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Abstract. We have numerically studied the properties of the interface induced
in the ferromagnetic random-bond three-state Potts model by symmetry-breaking
boundary conditions. The fractal dimension df of the interface was determined.
The corresponding SLE parameter κ was estimated to be κ ≃ 3.18(6), compatible
with previous estimate. On the other hand, we estimated κ independently from
the probability of passage of the interface at the left of a given point. The
numerical data are well reproduced by the Schramm theoretical prediction and
the fit leads to κ ≃ 3.245(10), in agreement with the first estimate. This provides
evidences that the geometric properties of spin interfaces in the random 3-state
Potts model may be described by chordal SLEκ.

PACS numbers: 05.10.Ln, 05.40.-a, 05.50.+q, 05.70.Jk

Introduction

The assumption of conformal invariance in two-dimensional critical systems has been
very fruitful [1, 2, 3]. Exact expressions for correlation functions, as well as values of
critical exponents for minimal models, are among the most stringent predictions of
conformal theory. Recently, the interest has been focused on fractal curves that may
be realized as interfaces induced in a critical conformal-invariant system by imposing
symmetry-breaking boundary conditions [4, 5, 6]. It is believed that the geometric
properties of this kind of curves can be described by a family of self-avoiding stochas-
tic processes introduced by Schramm. The self-avoidance property is obtained by
iteratively removing, during the growth of the curve, the hull formed from the curve
itself and all non-reachable domains enclosed by the curve. This removal is performed
by a conformal transformation. As a consequence, the construction relies on both the
assumption of conformal invariance and on Markovian property. The family of curves
obtained in this way is parameterized by a single parameter κ corresponding to the
intensity of the noise in the underlying Brownian process.

In a conformal field theory characterized by a central charge c, it has been
predicted that the interfaces induced by symmetry-breaking boundary conditions are
described by the chordal Schramm-Löwner process of parameter κ with

c =
(3κ− 8)(6− κ)

2κ
. (1)
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The length ℓ of the interface is expected to scale anomalously with the lattice size as
ℓ ∼ Ldf where the fractal dimension is related to κ by

df = 1 +
κ

8
. (2)

The probability that a given point be on the left of the interface is given by the
Schramm formula:

℘left(x, y) =
1
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This formula is valid in the upper half-plane y > 0 with fixed boundary conditions
on the real axis, changing for x = 0. It can easily be extended to other geometries
by taking advantage of the conformal symmetry of the critical system that allows to
apply a conformal transformation from the upper-half plane to another geometry. In
the following, we will consider a critical system confined in a square. The mapping of
the point z = x+ iy in upper-half plane to the point ω in the square is realized by the
Schwartz-Christoffel conformal transformation

ω = F (z, k)/K(k) ⇔ z = snK(k)ω (4)

where F (z, k) is the incomplete elliptic integral, K(k) is the complete elliptic integral
and k is related to the aspect ratio s of the square by

sK(k) = K ′(k) (5)

where K ′(k) is the associated elliptic integral.

The critical properties of the q-state Potts model (q ≤ 4) defined by the
Hamiltonian [7]

− βH = J
∑

(i,j)

δσi,σj
, σi ∈ {0, . . . , q − 1} (6)

are described by the conformal theory with central charge

c = 1− 6

m(m+ 1)
(7)

where the integer m is related to the number of states q by the Nienhuis formula

q = 4 cos2
(

π

m+ 1

)

. (8)

One thus expects the geometric properties of the interfaces induced in the Potts model
to be described in the scaling limit by the chordal SLEκ with the two possible values

κ1 =
4

1− 1
πArccos (

√
q/2)

, κ2 = 16/κ1. (9)

