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In this paper we continue the investigation of the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations. In particular we extend some previous results about the Cauchy problem and the quasi-stationary limit to the case where the magnetic permeability and the electric permittivity are variable.

Introduction

The models. This paper deals with two physical models which describe the propagation of electromagnetic waves, that is of the magnetic field H and of the electric field E, in some special medium which occupies an open subset Ω of R 3 , with magnetic permeability µ and electric permittivity ε. In both cases we denote by f the extension of a function f by 0 outside the set Ω. The time variable is t 0, and the space variable is x ∈ R 3 .

The first model refers to Maxwell-Landau-Lifschitz equations (see [START_REF] Brown | Micromagnetics[END_REF] and [START_REF] Landau | Électrodynamique des milieux continus[END_REF] for Physics references). The magnetic field H and the electric field E satisfy the Maxwell equations in R 3 :

         µ∂ t H + curl E = -µ∂ t M , ε∂ t E -curl H = 0, div µ(H + M ) = 0, div εE = 0, (1) 
where M stands for the magnetic moment in the ferromagnet Ω and takes values in the unit sphere of R 3 . It is solution to the Landau-Lifschitz equation:

∂ t M = γM ∧ H T -αM ∧ (M ∧ H T ) for x ∈ Ω, (2) 
where γ = 0 is the gyromagnetic constant, and α > 0 is some damping coefficient. Neglecting the exchange phenomenon, the total magnetic field H T is the sum

H T = H + H a (M ) + H ext , (3) 
where the anisotropy field writes H a (M ) = ∇ M Φ(M ), for some convex function Φ, and H ext is some applied (exterior) magnetic field.

The second model refers to Maxwell-Bloch equations (see for example [START_REF] Bohm | Quantum Mechanics[END_REF], [START_REF] Boyd | Nonlinear Optics[END_REF], [START_REF] Cohen-Tannoudji | Processus d'interaction entre photons et atomes. Savoirs actuels[END_REF], [START_REF] Newell | Nonlinear optics[END_REF], [START_REF] Pantell | Fundamentals of quantum electronics[END_REF], [START_REF] Sargent | Laser Physics[END_REF]). In this setting Ω denotes some quantum medium with N ∈ N energy levels described by a Hermitian, non-negative, N × N density matrix ρ. Assuming the usual dipolar approximation, these quantum states change under the action of an electric field E by the quantum Liouville-Von Neumann (or Bloch) equation:

i∂ t ρ = [Λ -E • Γ, ρ] + iQ(ρ). (4) 
The N × N Hermitian symmetric matrix Λ, with entries in C, represents the (electromagnetic field-) free Hamiltonian of the medium. The dipole moment operator Γ is a N × N Hermitian matrix, with entries in C 3 , and depends on the material considered. The (linear) relaxation term Q(ρ) takes dissipative effects into account (see [START_REF] Bidégaray-Fesquet | Introducing physical relaxation terms in Bloch equations[END_REF], [START_REF] Bidégaray-Fesquet | -Bloch à Schrödinger non linéaire : une hiérarchie de modèles en optique quantique[END_REF], [START_REF] Loudon | The quantum theory of light[END_REF]). The polarization P of the matter is given by the constitutive law P = Tr(Γρ) which influences back the electric field E. Again, the electromagnetic field satisfies the Maxwell equations in R 3 :

           µ∂ t H + curl E = 0,
ε∂ t Ecurl H = -∂ t P , div(εE + P ) = 0, div µH = 0.
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Cauchy problems. We first address the questions of global existence, uniqueness and stability for the Cauchy problem associated with these equations. The physically relevant solutions have finite energy: they satisfy the usual (L 2 ) energy estimates. Mathematically, this regularity leads to weak solutions and is usually not enough to ensure the desired uniqueness and stability properties (requiring for these hyperbolic semilinear systems in space dimension 3, in the general theory, H s Sobolev regularity with s > 3/2). However, in the case of the Maxwell-Landau-Lifschitz system, Joly, Métivier and Rauch [START_REF] Joly | Global solutions to Maxwell equations in a ferromagnetic medium[END_REF] noticed that specific (algebraic) properties of the nonlinearities, as well as (geometric) properties of the differential operator involved, allowed to show the existence of global finite energy solutions (essentially, using compensated compactness arguments) enjoying stability properties. Furthermore, only a small amount of regularity (curl H and curl E in L 2 ) ensures uniqueness. This is achieved using dispersive properties of the system; namely, a limit Strichartz estimate controlling the L 2 t L ∞ x norm of (a limited frequency part of) the fields H and E. These results were obtained for equations posed in the whole space (Ω = R 3 ) and for constant coefficients ε and µ.

