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Abstract
Using motion capture data has nowadays utterly

been adopted by video game creators or virtual

reality applications. In a context of interactive

applications, adapting those data to new situa-

tions or producing variants of those motions are

known as non trivial tasks. We propose an orig-

inal method that produces motions that preserve

the statistical properties of a reference motion

while ensuring some constraints. This method

uses principles of conditional stochastic simu-

lation to achieve this goal. Notably, a new real

time algorithm, performing sequentially and pro-

ducing the desired motion is introduced. Possible

applications of our method are numerous and

several examples are given, along with results.

Keywords: Character animation, Gaussian

Processes, Stochastic Simulation

1 Introduction

The production of new motions from existing

ones is a crucial problem in character anima-

tion for several reasons: it can alleviate the costs

of motion capture and data post-processing; it

allows to adapt the motion to distinct types of

constraints in a context of interactive applica-

tions where there is no a priori about the ac-

tion, and as well can add variety and prevent the

clone effect, especially for crowds [1]. Existing

solutions for the creation of a new motion can

be decomposed into two categories: interpola-

tive and generative. The first category refers to

methods combining (generally in a linear way)

existing motions [2, 3, 4], whereas the second

deals with learned models of motions. In the

absence of physical or analytical models of mo-

tions, statistical models have the capability of ex-

pressing the knowledge available in the data, and

have revealed over the last years to be a tool of

choice for enclosing the motion specific informa-

tion [5, 6, 7, 8, 9].

Our method belongs to this category and can

synthesize new motions that share the same statis-

tics up to order two of a reference motion. As-

suming that the inherent variability of a motion is

a realization of a stochastic process, our method

first learns its structure by treating it as a Gaus-

sian process. Then, new realizations of motions

can be obtained by stochastic simulation, which

guarantees that the obtained motion has the cor-

rect statistics. Nevertheless, this is not sufficient

to assert the correctness and realism of the mo-

tion. The aim of the proposed method is to al-

low to add kinematic constraints to the system.

The contributions of this paper are in this direc-

tion and are twofold: i) using a double kriging

operation, we show how it is possible to con-

strain the stochastic simulation to reach given val-

ues at given instants, which amounts to keyframe

the simulation ii) a novel real-time algorithm per-

forming sequentially is proposed to conduct this

operation.

The remainder of the paper is decomposed

as follows: after a short presentation of related

work, Section 3 gives an overview of the method

and its philosophy. Section 4 presents some prin-

ciples of geostatistics used in our method. No-

tably, the links with Gaussian processes will be



emphasized. Section 5 is dedicated to the pre-

sentation of stochastic simulation, along with the

algorithmic versant of the theory, while Section 6

presents possible applications to character ani-

mations through three examples: motion recon-

struction, variations synthesis and motion con-

trol. Section 7 concludes the paper.

2 Background

Our method belongs to the family of statistical

models of character motions. The seminal work

of Pullen and Bregler [10] is the first to use a non

parametric multivariate probability density model

to express the dependencies between joint angles

in motions. Samples drawn from these distribu-

tions are then used to generate new sequences

from an input motion. Non parametric models

have also been used more recently to handle the

variation synthesis problem [9], where Lau et al.

use dynamic Bayesian networks to both handle

spatial and temporal variations. Our method dif-

fers from their work given the fact that in our case

only one motion is necessary to produce variants.

However, most of existing works concen-

trate on parametric families of statistical models.

In [11], Brand and Hertzmann were the first to

model a motion with hidden Markov models. The

motion texture paradigm [6] uses a two level sta-

tistical model, where short sequence of motions

(textons) are modeled as linear dynamic system

along with a probability distribution of transitions

between them. Chai and Hodgins [12, 5] also use

linear time invariant models such as autoregres-

sive models to model the dynamic information

in the motions. Gaussian processes first served

in the computer animation community to per-

form dimensionality reduction and construct a la-

tent variable model [13].Gaussian processes have

been also widely used in the context of computer

vision [14]. In [7], Wang and colleagues ex-

tended the latent space formulation with a model

of dynamics in the latent space. Most recent

applications of Gaussian processes include mo-

tion editing [8] and style-content separation [15].