This prediction has been proved exactly by Smirnov in the case of percolation [8]
(q = 1) and latter for the Ising model [9] (q = 2) in the Fortuin-Kasteleyn represen-
tation. In the case of the q = 3 Potts model, the fractal dimension of the interfaces
between spin clusters has been shown to be compatible within numerical accuracy
with equation (2) and κ2 = 10/3 [10]. Predictions of SLEκ have been tested more
specifically for this model by Gamsa and Cardy [11]. These authors considered the in-
terfaces between the spin clusters and between the Fortuin-Kastelyn clusters and they
extracted the parameter κ both from the scaling of the length of the interface and
from the Schramm formula for the left-passage probability. Several geometries and
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boundary conditions were considered. As expected since c = 4/5, Gamsa and Cardy
measured the parameter κ2 = 10/3 for the spin interfaces and κ1 = 4.8 for the inter-
faces between the Fortuin-Kastelyn clusters, in agreement with the values expected for
c = 4/5 model. Unlike in the Ising model, certain ambiguities arise for the interfaces
in the Potts model. When fixing two different Potts states on the boundaries at the
left and at the right of the system, two interfaces are usually induced since a cluster
of the third state may appear between the left and right clusters. Gamsa and Cardy
generalized the Schramm formula for the left-passage probability to the case of two
SLE curves [12]. Unfortunately, in the 3-state Potts model, the two curves sometimes
collapse in a finite system and the latter formula for the left-passage probability does
not hold. To circumvent this problem, Gamsa and Cardy have also studied fluctuating
boundary conditions: the left boundary is fixed to one of the Potts states while at the
right boundary, spins are free to take any of the two other Potts states. With these
boundary conditions, only one interface is induced and the original Schramm formula
for the left-passage probability can be applied. Recently, the fractal dimension of the
interface has been numerically shown to be compatible with SLEκ even for non-integer
values of the number of states q [13].

The ferromagnetic random-bond 3-state Potts model is defined by the
Hamiltonian

− βH =
∑

(i,j)

Jijδσi,σj
, σi ∈ {0, . . . , q − 1}, Jij > 0 (10)

When the couplings are distributed according to the binary distribution

℘(Jij) =
1

2

[

δ(Jij − J1) + δ(Jij − J2)
]

(11)

the model is critical on the self-dual line
(

eJ1 − 1
)(

eJ2 − 1
)

= q (12)

Randomness is a relevant perturbation and thus alters the critical behavior. In numer-
ical simulations, the ratio r = J1/J2 is usually fixed to the value that minimizes the
scaling corrections due to the cross-over with the pure and percolation fixed points.
The optimum r∗ can be determined as the value leading to the largest central charge
extracted from the scaling of the free energy density on the strip. Even though con-
formal symmetry is broken for a single disorder realization, it is restored after av-
eraging over randomness. Magnetization profiles or correlation functions in confined
geometries have indeed been shown to transform covariantly under conformal trans-
formations [14]. Recently, the interface induced by boundaries has been studied in
the perspective of SLEκ [15]. The scaling of the interface length has been determined
both by transfer matrix techniques and Monte Carlo simulations. From the fractal
dimension df , Jacobsen et al. estimated κ2 ≃ 3.208(24) for the spin interface. Du-
ality, i.e. κ1κ2 = 16, is satisfied within error bars. The results are compatible with
renormalization group arguments. Note that this estimate of κ2 is not compatible
with the value κ ≃ 3.3370(4) given by relation (1) with the estimate of the central
charge c ≃ 0.8024(3).

The Schramm formula has never been tested in the random Potts model. It
has already been considered in other random systems: Ising spin-glasses [16] and
the Solid-On-Solid model on a random substrate [17]. In the second case, a large
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discrepancy was observed between the two estimates of κ obtained from the scaling
of the interface length and from the left-passage probability. Our aim is to check
whether such a discrepancy exists for the random-bond Potts model too. We will
restrict ourselves to a square geometry with fluctuating boundary conditions and to
interfaces between spin clusters. In the first section, we present the numerical details
of the Monte Carlo simulations that we have performed. Then, the fractal dimension
of the interfaces is studied with an emphasis on the influence of disorder on the value
of κ. In the last section, we present our results for the left-passage probability and
the estimation of κ that can be made from it.

1. Details of the Monte Carlo simulations

We have studied the random-bond 3-state Potts model using large-scale Monte Carlo
simulations. Square lattices were considered with fluctuating boundary conditions
and sizes L = 64, 90, 128, 180, 256, 360 and 512. Each Monte Carlo step consists
into one iteration of the Metropolis algorithm and one of the Swendsen-Wang algo-
rithm [18]. This choice is motivated by the fact that the dynamics of an interface
with the Swendsen-Wang algorithm is very slow and may even be slower than with
local Monte Carlo algorithms (see for example Table 1 of [19]). The combination of
the two algorithms may help the system to escape dynamical traps. For equilibration
of the system, between 25000 (L = 64) and 57810 (L = 512) Monte Carlo steps were
discarded (Table 1). Measurements were taken every five Monte Carlo steps. Between
15000 (L = 64) and 34692 (L = 512) measurements were made for each random re-
alization. These values were chosen in order to achieve a good thermalization and
then a sufficient sampling of the equilibrium probability distribution. The number of
measurements may appear at first sight unnecessarily large since it may be argued
that the average over randomness will smooth thermal fluctuations. Smaller numbers
of measurements have indeed led to accurate values of the critical exponents in the
past. However, in our problem, preliminary tests have shown that a smaller number
of Monte Carlo steps leads to systematic deviations on the estimate of κ due to the
large autocorrelation time of the interface.

