B, C̃ = CP and D̃ = D,
the new state variable y(t) is solution to

dy(t)
dt

= Ãy(t) + B̃i(t),

o(t) = C̃y(t) + D̃i(t).

In the sequel, we will keep the original system, but this form justifies the stability
proof in Section 3.1.5.

2.3 Euler approximation of an IIR filter

The Euler method consists in writing equation Eq. (1) at time tn−1 and use a
forward approximation for the time derivative, namely

xn − xn−1

dtn
= Axn−1 +Bin−1, (4)

which also reads as

xn = (Id + dtnA)xn−1 +Bdtnin−1.

Then the output is simply computed by

on = Cxn +Din. (5)
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2.4 Bilinear approximation of an IIR filter

Poulton and Oksman [7, 8] have chosen a bilinear method to approximate the
time derivative in Eq. (1). This method consists in writing a centered approxi-
mation of the equation at time tn−1/2, that is

xn − xn−1

dtn
= A

xn + xn−1

2
+B

in + in−1

2
. (6)

The output is once more computed using Eq. (5).
We may give an explicit form for Eq. (6), namely

xn = Ψnxn−1 + Λn
1
2

(in + in−1),

where

Ψn =
(

Id− dtn
2
A

)−1(
Id +

dtn
2
A

)
and Λn =

(
Id− dtn

2
A

)−1

dtnB.

This algorithm displays several advantages: it is second order, and is much
more effective than the Euler method. Nevertheless, it is relatively expensive
in computational time since we need to invert a matrix for each new output
sample. This is the reason why we will suggest other approximation methods
which do not share this drawback. Other criteria for the choice of a ”good
method” will be given below in our specifications.

2.5 Discretization in the integral form

In [5], Fontaine and Ragot choose to discretize the integral form (3) of the state
equation directly. Their only approximation consists in replacing the continuous
signal i(t) by a sample-hold or piecewise linear interpolation. For example, for
sample-hold interpolation, they compute

xn = eAdtnxn−1 −A−1(Id− eAdtn)Bin−1.

The stability proof below (see Section 3.1.2) for the continuous variables leads
to the stability of such an approximation, and the results presented in [5] are
rather good in term of filtering. They suggest to split operators into second-
(or first-) order filters in order to have a simpler evaluation of the quantity
exp(Adtn). We will use this idea to compare the complexity of the different
methods in Section 4.3.

3 Stability specifications and design flow

3.1 Stability

3.1.1 Definition

Definition 1 A filtering process is said to be stable if when perturbed by an
input signal with finite time duration, the output signal eventually returns to an
equilibrium state.
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A well known necessary and sufficient condition for a filter to be stable is
that the poles of its transfer function (eigenvalues of A) have a negative real
part.

3.1.2 Stability in the state representation

Suppose the input signal is constant from time t∗ on. Then, for t ≥ t∗, the
solution to the state equation reads as

x(t) = eA(t−t∗)x(t∗) +
∫ t

t∗

eA(t−τ)Bi(τ)dτ (7)

= eA(t−t∗)x(t∗) +A−1(eA(t−t∗) − Id)Bi(t∗),
o(t) = Cx(t) +Di(t∗), (8)

and since the eigenvalues of A are supposed to have a negative real part

lim
t→+∞

o(t) = (D − CA−1B)i(t∗) = (αN +
α0 − αNβ0

β0
)i(t∗) =

α0

β0
i(t∗).

In particular, the limit does not depend on the state of the system when per-
turbed but only on the constant value of the input. Thus we obtain the classical
result that if the eigenvalues of A have a negative real part then the filtering
process is stable in the sense of Definition 1.

3.1.3 Sampled state equation

We have already seen two types of approximations for an asynchronous signal:
the Euler and the bilinear methods. The problem we deal with is the approx-
imation of an ordinary differential equation sampled on a non uniform time
discretization. This problem is classical in numerical analysis. Both the Euler
and the bilinear methods can be cast in a more general framework of one-step
schemes which reads as

xn = Φnxn−1 + Γnîn. (9)

(This framework could be easily enlarged to also encompass multi-step schemes,
e.g. Taylor approximations). The input signal is approximated by în. To
illustrate notation Eq. 9, the Euler method corresponds to

Φn = Id + dtnA, Γn = dtnB, and în = in−1

and the bilinear method to

Φn =
(

Id− dtn
2
A

)−1(
Id +

dtn
2
A

)
,

Γn =
(

Id− dtn
2
A

)−1

dtnB, and în =
1
2

(in + in−1).