Contrary to these previous works, our method

does not require any global optimization proce-

dure as it can perform sequentially, thus making

it fully suitable for real time systems, even with a

large number of characters such as in a crowd.

3 Method overview

Let M be a reference motion. M can be repre-

sented as a collection of d dimensional vectors

q, each of them parameterizing one configuration

of the articulated figure. Usually, those vectors

are indexed over time, so that M = {qt}t=1,...,T .

Our method, depicted in Figure 1, starts by apply-

ing a dimensionality reduction technique to the

data. This part is described in the next subsec-

tion, while the basic assumptions and the philos-

ophy of our method are described subsequently.

3.1 Data representation

Before applying our method to motion data, we

perform dimensionality reduction on them. The

objectives are twofold: i) working on smaller

sets of data while keeping most of the informa-

tive part ii) decorrelate the different dimensions

of the signal so that it is possible to work on them

independently. For this purpose, we choose the

Principal Geodesic Analysis (PGA) scheme [16],

which has been recently used in the context of

compression of motion data [17]. It can be seen

as a generalization of PCA on general Rieman-

nian manifolds. Its goal is to find a set of di-

rections, called geodesic directions or principal

geodesics, that best encode the statistical variabil-

ity of the data. In our case, and conversely to [17],

the global translation of the root of the charac-

ter should be taken into account as an important

part of the motion. Similarly to [6], we choose

to encode the translation velocity of the root in

the vector q which then belongs to the following

Lie group R
3 × SO(3)n if n joints parameterize

the articular configuration of the character. This

allows while synthesizing a new motion, to build

a new root trajectory by integrating the velocity.

The exponential and logarithmic maps for this Lie

group are found easily, and as in [17], PGA is

computed by applying PCA in the tangent space

at the intrinsic mean of the data.

3.2 Basic assumptions

Let Xi = {Xi(t)}t=1,...,T be the i-th component

obtained from the PGA technique applied on the

reference motion. This trajectory is assumed to

be a realization of a Gaussian process Xi with

covariance function Ci. This process is assumed



Figure 1: Overview of the proposed method. During an offline phase, an example motion is first decomposed with prin-

cipal geodesic analysis. The resulting trajectories are used to estimate the hyperparameters of a given covariance

function. At runtime, the conditional stochastic simulation uses this covariance function, a random generator and

some constraints to produce a new motion.

to be ergodic, meaning that its statistical prop-

erties can be inferred from one finite realization

of it. If the observed realization is of sufficient

length, we can indeed consider that it contains the

same information as several different realizations

of the process. We also assume that the underly-

ing process is stationary, meaning its joint prob-

ability distribution does not change when shifted

in time, reducing for the Gaussian process to the

property that the two first moments do not depend

on time.

3.3 Motion synthesis methodology

Let us first note that the methodology we propose

to synthetize new motions requires the explicit

knowledge of the covariance function Ci for each

resulting component of the PGA decomposition.

In practice, a parametric model is first chosen for

the covariance function and its hyperparameters

are estimated from each realization Xi. An ex-

ample of parametric covariance model is the fol-

lowing one:

Ci(t, t
′) = αi exp

(

−
|t − t′|2

ρi

)

+σiδtt′ , (1)

where ρi will be called the length-scale which de-

termines how quickly the covariance falls, δ is

one if t = t′ and zero elsewhere, and the asso-

ciated σi traduces the nugget effect (small scale

variations, corresponding to noise). This model

is used for all applications in this paper, and the

parameters are estimated with a maximum likeli-

hood approach for each PGA component.

The input of the covariance model and its esti-

mation from observed trajectories in the reduced

space correspond to the top right part of Figure

1. Note that this step, like the PGA analysis, are

performed offline.