In practice, the various coefficients of the system may not be constant. Typically, the magnetic permeability and electric permittivity may depend on the space variable x and have jumps across the boundary of the domain Ω.

Adapting the above mentioned compensated compactness argument, Jochmann established in [START_REF] Jochmann | Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism[END_REF] the existence and weak stability of global finite energy solutions for the Maxwell-Landau-Lifschitz system, considering any domain Ω ⊂ R 3 , and variable, possibly discontinuous coefficients (ε, µ ∈ L ∞ (R 3 )). In the (space) 2-dimensional case, we refer to the work of Haddar [START_REF] Haddar | Modèles asymptotiques en ferromagnétisme : couches minces et homogénéisation[END_REF].

Concerning the Maxwell-Bloch system, the first author noticed that it shares with the Maxwell-Landau-Lifschitz some of its structural properties. This author thus showed in [START_REF] Dumas | Global existence for Maxwell-Bloch systems[END_REF] results on existence and uniqueness of global finite energy solutions, similar to the ones of Joly, Métivier and Rauch, but for some general class of systems including the two models above. Again, these results where obtained for equations posed in the whole space and for constant coefficients ε and µ.

Here, we continue this study, again for a general class of systems including the Maxwell-Landau-Lifschitz equations and the Maxwell-Bloch equations, so as to enlight the similarities and differences between these two models. Adapting Jochmann's method, we show the existence and stability of global finite energy solutions, for a given domain Ω ⊂ R 3 , and L ∞ coefficients. Then, for smooth coefficients, constant out of some compact set, we prove a limit Strichartz estimate analogous to the one obtained by Joly, Métivier and Rauch in the constant coefficient case. This allows us to show propagation of regularity and uniqueness when initially, curl H and curl E belong to L 2 (R 3 ). As a corollary of a result of Saint-Raymond [START_REF] Saint-Raymond | Un résultat générique d'unicité pour les équations d'évolution[END_REF], we also infer generic uniqueness of the global finite energy solutions.

Quasi-stationary limits. Next, we turn to the problem of the so-called quasi-stationary limit. Physically, this regime appears when the domain Ω is small compared to the wavelength. Mathematically, it amounts to some longtime asymptotics (replacing in the equations ∂ t by η∂ t , for some small parameter η) with weak nonlinearities (also scaled so as to have an amplitude of size η).

Jochmann showed in [START_REF] Jochmann | Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism[END_REF] the weak convergence of the corresponding solutions to the Maxwell-Landau-Lifschitz system towards the solutions of some reduced system driven by the magnetization, using the weak stability property. Starynkevitch extended this result, proving strong and global-in-time convergence in the constant coefficient case in [START_REF] Starynkévitch | Local Energy Estimates for Maxwell-Landau-Lifshitz System and Applications[END_REF], thanks to local energy estimates performed on the explicit fundamental solution of the associated wave equation. He also obtained the same result in the case of smooth coefficients, constant out of some compact set, in [START_REF] Starynkévitch | Problèmes d'asymptotique en temps en ferromagnétisme[END_REF], thanks to dispersive estimates obtained from resolvent estimates on elliptic operators.

Here, we apply the same methods to our general systems to get weak and strong convergence in the quasi-stationary limit. For the latter however, some time integrability assumption is needed to conclude, which is satisfied by the Maxwell-Landau-Lifschitz system (since ∂ t M ∈ L 2 ((0, ∞) × Ω)), but we do not know if the Maxwell-Bloch system enjoys such a property.

Remark 1.