In Section 3.1.2 we have seen that in the stability is ensured if the eigenvalues
of A have a negative real part, i.e. if the eigenvalues of exp(A(t− t∗)) lie inside
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the unit disk. We prove below that, if the eigenvalues of Φn lie uniformly in
the unit disk then the stability of the approximation is ensured. The stability
condition only involves Φn (and not Γnîn).

3.1.4 ”Good method” with respect to stability

For any method that we will define, Φn preserves in practice the eigendirections
of matrix A and an eigenvalue λ of A corresponds to an eigenvalue µn of Φn via
the transform µn = Tn(λ).

Examples For the Euler method, Tn(λ) = 1 + dtnλ. The eigenvalue λ lies in
the left half of the complex plane (Re(λ) < 0) if and only if µn lies in the region
(Re(µn) < 1). This includes the unit disk and therefore the inverse image of
the unit disk is a subset of the left half-plane (LHP).

For the bilinear method,

Tn(λ) =
1 + dtnλ/2
1− dtnλ/2

.

This is the well known homographic function, which maps the left half-plane
onto the unit disk (see Fig. 2).

Re(λ)

Im(λ)
Tn

Re(µn)

Im(µn)

Figure 2: Action of the Tn transform for the bilinear transformation. Left
eigenvalues λ of matrix A, right eigenvalues µn of matrix Φn shown on the
complex plane

Discussion The choice of a good method may also be done following two
types of questioning.

1. We may want a method which will give good results for any stable filter.

2. We may select filters which eigenvalues in some restricted region of the
complex plane such that the eigenvalues for the approximate method lie
inside the unit disk.

The bilinear method is good in both respects. The Euler method should be
rejected if the first point of view is adopted. Otherwise, the filter should be
chosen such that |1 +dtnλ| < 1. This is a disk of radius 1/dtn which is included
in the left half-plane (see Fig. 3). If the filter is given, and has no eigenvalues
on the imaginary axis, this implies an upper bound on the sampling time.
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1/dtn Re(λ)

Im(λ)
Tn

Re(µn)

Im(µn)

Figure 3: Action of the Tn transform for the Euler scheme. Left eigenvalues λ
of matrix A, right eigenvalues µn of matrix Φn shown on the complex plane

Numerical scheme OK
for any stable filter:

unconditionnally stable

Numerical scheme OK
for this scheme:

conditionnally stable
Calculation of Tn

shorten longest dtn
i.e. reduce bit number

of A-ADC counter

λ ∈ Rn?
yes

no

LHP ⊂ Rn?
yes

no

Rn = T −1
n (D1)

Calculation of Tn

Numerical
scheme Filter

λ

Figure 4: Design flow to implement stable numerical filters

3.1.5 Proof of the stability of the approximation

In both cases, Φn is an approximate value of exp(dtnA). The stability of the
approximation will be proved following the proof for the continuous equation.
A simple recurrence from Eq. 9 implies that

xn =

 n∏
j=1

Φj

x0 +
n∑
j=1

 n∏
k=j+1

Φk

Γj îj .

Let us first prove stability in the simple case when the time step is constant.
In this case, Φj = Φ and Γj = Γ for all j. Besides we assume that îj is constant
and equal to i∗ from index n0 onwards. Therefore

xn = Φnx0 +
n∑
j=1

Φn−jΓîj
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= Φnx0 + Φn−n0+1

n0−1∑
j=1

Φn0−j−1Γîj

+
n−n0∑
j=0

ΦjΓi∗.

Since the eigenvalues of Φ are supposed to lie inside the unit circle the first two
terms vanish as n→∞. Thus

lim
n→∞

xn = lim
n→∞

n−n0∑
j=0

ΦjΓi∗ = (Id− Φ)−1Γi∗.