Once the parameters of the covariance func-

tions Ci are known for all PGA directions, a

model of motion is available in the PGA space.

New motions can then be synthesized from this

model. If one aims at simulating motions with the

same statistical properties as the reference mo-

tion, a realization of a Gaussian process with co-

variance Ci can easily be obtained for each com-

ponent, and a new motion can be reconstructed

from the PGA approach. However, in order to

improve the resulting motion, constraints have

to be introduced into the simulation procedure.

The problem can then be formulated as the con-

ditional simulation of a Gaussian process, with

kinematic constraints as constraint values. The

conditional simulation relies on the well known

linear prediction problem from Gaussian pro-

cesses (described in section 4). Based on this lin-

ear prediction, it is shown in Section 5 how to re-

spect these constraints while maintaining the sta-

tistical properties of the reference motion. This

part, performed online, is depicted on the lower

part of Figure 1.

4 Prediction from Gaussian

processes

Given p observations X(t1), . . . , X(tp) at times

t1, . . . , tp of a given Gaussian process with



known mean and covariance function C, one can

look at the prediction of X(t) for a given time

t. In this section, we show that the Kriging

approach and the Gaussian Process regression

method solve this problem in the same way.

4.1 Kriging

Kriging [18] is a linear interpolation method is-

sued from the geostatistical community. Mukai

and Kuriyama [4] used this technique in the con-

text of computer animation to find an optimal set

of weights for blending motions. In the krig-

ing approach, the estimation X̂(t) is expressed

as a linear combination of the p known values

X(t1), . . . , X(tp) as follows:

X̂(t) =

p
∑

i=1

λi(t)X(ti), (2)

where λ(t) = (λ1(t), . . . , λp(t))
T stands for the

kriging coefficients.

It is possible to express those coefficients with

the following equation:

λ(t) = Σ−1
(p)Σ(t), (3)

where:

Σ(p) =






C(t1, t1) · · · C(t1, tp)
...

. . .
...

C(tp, t1) · · · C(tp, tp)




 (4)

and:

Σ(t) = (C(t, t1), . . . , C(t, tp))
T . (5)

These coefficients are obtained under the con-

straints that the estimation is unbiased and that

the variance of the kriging error given by:

V ar(X(t)−X̂(t)) = C(t, t)−ΣT
(t)Σ

−1
(p)Σ(t) (6)

is minimized.

4.2 Gaussian Process regression

A similar approach is known as Gaussian Pro-

cess (GP) regression in the machine learning

community and vision communities [19]. The

GP approach aims at solving the same predic-

tion problem: given p observations X(p) =

(X(t1), . . . , X(tp))
T , one looks at the estimation

of X(t) at a given unobserved time t. GP’s ap-

proach solve this problem using the assumption

that the process is Gaussian, and building the con-

ditional distribution p(X(t)|X(p)) which is itself

Gaussian. The joint distribution of X(t) and X(p)

writes indeed:

[
X(p)

X(t)

]

∼ N

(

0,

[
Σ(p) ΣT

(t)

Σ(t) C(t, t)

])

(7)

where Σ(p) and Σ(t) are defined by (4) and (5).

The conditional distribution p(X(t)|X(p)) is then

obtained from a little matrix algebra [19], and it

comes that this distribution is Gaussian described

by:

p(X(t)|X(p)) ∼ N (ΣT
(t)Σ

−1
(p)X(p),

C(t, t) − ΣT
(t)Σ

−1
(p)Σ(t)). (8)

The mean ΣT
(t)Σ

−1
(p)X(p) of this distribution is

clearly the same as the kriging estimate in equa-

tion 2, and the variance C(t, t) − ΣT
(t)Σ

−1
(p)Σ(t)

corresponds to the variance of error given by (6).

The Gaussian Process regression is then another

expression of kriging.

5 Stochastic simulation

In the following we assume that Z is a Gaussian

process with mean µ and covariance function C.