Taking exchange energy into account, one should add to the total magnetic field in (3) a term -K∆M . The resulting system is then parabolic. We refer to [START_REF] Alouges | Magnetization switching on small ferromagnetic ellipsoidal samples[END_REF], [START_REF] Alouges | On global weak solutions for Landau Lifschitz equations: existence and non uniqueness[END_REF], [START_REF] Carbou | Time average in Micromagnetism[END_REF], [START_REF] Carbou | Regular solutions for Landau-Lifschitz equation in R 3[END_REF], [START_REF] Carbou | Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain[END_REF] and [START_REF] Visintin | On Landau-Lifshitz equations for ferromagnetism[END_REF] for works on the (weak or strong) Cauchy problem, and long-time asymptotics.

Main results

Let us stress that we do not assume that Ω is bounded, for the moment. To deal with both the Maxwell-Landau-Lifschitz system (1)-( 2) and the Maxwell-Bloch system (4)-( 5), we put these two models above into a single class of systems consisting in the coupling of the Maxwell equations (with the fields H and E as unknowns) with some ODE (corresponding to a third unknown variable). The resulting sytem is symmetrizable hyperbolic, with semilinear nonlinearity, and some structure assumptions are made, such as affine dependence of the nonlinearity with respect to the electromagnetic field, and a priori pointwise estimates on the third unknown variable. One of the key points in our study is that the electromagnetic fields decompose into an "irrotational" part, which is directly related to this third unknown, and a "divergence free" part, which solves some wave equation.

An abstract setting

On any finite-dimensional vector space R N , we denote by u • u ′ the usual scalar product between vectors u and u ′ , and by | • | the associated norm. For all r > 0, B r denotes the (closed) ball centered at 0, with radius r.

We consider two scalar functions κ 1 (x) and κ 2 (x), which are uniformly positive:

for i = 1, 2, κ i ∈ L ∞ (R 3 ), and ∃c > 0, κ i c. (6) 
We denote by H curl the space of functions f in L 2 (R 3 , R 3 ) with curl f in L 2 (R 3 , R 3 ). We consider the operator B defined by

B(u 1 , u 2 ) = (κ -1 1 curl u 2 , -κ -1 2 curl u 1 ) for u := (u 1 , u 2 ) ∈ D(B) := H curl × H curl .
This is a skew self-adjoint operator on the Hilbert space L 2 (R 3 , R 6 ) endowed with the scalar product

(u 1 , u 2 ), (u ′ 1 , u ′ 2 ) κ1,κ2 := R 3 (κ 1 u 1 • u ′ 1 + κ 2 u 2 • u ′ 2 )dx.
We denote by P (u 1 , u 2 ) := P 1 u 1 , P 2 u 2 the orthogonal projector on (ker B) ⊥ with respect to the weighted scalar product above, so that for i = 1, 2,

ran P i = {u i ∈ L 2 (R 3 , R 3 ) | div(κ i u i ) = 0}, ran (Id -P i ) = {u i ∈ L 2 (R 3 , R 3 ) | curl(u i ) = 0}. ( 7 
)
We consider a function

F : R 3 × R d × R 6 → R d
, where d ∈ N, affine in its third variable, and written

F (x, v, u) = F 0 (x, v) + F 1 (x, v)u. (8) 
For each j = 0, 1, F j is measurable with respect to x and continuously differentiable with respect to v. Furthermore,

for j = 0, 1, for almost all x ∈ R 3 , F j (x, 0) = 0,
and

∀R > 0, for almost all x ∈ R 3 , ∀v ∈ B R , |F j (x, v)| + |∂ v F j (x, v)| C F (R). (9) 
Finally, we assume that there exists K 0 such that:

for almost all x ∈ R 3 , ∀(v, u) ∈ R d × R 6 , F (x, v, u) • v K|v| 2 . ( 10 
)
Remark 2. The constant K above may sometimes be taken equal to zero. In this case, Estimate (i) in Theorem 3 is improved, since v does not undergo any growth. This is the case for the Maxwell-Landau-Lifschitz model, as well as for the Maxwell-Bloch model, when only transverse relaxation is taken into account (Q(ρ) = -γρ od , for some γ 0, and with ρ od the off-diagonal part of ρ).