In the case of non-constant time steps, the fact that the eigenvalues of all ma-
trices lie in the unit circle does not prove that products like

∏n
j=1 Φj vanish

(counter examples are easy to find). However this is true for triangular matri-
ces and therefore for the Jordan form given in Section 2.2. The proof can be
made with this formulation and the result is still valid in the initial variables.

Besides our definition of stability and the principle of the A-ADC imply
that if the input is constant, no new output is computed and the output is
therefore constant. This way of thinking is at least valid for absolute stable
methods. We have seen that we may have to define an upper bound TU for the
sampling time to ensure stability. Then we have to add new samples with the
same amplitude and delay time TU . In this case, the stability proof is the same
as in the synchronous case.

3.2 Design flow

The preceding discussion leads to define a design flow to implement a stable
numerical filter. This design flow is shown in Fig. 4. There are two inputs:
a numerical scheme and a filter. For a given value of dtn, a transform Tn is
calculated from the numerical scheme. Then we define the stability domain as
the region Rn of the complex plane which is the inverse image of the unit disk
D1:

Rn = T −1
n (D1).

If the left half plane is included in Rn then the numerical scheme yields a stable
method whatever the filter is. We will call such a scheme an unconditionally
stable scheme. Otherwise, if the filter poles λ (eigenvalues of matrix A) belong
to Rn then the numerical scheme yields a stable method for this specific filter.
If this condition is not fulfilled then a possible solution is to reduce the maximal
value of dtn. A generic situation is indeed that of the Runge–Kutta schemes
(see below Section 4.1.1).

The region Rn is plotted in Figs 5 and 6 for the RK4 and RK23 schemes
respectively. RK23 is an unconditionally stable scheme with a ”funny” (i.e. non
convex) stability region. RK4 is a conditionally stable scheme. The regions Rn
do not overlap for different values of dtn. However the particular form of these
regions allow to include any given set of points from the left half plane by taking
a small enough value of dtn.
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Figure 5: Stability domain Rn for the RK4 scheme and dtn = 0.0388 s. Stars
are T −1

n ({0}) and lie in the stable domain

4 Numerical schemes

4.1 Explicit and implicit schemes

The numerical schemes are used to discretize equation (1). The left-hand side is
always discretized as (xn−xn−1)/dtn. If the right-hand side is given in terms of
the state and the entries at times before tn, i.e. tn−1, tn−2, . . . then the scheme
is said to be explicit. We have already presented the Euler method which is an
explicit scheme. If time tn is used the scheme is said to be semi-implicit. The
bilinear method is an example of such a method. If later times, like tn+1, are
used, the scheme is said to be implicit. Such schemes are not used for filtering
methods since they use future entries (which would be possible by insertion of
delays) but also future states of the system. In addition it would be prohibited
by the large amount of calculations needed.

4.1.1 Explicit schemes are not unconditionally stable

By no means can an explicit method be unconditionally stable. Indeed, for an
explicit method, Tn is a polynomial and no polynomial can map the left half-
plane in any bounded domain of the complex plane. This is a major drawback,
but we want to consider explicit methods for their costless implementation.
Therefore, for explicit methods we will be interested in finding the filtering
methods which will lead to the less restrictive condition on time steps.
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Figure 6: Stability domain Rn for the RK23 scheme and dtn = 0.0388 s. Stars
are T −1

n ({0}) and lie in the stable domain. The zoom (b) explains why one star
seems to be in the unstable domain in the full view (a): the stable domain is
the union of the outer domain of the large boundary (which includes the left
half plane) and the inner domain of the small one

4.1.2 The Runge–Kutta 4 scheme

Many explicit schemes exist in the numerical analysis literature [6], among
them explicit Runge–Kutta schemes. We have used the 4th order Runge–Kutta
scheme (RK4) which for our particular state equation and a linear approxima-
tion of i(dtn− 1

2
) reads as xn = Φnxn−1 + Γnîn, where

Φn = Id + dtnA+
dt2n
2
A2 +

dt3n
6
A3 +

dt4n
24

A4

Γnîn = dtn[
Id
2

+
dtn
3
A+

dt2n
8
A2 +

dt3n
24

A3]Bin−1

+dtn[
Id
2

+
dtn
6
A+

dt2n
24

A2]Bin.