The objective is to simulate trajectories Z(sim) =
(Z(sim)(t1), . . . , Z

(sim)(tN )) of length N of this

process. The trajectories have to be independant

and respect the statistical properties of Z:

E(Z(sim)(t)) = µ ∀t, (9)

Cov(Z(sim)(t), Z(sim)(t′)) = C(t, t′) ∀t, t′.

(10)

Knowing the covariance function C, the covari-

ance of a trajectory Z(sim) is then a matrix de-

noted Σ(N) of size N × N , with:

Σ(N) =






C(t1, t1) · · · C(t1, tN )
...

. . .
...

C(tN , t1) · · · C(tN , tN )




 (11)

5.1 Non-conditional stochastic simulation

In this section we present how to simulate a tra-

jectory ZNC respecting the properties (9-10). One



possible and simple simulation method is based

on the Cholesky decomposition of the covari-

ance matrix Σ(N). We first sample a vector y =

(y1, . . . , yN )T composed of N independant real-

izations of the standard Gaussian distribution, so

that y ∼ N (0, I(N)). Then we set:

ZNC = L(N)y + µ, (12)

where L(N) is obtained from the Cholesky fac-

torization of the covariance matrix: Σ(N) =

L(N)L
T
(N) (provided that Σ(N) is positive semi

definite). From this decomposition it is easy to

verify that E(ZNC) = µ and Cov(ZNC) = Σ(N).

One possible concern with this method is, from

a computational point of view, the Cholesky fac-

torization of Σ(N) which is o(N3). However, this

operation can be conducted only once when Σ(N)

is known.

5.2 Conditional Stochastic Simulation

In some cases, it can be interesting to

force the simulations to reach given values

Z(t′1), . . . , Z(t′p) (experimental data, keyframes

specified by animators, etc.) at given time in-

stants t′1, . . . , t
′

p. In this section we explain how to

respect these constraints while maintaining prop-

erties (9-10).

One could think of simulating new trajectories

using the kriging estimate (equ. (2)) or sampling

from the posterior defined by the GP regression

(equ. (8)), for all times t between observed val-

ues [19]. Resulting trajectories would then reach

observed values. However, these methods do not

create trajectories respecting the property (10).

The covariance structure is indeed not respected,

and simulated trajectories are then smoother than

those simulated with the right covariance struc-

ture C.

Note that recently, a method to sample new

trajectories solving a global maximum a poste-

riori estimation conditioned to observed valued

has been proposed by [8]. However, with such

an approach there is no guarantee neither that the

statistical properties of the reference motion are

preserved.

A possible way to obtain trajectories that both

respect the required covariance property and

reach fixed values is to use a double kriging op-

eration [20]. Let us recall that the simple krig-

ing allows to find an estimate Ẑ(t) at time t that

differs from the unknown Z(t) by the kriging

error Z(t) − Ẑ(t). This error is unknown but

can be simulated by means of a secondary pro-

cess having the same properties as Z. A trajec-

tory ZNC = (ZNC(t1), . . . , Z
NC(tN )) is first sim-

ulated using the non-conditional simulation tech-

nique described in the previous subsection. A

new trajectory ẐNC = (ẐNC(t1), . . . , Ẑ
NC(tN )) is

then obtained by the kriging approach, from all

values ZNC(t′1), . . . , Z
NC(t′p). The resulting krig-

ing error ZNC(t) − ẐNC(t) for each t is finally

added to the trajectory Ẑ = (Ẑ(t1), . . . , Ẑ(tN ))
obtained from the kriging based of the given val-

ues Z(t′1), . . . , Z(t′p):

ZC(t) = Ẑ(t)
︸︷︷︸

Kriging
estimate

+ZNC(t) − ẐNC(t)
︸ ︷︷ ︸

Kriging
error

∀t (13)

We can directly observe that the trajectory ZC

goes through fixed values Z(t′1), . . . , Z(t′p), since

the kriged trajectory ẐNC goes through fixed val-

ues ZNC(t′1), . . . , Z
NC(t′p):