We also consider a function

l = (l 1 , l 2 ) ∈ (L ∞ (R 3 , L(R d , R 3 ))) 2
, where L(R d , R 3 ) denotes the space of linear functions from R d to R 3 . We introduce the following shorthand notation: for any

x ∈ R 3 , (κ -1 • l)(x) is the mapping from R d to R 6 , such that for almost all x ∈ R 3 , ∀v ∈ R d , (κ -1 • l)(x)v := (κ 1 (x) -1 l 1 (x)v, κ 2 (x) -1 l 2 (x)v).
Then, for any

U := (u, v) in L 2 := L 2 (R 3 , R 6 ) × L 2 (Ω, R d ), the conditions div(κ 1 u 1 -l 1 v) = 0, div(κ 2 u 2 -l 2 v) = 0,
may be equivalently written

(Id -P )(u -(κ -1 • l)v) = 0. ( 11 
)
We look for

U ∈ C([0, ∞), L 2 ), with v ∈ L ∞ loc ((0, ∞), L ∞ (Ω, R d )), (12) 
solution to

(∂ t + B)u = (κ -1 • l)F (x, v, u) for x ∈ R 3 , ( 13 
) ∂ t v = F (x, v, u) for x ∈ Ω, (14) 
and [START_REF] Calderón | On the existence of certain singular integrals[END_REF]. Here, the solution is understood in the distributional sense, noticing that [START_REF] Carbou | Time average in Micromagnetism[END_REF] gives sense to the nonlinear term, since the function F (x, v, u) is affine in u.

Remark 3. Equations ( 11)-( 13)-( 14) reduce to the Maxwell-Landau-Lifschitz system ( 1)-( 2) when

u 1 = H, u 2 = E, v = M (with d = 3), κ 1 = µ, κ 2 = ε, l 1 = -µ, l 2 = 0, F (x, v, u) = γv∧(u 1 +H a (v)+H ext )-αv∧(v∧(u 1 +H a (v)+H ext ))
and to the Maxwell Bloch system ( 4)-( 5) when

u 1 = H, u 2 = E, v = ρ (with d = N 2 ), κ 1 = µ, κ 2 = ε, l 1 = 0, l 2 = Tr(Γ•), F (x, v, u) = -i[Λ -u 2 • Γ, v] + Q(v).
The exterior magnetic field above is usually depending on time. We did not consider such time-dependent coefficients in our study, since it would have made notations more intricate; up to some integrability assumptions, this extension is straightforward.

Definition 1. We call U = (u, v) ∈ C([0, ∞), L 2
) a global finite energy solution to (11)-( 14) if [START_REF] Carbou | Time average in Micromagnetism[END_REF] holds true and U is a solution to (11)-( 14) in the distributional sense.

Remark 4. Equation [START_REF] Calderón | On the existence of certain singular integrals[END_REF] has to be seen as a (linear) constraint, which propagates from t = 0 for solutions to (13)-( 14):

∂ t (Id -P )(u -(κ -1 • l)v) = 0. ( 15 
)
Indeed, by definition of the projector P , we have (Id -P )B = 0, so that we get [START_REF] Chazarain | Opérateurs hyperboliques a caractéristiques de multiplicité constante[END_REF] when applying (Id -P ) to (13), using [START_REF] Carbou | Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain[END_REF] (which extends to all x ∈ R 3 since F (x, 0, u) ≡ 0) and commuting the derivative ∂ t with (Id -P ) and κ -1 • l.

We therefore have to consider initial data U init satisfying [START_REF] Calderón | On the existence of certain singular integrals[END_REF], and for such constrained initial data, the solutions to ( 13)-( 14) also satisfy [START_REF] Calderón | On the existence of certain singular integrals[END_REF] as long as they exist. We shall write

U init := (u init , v init ) with u init := (u init,1 , u init,2 ). Definition 2. Let L div be the set of functions U := (u, v) ∈ L 2 (R 3 , R 6 ) × (L 2 (Ω, R d ) ∩ L ∞ (Ω, R d )) satisfying (11).