We may notice that the iteration matrix that operates on yn−1 is the 4th order
Taylor expansion of exp(dtnA) which is the exact value. For this scheme, the
inverse image of the unit circle for

Tn(λ) = 1 + dtnλ+
dt2n
2
λ2 +

dt3n
6
λ3 +

dt4n
24

λ4

is shown in Fig 5.

4.1.3 Semi-implicit schemes

The bilinear method is a semi-implicit scheme. We have also tested a third
order two-stage Runge–Kutta semi-implicit method (RK23). For our specific
state equation, it reads as xn = Φnxn−1 + Γnîn, where

Φn = [Id− dtnA]−1[Id− 2
dtn
3
A]−1[Id− 2

dtn
3
A− dt2n

2
A2],
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Γnîn = [Id− dtnA]−1[Id− 2
dtn
3
A]−1 ×

×dtn([
Id
2
− dtn

2
A]Bin−1 + [

Id
2
− 2

dtn
3
A]Bin).

For this scheme, the inverse image of the unit circle for

Tn(λ) =
1− 2dtn3 λ− dt2n

2 λ2

(1− dtnλ)(1− 2dtn3 λ)

is shown in Fig 6 and is twofold as already noticed.
A very well known semi-implicit scheme is also the retrograde Euler scheme,

which is in some sense ”too stable” as will be seen in the simulations below. It
reads as

xn − xn−1

dtn
= Axn +Bin, (10)

which should be compared with Eqs (4) or (6). For this scheme

Φn = [Id− dtnA]−1, Γn = [Id− dtnA]−1dtnB, and în = in

and therefore
Tn(λ) =

1
1− dtnλ

.

This scheme is unconditionally stable, and the stability domain is the exterior
of the circle of center (1/dtn, 0) and of radius 1/dtn, which contains the left
half-plane.

4.2 Comparison of the schemes for three low-pass filters

We address the filtering of the superposition of DC, 1 and 4 Hz signals:

i(t) = 0.45 sin(2πt) + 0.45 sin(4× 2πt) + 0.9

at a 2 Hz cut-off frequency. We first apply an A-ADC converter with dynamic
range [0V,1.8V] on this signal to obtain 641 samples displayed in Fig. 7.
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Figure 7: Asynchronous signal used for scheme comparisons
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The filter order is 10 for the three filters. Each time five schemes are used,
and compared on Figs 8 to 13, namely Euler, retrograde Euler, bilinear, RK23
and RK4 schemes. As we have seen, three of them are unconditionally stable.

To be able to discriminate between filter characteristics and sampling or
numerical effects, we give in Table 1 the amplification coefficients for the fre-
quencies of our test input signal and the cut-off frequency. The values will have
to be compared with those in Tables 2–4.

0Hz 1Hz 2Hz 4Hz
Butterworth 1.0000 1.0000 0.7071 0.0010
elliptic 0.9441 0.9996 0.9441 0.0086
Chebychev 0.7943 0.9340 0.7943 0.0000

Table 1: Filter amplifications for the input frequencies 0Hz, 1Hz and 4Hz, and
the cut-off frequency 2Hz.

Horizontal lines in Figs. 8, 10 and 12 display the theoretical lower and upper
values for the output due to the characteristics of the filter only.

4.2.1 Butterworth filter

We first try a Butterworth filter. The filtering results are displayed in Fig. 8
and show three very comparable and good results corresponding to the bilinear,
RK4 and RK23 schemes. The retrograde Euler scheme is of course stable but
damps the solution too much. Some amplification is observed for the Euler
scheme.

4 5 6
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(a) input signal
4 5 6
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(b) Euler
4 5 6

0
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1.5

(c) retrograd Euler

4 5 6
0

0.5

1

1.5

(d) bilinear
4 5 6

0

0.5

1

1.5

(e) RK23
4 5 6

0

0.5

1

1.5

(f) RK4

Figure 8: Filtering with five schemes for the Butterworth filter.