The measurements were then averaged over N = 5000 different random
configurations of the exchange couplings Jij with the optimal ratio r∗ ≃ 4.0(3)
determined by Jacobsen et al. [15]. Since the random realizations are uncorrelated,
the measurements obtained for each of them are statistically independent random
variables so that the error can be estimated, according to the central-limit theorem,
as

√

σ2/N where σ2 is the mean square deviation of the observable among the random
configurations. Additional simulations have been performed for other values r of the
amplitude of randomness. The same number of Monte Carlo steps were used but only
3000 random realizations were produced and the lattices sizes were limited to L = 64,
90 and 128.

For a given spin configuration, the interface is determined by applying a sim-
ple algorithm: starting from the upper point of the boundary where the conditions
change and thus the interface is fixed, the interface is built on the dual lattice by going
through the broken bonds between neighboring spins (see figure 1 for an example).
The interface goes straight as long as the spin at the right is in the same state as
the left boundary and the one at the left in one of the two other states. Ambiguous
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L Thermalization Measurement
64 25000 75000
90 28750 86250
128 33060 99185
180 38015 114060
256 43715 131165
360 50270 150835
512 57810 173460

Table 1. Number of Monte Carlo iterations used for thermalization and
measurements for the lattice sizes L considered. For all lattice sizes, the data
were then averaged over 5000 random realizations. The total number of Monte
Carlo iterations is thus of order 109 for L = 512 and represents 3 years of single-
CPU time (6 years for all lattice sizes).

Figure 1. Example of a spin configuration and the interface as determined by
the algorithm. The three different spin states are depicted as pink, blue and green
pixels. The interface is the bold red line. The dashed line corresponds to paths
that are not followed by the algorithm.

situations may arise: when the interface cannot go straight, the spin at the right of
the interface can be in some cases in the same state as the left boundary whether the
interface turns on the right or on the left. The algorithm is thus not able to choose
one of the two possible directions ‡. On figure 1, four of these situations are depicted.
We arbitrarily imposed the rule that the interface should always turn on the right in
these cases (turn-right tie-breaking rule). As a consequence, the algorithm may fail to
detect the correct interface. Because of the rule of always turning on the right in case
of ambiguity, the interface may touch itself and thus form loops enclosing a cluster
in a different state. As shown on figure 1, this can only happen on the left of the
interface. Direct visualization of spin configurations shows that the number of these
loops is of order O(1) and that the cluster sizes are most of the time limited to a few
spins and are always much smaller than the lattice size.

In order to gauge the influence of these unwanted loops on the scaling dimension

‡ To avoid these situations, an hexagonal lattice, and thus a triangular dual lattice, is often
considered.
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of the interface and on the left-passage probability, we estimated κ for the pure 3-state
model and compared with the expected value 10/3. As will be seen in the following,
the scaling dimension is not affected by the presence of these loops. We note that the
absence of noticeable effect on the scaling dimension has also been reported recently
in the case of the pure Ising model [20]. It is not the case however for the left-passage
probability. A small but systematic deviation from the Schramm formula is observed
on the left part of the lattice. This deviation affects the estimation of κ. Following the
procedure presented in section 3, we obtain κ ≃ 3.284 for L = 512. Since the loops
appears only on the left of the interface, it creates a left-right asymmetry. Fortunately,
the restriction of the interpolation of the data with the Schramm formula to the right
third of the lattice, i.e. for (x, y) ∈ [2L/3;L − 1] × [0;L − 1] only turns out to give
κ ≃ 3.312 for L = 512 in much better agreement with the expected value 10/3 for the
pure model.