Cauchy problems

Our first result states the existence of global finite energy solutions to (11)- [START_REF] Carbou | Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain[END_REF]. Theorem 3. Assume (6) and (8)- [START_REF] Brown | Micromagnetics[END_REF]. For any U init in L div , there exists U := (u, v) ∈ C([0, ∞), L 2 ), global finite energy solution to (11)- [START_REF] Carbou | Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain[END_REF] with U init as initial data. Moreover, for all T > 0, there is C = C(T, F, l, v init L ∞ ) such that (i) for almost all x ∈ R 3 , for all t 0, |v(t, x)| |v init (x)|e Kt (with K from (10));

(ii) for all t ∈ [0, T ], (u, v)(t) L 2 C U init L 2 ; (iii) v ∈ W 1,∞ loc ((0, ∞), L 2 (Ω, R d ))
, and for almost every

t ∈ [0, T ], ∂ t v(t) L 2 (Ω) C U init L 2 . Finally, if U init is a bounded set of L div which is compact in L 2 ,
then for all T > 0, the set U of the above solutions with Cauchy data in U init is compact in C([0, T ], L 2 ).

To establish this first result, we follow the strategy of Jochmann in [START_REF] Jochmann | Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism[END_REF], which is itself an improvement of the method by Joly, Métivier and Rauch in [START_REF] Joly | Global solutions to Maxwell equations in a ferromagnetic medium[END_REF]. This is the classical regularization method, in which (global-in-time) approximate solutions U n = (u n , v n ) are built first (Section 3.2); the delicate step consists of course in passing to the limit n → ∞ in the regularization (Section 3.3). Pointwise bounds are available for v n , which imply L p bounds for (Id -P )u n = (Id -P )(κ -1 • l)v n , for finite p. The main argument relies on compensated compactness, applied to P u n (Lemma 13).

As a byproduct of the proof of Theorem 3, we also have the following version of stability, where we assume strong convergence only for the v part of the initial data. It will be useful below (cf. proof of Theorem 7) when considering the weak quasi-stationary limit.

Proposition 4. Let (U n ) n∈N be a sequence in L ∞ loc ((0, ∞), L div ), bounded in L ∞ loc ((0, ∞), L 2 ), with (v n ) n∈N bounded in W 1,∞ loc ((0, ∞), L 2 (Ω)) ∩ L ∞ loc ((0, ∞), L ∞ (Ω)) satisfying (14), v n | t=0 → v init in L 2 (Ω) and Bu n = ∂ t D n with (D n ) n bounded in L ∞ loc ((0, ∞), L 2 (R 3 )). Then, up to a subsequence, v n converges to v in L ∞ loc ((0, ∞), L p (Ω)) for any p 2 and in L ∞ loc ((0, ∞), L ∞ (Ω)) weak * , u n converges to u in L ∞ loc ((0, ∞), L 2 (R 3 
)) weak * , and U := (u, v) satisfies (11), [START_REF] Carbou | Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain[END_REF], as well as v| t=0 = v init .

Let us now turn our atttention to smoother solutions. We need to assume more smoothness on the coefficients ε and µ. Of course, when considering in some physical situation a domain Ω with boundaries, the coefficients ε and µ experiment discontinuity jumps. Since we do not know how to tackle this physical case, we assume from now on that Ω is bounded, and with

K = Ω, κ i -1 ∈ C ∞ K (R 3 ), i = 1, 2. ( 16 
)
In order to get a uniqueness result, we only need to ensure that the "divergence free" part P u of the fields has the H 1 regularity. To this end, once a finite energy solution is given, we make use of the linear system solved by P u, with coefficients depending on the rest of the solution. As in [START_REF] Joly | Global solutions to Maxwell equations in a ferromagnetic medium[END_REF], we proceed in two steps: we begin with the propagation of H µ regularity, for µ ∈ (0, 1), using Strichartz estimates (Proposition 20). Applying this result with µ = 1/2 provides enough integrability for the coefficients of the above mentioned linear equation to ensure propagation of H 1 regularity. This implies that u is "almost" L ∞ , a natural condition to prove uniqueness of the solution. Technically, a L ∞ approximation of u is built thanks to a limit Strichartz estimate for low frequencies (Proposition 21). We also need a decoupling assumption, which was introduced in [START_REF] Dumas | Global existence for Maxwell-Bloch systems[END_REF], and is satisfied by the Maxwell-Landau-Lifschitz system as well as by the Maxwell-Bloch system.