This is accounted for in Fig. 9 on which eigenvalues µn = Tn(λ) are plotted
for the five schemes. The Euler scheme has two eigenvalues outside the unit
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disk. They lie not too far from the unit circle which explains that the solution
is still reasonable but a longer simulation would make this solution blow up.
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Figure 9: Eigenvalues of the five schemes for the Butterworth filter and the
maximal time step dtmax = 0.0388 s.

In Table 2 are displayed the mean value and the half amplitude which are
supposed to reflect the DC and the 1 Hz components of the filtered signal. In
order not to be perturbed by the transient values and more generally by the
initial and final times used to compute the mean, we consider it is the half value
between the minimum and the maximum of the filtered signal. The results are
given for all schemes except the Euler schemes which is clearly unstable. The
comparison is made with the theoretical value which is the value displayed in
Table 1 multiplied by the input amplitude of the DC and the 1 Hz components,
namely 0.9 and 0.45, respectively.

theoretical retro Euler bilinear RK23 RK4
mean 0.9000 0.8986 0.9044 0.9116 0.9054
half amplitude 0.4500 0.3686 0.4578 0.4604 0.4568

Table 2: Mean and half amplitude of the Butterworth filtered signals for all the
schemes compared to the theoretical values at DC and 1 Hz frequency.

There is a good agreement with the expected theoretical values, especially
for the mean value. The 1 Hz component is as already noticed too much damped
by the retrograde Euler scheme.

4.2.2 Elliptic filter

The same computations are performed for an elliptic filter displaying comparable
results for the bilinear, RK4 and RK23 schemes (see Fig. 10). The retrograde
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Euler scheme yields better results than for the Butterworth filter. The Euler
scheme is very bad in this situation. Most samples for this scheme are not
displayed in Fig. 10 because they are out of the dynamic range.

4 5 6
0

0.5

1

1.5

(a) input signal
4 5 6

0

0.5

1

1.5

(b) Euler
4 5 6

0

0.5

1

1.5

(c) retrograd Euler

4 5 6
0

0.5

1

1.5

(d) bilinear
4 5 6

0

0.5

1

1.5

(e) RK23
4 5 6

0

0.5

1

1.5

(f) RK4

Figure 10: Filtering with five schemes for the elliptic filter.

This is coherent with the eigenvalue computations plotted in Fig. 11: only
two eigenvalues lie on the unit disk for the Euler scheme and the others are far
from the unit circle.
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Figure 11: Eigenvalues of the five schemes for the elliptic filter and the maximal
time step dtmax = 0.0388 s.

Table 3 is the equivalent of Table 2 for the elliptic filter. It would not be
fair to compare the filtered amplitudes with the ideal values (0.9 for the DC
component and 0.45 for the 1 Hz component) since the performance of the
elliptic filter is far from that at least for the DC component.
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theoretical retro Euler bilinear RK23 RK4
mean 0.8497 0.8487 0.8412 0.8540 0.8404
half amplitude 0.4498 0.4249 0.4585 0.4676 0.4547

Table 3: Mean and half amplitude of the elliptic filtered signals for all the
schemes compared to the theoretical values at DC and 1 Hz frequency.

4.2.3 Chebyshev filter

The same computations are performed for a Chebyshev filter and shown in
Fig. 12. Once again, the bilinear, RK4 and RK23 schemes yield good results,
the retrograde Euler scheme damps the solution two much and Euler is out
of range as the eigenvalue analysis displayed in Fig. 13 explains (only four
eigenvalues on the unit disk).
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Figure 12: Filtering with five schemes for the Chebyshev filter.

As can be seen in Table 4 the performance of the Chebyshev filter is poor
especially for the DC component. However, the applied schemes do not alter
the performance more.

theoretical retro Euler bilinear RK23 RK4
mean 0.7149 0.7401 0.7124 0.7154 0.7166
half amplitude 0.4203 0.3349 0.4546 0.4559 0.4557

Table 4: Mean and half amplitude of the Chebyshev filtered signals for all the
schemes compared to the theoretical values at DC and 1 Hz frequency.