2. Scaling of the interface length

The scaling of the interface length was already determined by Jacobsen et al.. Besides
reproducing their result, we present here a study of the influence of disorder. As
already mentioned, we will restrict ourselves to the interfaces between spin clusters.
For the pure model, we obtain df ≃ 1.4164(4) corresponding to κ ≃ 3.331(3), in very
good agreement with the expected value 10/3. Our data for the disorder amplitude
r∗ = 4, i.e. at the random fixed point, is plotted on figure 2. A simple power-law fit
ℓ ∼ Ldf leads to the fractal dimension df ≃ 1.407(5) and thus to the value κ = 3.26(4).
However, a deviation from a pure power-law can be observed, for example, by removing
the smallest lattices sizes. In the inset of figure 2, the fractal dimension obtained when
taking into account in the fit only the data with lattice sizes larger than L is plotted
with respect to 1/L. While the effective fractal dimension for the pure system is
relatively stable, a tendency to lower values of df is clearly observed in the random
case. The last points are very noisy because the interpolation is made only with the
two or three largest lattice sizes. The extrapolation to the thermodynamic limit is
then delicate. Should the two last points be interpreted as a real trend or a statistical
fluctuation ? Our final estimate will be df ≃ 1.397(7) which correspond to κ ≃ 3.18(6).
This value is less accurate but compatible within error bars with the estimate given
by Jacobsen et al. (3.208(24)).

The fractal dimension df and thus κ are sensitive to the estimate r∗ of the disorder
amplitude at the random fixed point. As shown on figure 3, df and thus κ diminishes
when the disorder gets stronger. A linear interpolation of df versus r allows for a
rough estimation of the additional error ∆df due to the uncertainty ∆r∗ on r∗. With
the value ∆r∗ ≃ 0.3 given by Jacobsen et al., we obtained ∆df ≃ 0.0006 and thus
∆κ ≃ 0.005, an order of magnitude smaller than the statistical error.

Besides the necessity to average over random realizations, numerical simulations
of random systems present the difficulty that an observable φ may not be self-
averaging. In such a situation, the average of φ over N disorder realizations goes
to 〈φ〉 in the limit N → +∞ but the relative fluctuations Rφ = [〈φ2〉 − 〈φ〉2]/〈φ2〉
do not vanish. The probability distribution of the length ℓ of the interface is shown
on Figure 4 for different lattice sizes L. When plotted with respect to ℓ/〈ℓ〉, the
probability distribution appears the same for all lattice sizes. It means that the mean
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Figure 2. Scaling of the interface length with respect to the lattice size L. The
red line is the power-law fit taking into account all the points. In the inset, an
effective fractal dimension df obtained from a power-law fit of the points in the
interval of lattice sizes [L; 512] is plotted with respect to 1/L. The squares above
correspond to the pure system and the circles to the random system with r = 4.
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Figure 3. Scaling of the length of the interface with respect to the lattice size
L for different disorder amplitudes r. In the inset, the fractal dimension df is
plotted with respect to r.

square deviation 〈ℓ2〉 − 〈ℓ〉2 scales as 〈ℓ〉2. The cumulant Rℓ is thus constant: the
interface length is non self-averaging. Another important feature of random systems is
that the typical event may differ from the average. As seen on figure 4, the probability
distribution of the interface length is not symmetric and thus these events indeed differ
slightly. However, the distribution does not present any long tail with rare events
difficult to observe in numerical simulations. We rather observe a distribution close to
a Gaussian. Finally, random systems have the peculiar property to possibly display
multifractality: different moments of an observable φ may present a different scaling
behavior, i.e. 〈φn〉1/n ∼ Lxφ(n) where xφ depends of the order n of the moment. The
first moments 〈ℓn〉1/n have been computed. All fractal dimensions df (n) corresponding
to the scaling behavior 〈ℓn〉1/n ∼ Ldf(n) are compatible within error bars. We conclude
that the interface length is not multifractal.
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Figure 4. Density probability of the length l of the interface normalized by its
average value 〈l〉. The two different curves correspond to different lattice sizes:
L = 64 (black) and L = 512 (red).

3. Left-passage probability

We now determine κ from the Schramm formula of the left-passage probability. We
follow the same procedure as [17]. The left-passage probability ℘(x, y) was estimated
numerically for all points (x, y) of the lattice. To extract κ, the square deviation from
the Schramm formula Sκ(x, y) at any point of the lattice

χ2(x, y) =
[

℘(x, y)− Sκ(x, y)
]2

was computed and then averaged only in the right third of the lattice:

χ2 =
1

2
3L

2

L
∑

x=2L/3

L
∑

y=0

χ2(x, y).

The value of κ leading to the smallest mean square deviation is then searched as
follows: the mean square deviation χ2 is first computed for a set of values κ and
then interpolated with a 4th-order polynomial using a weight 1/χ2 in order to give a
higher weight to the points in the neighborhood of the minimum. The latter is then
determined numerically by searching for the root of the derivative of the 4th-order
polynomial. An example of this procedure is shown on figure 6. For the largest lattice
size L = 512, the mean square deviation is minimal for κ ≃ 3.2452. The monitoring
of χ2(x, y) shows that for this value of κ, the square deviation is of order 10−6 in the
right third of the lattice (figure 5). The square of the statistical error ∆℘2(x, y) is
of the same order. The left-right asymmetry due to the loops is clearly seen: χ2 is
larger by two orders of magnitude in the left part of the lattice. The much better
agreement of the data with the Schramm formula in the right third of the lattice
justifies a-posteriori the restriction of the interpolation to this region.