ZC(t′i) = Ẑ(t′i) + ZNC(t′i) − ẐNC(t′i) (14)

= Z(t′i) ∀t′i ∈ t′1, . . . , t
′

N (15)

Moreover, it can be proved that ZC respects both

properties (9) and (10) 1. The resulting sim-

ulation is then a sample from a Gaussian pro-

cess with the required covariance structure C, and

that is constrained to go through particular val-

ues Z(t′1), . . . , Z(t′p). Illustrations of trajectories

simulated with this conditional approach can be

seen in the experimental section on figure 4(e,f),

where the dots denote the constraint values.

The algorithm that sums up this conditional

simulation technique is the following:

The main computational time is spent in the

Cholesky decomposition since this operation is

o(N3). When N is large, this can become a prob-

lem. In the context where N is not known, or if

a continuous output stream is desired (in order to

produce a virtually infinite random sequence), an

alternative algorithm can be used. Let us first re-

mark that the Cholesky decomposition produces

a matrix L which is lower triangular. This mean

that the p-th output of the simulation depends on

the last p − 1 elements that were drawn from the

1Associated proofs will be given in a forthcoming techni-

cal report, due to lack of space in this paper.



Algorithm 1 Compute trajectory ZC =
(ZC(t1), . . . , Z

C(tN ))
Input: Covariance structure C of the process

Input: Z(t′i) at t′i = t′1, . . . , t
′

p

1: From C compute the N ×N covariance matrix Σ(N)

2: L(N) = Cholesky(Σ(N))
3: Simulate ZNC using L(N) with equation (12)

4: Estimate trajectory ẐNC from Σ(N) and fixed values

ZNC(t′i) following the kriging equation (2)

5: Estimate trajectory Ẑ from Σ(N) and fixed values

Z(t′i) following the kriging equation (2)

6: return ZC(t) = Ẑ(t) + ZNC(t) − ẐNC(t) ∀t =

t1, . . . , tN

standard Gaussian distribution. This p-th output

can thus be computed provided that the p-th line

of L and the past elements are known. However,

it is noticeable that the Cholesky decomposition

has a recursive formulation, that makes possible

to compute the p-th line from the p − 1 previ-

ous lines in the matrix. Also, since the covari-

ance function is assumed to be neglectful after

a given distance ρ (corresponding to the length-

scale), we can reasonably assume that the influ-

ence of known values Z(t′i) is neglectful when-

ever |t′i − t| < ρ. By restraining the computation

of each element ZC(t) of the output as a function

of sufficiently near Z(t′i), and by updating itera-

tively the p-th line of the Cholesky decomposition
2 , it is possible to design an algorithm that pro-

duces sequentially a correct output:

Algorithm 2 Compute trajectory ZC sequentially

Input: Covariance structure C of the process

Input: Z(t′i) at t′i = t′1, . . . , t
′

p

1: y← FIFO(2ρ) {y has a FIFO structure of size 2ρ}

2: ZNC ← FIFO(2ρ) {and so ZNC}

3: t← 1
4: repeat

5: Lt
(ρ) = updateCholesky(L0:t−1

(ρ) )

6: y← push(yt ∼ N (0, 1))
7: ZNC ← push(Lt

(ρ)y)

8: Estimate trajectory ẐNC from C and fixed values

ZNC(t′i) (eq (2)), ∀t′i such that |t′i − t| < ρ

9: Estimate trajectory Ẑ from C and fixed values

Z(t′i)(eq (2)), ∀t′i such that |t′i − t| < ρ

10: return ZC(t) = Ẑ(t) + ZNC(t)− ẐNC(t)
11: t← t + 1

12: until needed

In this algorithm, updateCholesky allows to

2Details about the computation scheme will be given in a

forthcoming technical report, due to lack of space in this

paper.

compute the t-th line Lt
(ρ) of the Cholesky de-

composition from all previous lines.