The numerical results with the different schemes are comparable to that
obtained with a uniform sampling. The main difference is that the value of
longest dtn has to be checked in order to ensure the filter stability in the case
of conditionally stable schemes.
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Figure 13: Eigenvalues of the five schemes for the Chebyshev filter and the
maximal time step dtmax = 0.0388 s.

After the filtering process we obtain a signal which is not a level crossing sam-
pled signal. In particular the low-pass filtered signals are clearly over-sampled,
with respect to the Nyquist criterion (which is always the case for level cross-
ing samples in active parts of the signal) but also compared to a level crossing
sampled signal. A new sampling block should therefore be added behind the
filtering block.

4.3 Complexity analysis

We drop now the study of both Euler schemes which have been proven to be
less efficient, and compare the other schemes with respect to their complexity,
which will be our last argument to choose a good scheme.

4.3.1 Reduction to one- or two-order filters

In order to implement an N th order filter, it is usual to decompose it in mul-
tiple first and second order filters which are easily implemented with classical
electrical structures like Rauch or Sallen-key structures. In our case, such a
reduction is also attractive because it is much easier to invert scalars or 2 × 2
matrices than an N × N matrix. Moreover, the decomposition provides the
ability to make explicit the calculus of the matrix inversion which can be a real
improvement in terms of computation speed and complexity.

4.3.2 Algorithmic complexity

In order to evaluate the implementation cost, the number of operations and
the memory needs have been estimated for an N -order filter decomposed into
one- and two-order filters for four schemes (bilinear, Runge–Kutta 4, Runge–
Kutta 23 and the integral form). To obtain these values, storage has been
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favored vs. computation. Other choices can be made but this is connected to
implementation issues which are out of the scope of this article. For the semi-
implicit schemes, the values in Tables 6 and 5 refer to the worst case, that is
when there is at most one (N [2], i.e. N modulo 2) one-order filter and bN/2c
two-order filters). It is always less complex to split a two-order filter into two
filters when possible: the coefficient in front of bN/2c is always larger than
twice the one in front of N [2]. For RK4, since no matrix inversion is needed,
the decomposition into low-order filters is not necessary.

Scheme bilinear RK23 RK4 integral
Memory needs 3bN2 c+ 2N [2] 3bN2 c+ 2N [2] N + 1 3bN2 c+ 2N [2]

Table 5: Memory needs for several schemes.

Scheme bilinear RK23 RK4 integral
+ 10bN2 c+ 5N [2] 26bN2 c+ 8N [2] 12N + 1 13bN2 c+ 3N [2]
× 18bN2 c+ 7N [2] 44bN2 c+ 9N [2] 10N − 1 20bN2 c+ 6N [2]
shifts 2bN2 c+ 2N [2] bN2 c+N [2] 3N + 2 -
exp - - - N

Table 6: Comparison of the operation number for several schemes.

The tables 5 and 6 give us the complexity overview related to each schemes.
It appears that the RK4 scheme and the bilinear scheme have about comparable
complexities. The integral scheme requires an exponentiation.

5 Conclusion

In the case of non-uniform sampling, the only still valid representation for IIR
filters is the state representation, which is an Ordinary Differential Equation
representation. The discretization is usually performed for uniform samples
but may be as well performed for non-uniform samples. We have compared
different numerical schemes in terms of stability, complexity and quality of the
filtering result when applied to classical low-pass filters as Butterworth, elliptic
or Chebyshev filters.

Euler schemes are both to be rejected, the explicit one for being unstable
and the implicit one for being in a sense too stable, i.e. too dissipative. The
three other studied schemes (bilinear, RK23 and RK4) give qualitatively good
results. If applied to N -order filters, only RK4 is effective (no matrix inversion),
but if 1- and 2-order decompositions are used, the complexity study does not
allow to rank one of them clearly first. For RK23 and RK4, some oversampling
is needed for inactive inputs to ensure stability, while this is unnecessary for the
bilinear scheme.
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This work is part of a wider study of signal processing in a complete asyn-
chronous framework (asynchronous representation and processing of the data)
[4]. The goal is definitively to reduce the number samples, the computational
load and so the energy consumption. We strongly believe that this is an attrac-
tive approach for autonomous embedded systems.
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