On figure 7 (left), κ is plotted versus the number of disorder realizations taken
into account in the average for different lattice sizes. No abrupt jump that would be
the signature of rare events with large contribution is observed. The estimates of κ
after 5000 disorder realizations are compatible within statistical fluctuations for lattice
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Figure 5. On the right, square deviation χ2(x, y) of the data with the Schramm
formula with κ = 3.2452 at each point of a 512 × 512 lattice. The contour plot
at the bottom shows that χ2 is of order 10−6 in the right part of the lattice.
The largest discrepancy (of the order of 0.002) is encountered close to the points
where the interface meets the boundary. On the right, square of the statistical
error ∆℘2(x, y) of the numerical estimate of the left-passage probability for the
same system.

2.5 3 3.5 4
κ

0

0.0001

0.0002

0.0003

0.0004

χ2

Figure 6. Mean square deviation χ2 of the data at the largest lattice size L = 512
with the Schramm formula with respect to κ. The line is the interpolation

with a polynomial of fourth order ( χ2 = 4.549281.10−3 − 1.791033.10−3κ −
1.542747.10−5κ2−1.270670.10−5κ3+1.677021.10−5κ4) from which the minimum
(3.245225) is then found numerically.

sizes larger than 128. Our final estimate is κ ≃ 3.245(10). For small lattice sizes, κ
takes a value close to 10/3, i.e. the one of the pure 3-state Potts model, suggesting
that a cross-over between the pure and the random fixed points occurs for L∗ ∼ 100.
The data have been analyzed using other fractions of the lattice. The estimate of κ
tends to increase when going from a large fraction of the lattice to a smaller one :
3.222 for an interpolation over the right half of the lattice, 3.255 for an interpolation
over the right quarter of the lattice. A compromise has to be found between a too
large fraction for which systematic deviations due to loops may be important and a
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Figure 7. Estimates of κ when averaging over different numbers of random
realizations.
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Figure 8. Estimates of κ for the lattice L = 128 with respect to the disorder
amplitude r. The red curve is a quadratic interpolation which gives κ(r = 1) =
3.312 for the pure model (we independently obtained 3.325 for the pure model
for this lattice size) and is intended to be only a guide to the eye. For small
amplitude r < r∗ ≃ 4, a cross-over with the pure value 10/3 is observed. In the
strong-disorder regime, κ seems stable.

too small fraction where lattice effects due to the boundaries are important. We note
that, as expected, apllying blindly the interpolation procedure to the whole lattice
gives a significantly different estimate κ ≃ 3.4.

Like for the case of the interface length, we still need to show that a small variation
of the disorder amplitude will not induce a large variation of κ so that κ would still be
compatible with the estimate 3.18(2) obtained from the scaling of the interface length.
Simulations have been made for other disorder amplitudes r but only for lattice sizes
L ≤ 128 and with 3000 disorder realizations. We have shown in the case of r∗ = 4
that this lattice size still leads to a small overestimate of κ. Nevertheless, it should be
possible to get a correct order of magnitude of the variation of κ with r. As shown on
figure 8, this variation remains small. With a linear interpolation, one can estimate
this variation to be ∆κ ∼ 0.003.
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Conclusions

Although our interface presents loops due to the use of a simple right-turn tie-
breaking algorithm, we have shown that they do not affect the scaling dimension
of the interface in the pure case. However, systematic deviations between the left-
passage probability and the Schramm formula were observed. The parameter κ can be
nevertheless estimated by restricting the interpolation to the right part of the lattice.
In the case of the 3-state random bond Potts model, we have measured numerically
the SLE parameter κ in two independent ways. First, we estimated κ ≃ 3.18(6)
from the fractal dimension df of the interface. This value is compatible, although
less accurate, with the estimate obtained in [15]. Then, the left-passage probability
has been fitted with to the Schramm formula in the right third of the lattice. We
obtained κ ≃ 3.245(10). These two compatible values provide further evidences that
chordal SLEκ appropriately describes the geometric properties of interfaces between
spin clusters in the 3-state random Potts model. We have not observed the large
discrepancy observed in the case of the SOS model on a random substrate [17].
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