6 Application to character

animation

We propose here several possibilities to exploit

conditional stochastic simulation in the context

of character animation. The first example shows

how conditional simulation can be used to recon-

struct missing or damaged parts of a motion; the

second one presents possible applications in mo-

tion editing and the last one deals with motion

control.

6.1 Motion reconstruction

It is usual with traditional motion capture de-

vices to encounter markers occlusions that alter

the quality of the motion reconstruction. With

markerless motion capture this problem is even

more present as far as the complete pose estima-

tion can fail for a more or less short period of

time [21]. The objective is here to reconstruct the

missing parts of the signal. Most of the classical

approaches perform linear or spline interpolation

between the known parts of the motion. In the

case of large holes, those types of interpolation

behave badly as they tend to produce a contin-

uous and smooth output which is generally dif-

ferent from the original motion dynamics. Our

method first learns the covariance structure on the

known parts of the motion and then simulates the

unknown part of the motion conditioned to all

known single frames.

Figure 2 presents an illustration of the recon-

struction for two different hole lengths. One can

see that for small holes, the variability between

the different simulations proposed by our method

is restrained, and that results are close to a simple

kriging interpolation. For longer holes, the vari-

ability is bigger and results differ from the kriged

solution. Far from observations, the kriging con-

verges indeed toward a mean estimate, flatten-

ing the reconstructed part. On the other hand,

each of the different trajectories simulated by the

conditional approach is statistically coherent with

the known part of the motion (which means here

that the covariance structure of the whole recon-

structed signal is the same than the one learned



from the known part). Those proposed solutions

might not correspond to the real motion, but can

be used as credible, potential solutions.

6.2 Motion variations synthesis

Our method is able to generate new variants of

a motion, and, conversely to [9], with only one

example motion. Figure 3 shows four different

trajectories of the right hand during a punch mo-

tion. Those trajectories correspond to four differ-

ent simulations obtained from a single punching

motion. Figure 4 shows variations obtained from

a walking motion.

Figure 3: Generating different punching motions. The

four different trajectories correspond to the right

hand position along four different simulations.

The transparent punch pose was used as con-

straint in the simulation process.

When generating motion variations, one could

wish to control the deviation from the original

motion. To achieve this, let us first note that

the density of constraints on precise zones is di-

rectly related to the similarity with the original

motion. This is illustrated in Figure 4(e,f), where

three constraints were put at closeby time instants

(190 − 200 − 210). One can observe the similar-

ity between the simulations and the original tra-

jectory in this zone. Another possibility would be

to keep unchanged some of the first components

of the PGA. In this case, only the remaining com-

ponents have to be simulated. This can be under-

stood if one consider that the first modes of PGA

contain the trend of the motion (as discussed in

section 3), and that the stochastic parts are con-

centrated on the less meaningful modes.

It is interesting to note that our method also

produces variability in the root translations of the

character. In Figure 5 are plotted root trajectories

(projected on the ground plane) of several simu-

lations under different conditions: all modes are

simulated; the 3 or 6 first modes are kept fixed.

Figure 5: Variability in root translations. Several root

trajectories are plotted (projection on the ground

plane).

6.3 Exemplary based motion control

We show here how conditional simulation can be

efficiently used in the context of motion control.

By motion control we mean that, given an exem-

plar motion, a new motion can be produced along

with a set of kinematic constraints, and eventu-

ally timing information. Conditional simulation

allows to derive an efficient, real-time motion

synthesis process, which overview is depicted in

Figure 6. Kinematic constraints, such as hands

or feet positions are added to the system, along

with timing information. The character pose is

solved for by applying PGA-based Inverse Kine-

matics [17], which directly gives the correspond-

ing coordinates in the PGA space. Then, a new

motion is simulated over a time interval which is

centered around the constraint time, and which

length is twice the maximum among all estimated

length-scales λi (which corresponds to the range

of time dependance in the covariance model es-

timated for each PGA component). This interval

contains indeed all poses that present significant

time dependance with the new constraint and that

have then to be recomputed. This simulation is

conducted conditioned to every other unchanged

poses in the motion. This operation can eventu-

ally be processed sequentially.

Figure 7 shows an example of this process. A

baseball catch (motion 20 from subject 143 in



Figure 2: Hole filling using conditional stochastic simulation: in this example the length-scale of the covariance function

is around 10. When the size of the hole is 40, the simulation is very constrained and the variability is limited.

Oppositely, when the hole is larger, our method provides different results with a greater variability, whereas the

classical linear or kriged interpolate flatten the signal

Figure 6: Using conditional simulation in the context

of motion control. A PGA-based Ik solver

provides conditions directly in the PGA space.

Along with the current configuration and timing

information, a new motion can be generated

CMU database) was used. A new catch pose is

computed with PGA-based IK (figure 7.a). A new

motion is then computed in its vicinity (the first

PGA component is shown in figure 7.b). Two im-

age strips showing rendering with a skinned char-

acter of both original and simulated sequences

are shown (figure 7.cd). Figure 8 shows another

example, where a single kick motion was used

to produce a continuous motion of three kicks at

three different locations.

7 Conclusion and discussion

From one single observed motion, the proposed

method based on conditional simulation is able to

reconstruct completely new variants of this mo-

tion, or to reconstruct unknown parts of it. For all

these tasks, the conditional formulation garantees

that the input constraints (defined as known parts

of the motion or external kinematic constraints)

are respected. Moreover, simulated motion tra-

jectories present by construction of the method

the same covariance structure as the reference

motion. This property comes from the Gaussian

assumption at the root of the method. As a mat-

ter of fact, the reference motion is assumed to be

a realization of a Gaussian process defined by a

mean and a covariance function. The proposed

method is able to sample new trajectories that

are independant realizations of the same process,

and as such have the same statistical properties.

Note that this approach is different from a di-

rect sampling based on the posterior distribution

described in equation (8). Such simulations are

indeed able to respect kinematic constraints, but

do not share the same properties as the reference

motion.From a computational point of view, the

proposed sequential formulation of the method

makes it real-time and as such adapted to inter-

active applications.

However, it has to be noted that the underly-
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Figure 4: Variants synthesis. Our system was used to generate variants of the walking motion presented in figure (a). Figure

(b) shows the result of one simulation with pose constraints depicted in a different color (red). Figures (c) and (d)

are respectively obtained keeping unchanged the 3 and 6 first PGA components in the motion. Figures (e) and (f)

show respectively simulations of the first and second PGA components. Note how simulated trajectories reach the

constraints as expected.

a c

b d

Figure 7: Motion control. This example handles a baseball catch motion. Figure (a) presents the original catch and a new

catch generated by PGA-IK (applied on both arms). Figure (b) shows the first component of the PGA with its

new simulated part. Notice the time interval over which the simulation has been performed. Figures (c) and (d)

illustrate respectively the original motion and the synthesized motion on four frames.



a
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Figure 8: Kick sequence. The original sequence (a), containing one kick, is used to produce a continuous sequence (b) of

three different kicks at different locations.

ing Gaussian assumption may be too restrictive.

The resulting motions may fail to reproduce more

complex dynamical structures that could be ob-

served in the reference motion (feet sliding is an

example). Moreover, the stationarity assumption

is hard to respect for all kinds of motions. Non-

stationary components such as clear trends or

periodic components for instance, should be re-

moved before learning the covariance model from

the data. This can be done for example by fit-

ting a trend and/or periodic model and removing

these parts from the reference signal, or trying to

adjust non stationary covariance models, but both

solutions are far from being trivial. This objective

will constitute one of the main follow-ups of this

work. A second objective will be the introduction

of new types of constraints to the system, related

to dynamics information for instance. This will

imply to reformulate the conditional simulation

part.
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