Theorem 5. In addition to the assumptions of Theorem 3, assume [START_REF] Cohen-Tannoudji | Processus d'interaction entre photons et atomes. Savoirs actuels[END_REF]. Let µ ∈]0, 1], and

U init ∈ L div with curl u init,i ∈ H µ-1 (R 3 ), for i = 1, 2.
Then, the following holds true:

(a) Any solution U to (11)-( 14) with U init as initial data given by Theorem 3 satisfies curl

u i ∈ C([0, ∞], H µ-1 (R 3 )), for i = 1, 2.
(b) If µ = 1, assuming moreover that there exists j ∈ {1, 2} such that l 3-j F = 0 and such that F depends only on (x, v, u j ), [START_REF] Duistermaat | Fourier integral operators[END_REF] there exists only one solution to (11)-( 14) with U init as initial data as in Theorem 3.

Theorem 5 asserts that the uniqueness property holds for initial data U init in L div with curl u init,i ∈ L 2 (R 3 ), i = 1, 2, which are dense in L div for the topology of L 2 . The following theorem says that the uniqueness property even holds generically for the following topologies. Let τ s and τ w denote respectively the strong and weak topologies of L 2 (R 3 , R 6 ) and let τs denote the strong topology of L 2 (Ω, R d ). We consider the product topology τ ss (resp. τ ws ) on L 2 obtained from τ s (resp. τ w ) and τs . Theorem 6. Under the assumptions of Theorem 5 (b), for any C init > 0, there exists a G δ dense set L div in the set

{U init ∈ L div | v init L ∞ (Ω) C init }
for the topology τ ss and τ ws , such that for any U init ∈ L div , there exists only one solution to (11)-( 14) with U init as initial data, with the same properties as in Theorem 3.

Let us stress that we cannot expect that the problem ( 11)-( 14) admits smoother solutions than the ones given by Theorem 5 since, by definition, v is discontinuous across the boundary ∂Ω. However it follows from the general theory of discontinuous solutions of hyperbolic semilinear systems [START_REF] Métivier | The Cauchy problem for semilinear hyperbolic systems with discontinuous data[END_REF][START_REF] Rauch | Discontinuous progressing waves for semilinear systems[END_REF] that the problem ( 11)-( 14) admits piecewise regular solutions discontinuous accross ∂Ω (let us also refer to the appendix of [START_REF] Sueur | Approche visqueuse de solutions discontinues de systèmes hyperboliques semilinéaires[END_REF]). Yet the general theory only guaranties local-in-time solutions. We do not know if in the particular case of the problem ( 11)-( 14) global-in-time solutions can be obtained.

Quasi-stationary limits

As described in the Introduction, the quasi-stationary regime consists in the limit η → 0 + for ( 11), ( 13), [START_REF] Carbou | Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain[END_REF], where ∂ t is replaced with η∂ t , and F is replaced with ηF . Equations ( 11) and ( 14) are invariant under this rescaling, whereas [START_REF] Carbou | Regular solutions for Landau-Lifschitz equation in R 3[END_REF] becomes

(η∂ t + B)u = η(κ -1 • l)F (x, v, u), for x ∈ R 3 . ( 18 
)
For this semi-classical version of ( 14), it is still true that the constraint ( 11) is propagated from the initial data. Formally, in the limit η → 0 + , v still satisfies [START_REF] Carbou | Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain[END_REF], whereas u satifies [START_REF] Calderón | On the existence of certain singular integrals[END_REF] and

Bu = 0. But for U = (u, v) ∈ C([0, ∞), L 2
), these last two conditions are equivalent to the fact that for all t 0, u(t) is directly determined by v(t), and more precisely:

u = (Id -P )u = (Id -P )(κ -1 • l)v. (19) 
Then, ( 14) becomes

∂ t v = F (x, v, (Id -P )(κ -1 • l)v). (20) 
Using the stability result given by Proposition 4, we have a first result of convergence towards the quasi-stationary limit, weakly for u and locally in time for v:

Theorem 7. Assume (6)- [START_REF] Brown | Micromagnetics[END_REF]. For any U init in L div , for any η ∈ (0, 1), let U η := (u η , v η ) be a global finite energy solution to [START_REF] Calderón | On the existence of certain singular integrals[END_REF], ( 14) and [START_REF] Dumas | Global existence for Maxwell-Bloch systems[END_REF] with U init as initial data. Then, up to a subsequence,

v η converges in L ∞ loc ((0, ∞), L p (Ω)) for all p 2 and in L ∞ loc ((0, ∞), L ∞ (Ω)) weak * towards a solution v to (20), with v init as initial data; P u η converges to 0 in L ∞ loc ((0, ∞), L 2 (Ω)) weak * , and (Id -P )u η = (Id -P )(κ -1 • l)v η converges in L ∞ loc ((0, ∞), L p (R 3 
)) for all p 2 towards u, given by [START_REF] Gårding | Hyperbolic equations in the twentieth century[END_REF].

Convergence of the whole sequence U η is ensured as soon as the Cauchy problem associated with the limiting equation ( 20) has a unique solution. This is given by the following proposition, which extends [41, Theorem 3.1] by Starynkevitch.

Proposition 8. Assume [START_REF] Cohen-Tannoudji | Processus d'interaction entre photons et atomes. Savoirs actuels[END_REF], and let [START_REF] Haddar | Modèles asymptotiques en ferromagnétisme : couches minces et homogénéisation[END_REF], with v init as initial data.

v init ∈ L ∞ (Ω). Then, there is a unique v ∈ C([0, ∞), L 2 (Ω))∩L ∞ loc ((0, ∞), L ∞ (Ω)) solution to
We also prove strong and global-in-time convergence for u, assuming ( 16) again, as well as integrability in time for

∂ t v 2 L 2 (Ω)
and non-trapping for some wave operator:

Theorem 9. Under the assumptions of Theorem 7, assume moreover [START_REF] Cohen-Tannoudji | Processus d'interaction entre photons et atomes. Savoirs actuels[END_REF], the non-trapping hypothesis (110) and that

∂ t v η is bounded (w.r.t. η) in L 2 ((0, ∞) × Ω). Then, P u η goes to zero in L 2 ((0, ∞), L 2 loc (R 3 )).
Remark 5. In the case of the Maxwell-Landau-Lifschitz system (1)-( 2), ∂ t M actually belongs to L 2 ((0, ∞) × Ω).

Define the energy E(t) as

E(t) = 1 2 R 3 (ε|E| 2 + µ|H| 2 ) dx + Ω µ Φ(M ) + 1 2 |H ext -M | 2 dx.

Differentiating formally this expression with respect to time, we see that the integral of H•curl E-E•curl H = div(E∧H) vanishes, as well as

M • ∂ t M (since |M | is constant).
Using the orthogonality relations of the nonlinearity, we get

∂ t M • H T = α|M ∧ H T | 2 and |∂ t M | 2 = (α 2 + γ 2 )|M ∧ H T | 2 ,
so that estimate (ii) in Theorem 3 is improved to

E(t) + α α 2 + γ 2 t 0 √ µ∂ t M (t ′ ) 2 L 2 (Ω) dt ′ - 1 2 √ µH ext (t) 2 L 2 (Ω) + t 0 Ω µM • ∂ t H ext dx dt ′ = cst,
and the same is true with the quasi-stationary scaling. Assuming for example that

H ext ∈ L ∞ t L 2 x and ∂ t H ext ∈ L 1 t,x , we deduce that E is bounded, and ∂ t M belongs to L 2 ((0, ∞) × Ω).
In the case of the Maxwell-Bloch system, we do not know if such an estimate is available for ∂ t ρ.

3 Existence of global finite energy solutions: proof of Theorem 3

3.1 Technical interlude 1

Intersections and sums of Banach spaces

We recall some useful properties of the intersection and the sum of Banach spaces. Consider two Banach spaces X 1 and X 2 that are subsets of a Hausdorff topological vector space X. Then

X 1 ∩ X 2 := {f ∈ X | f ∈ X 1 , f ∈ X 2 } (respectively X 1 + X 2 := {f ∈ X | E(f ) = ∅}, where E(f ) := {(f 1 , f 2 ) ∈ X 1 × X 2 | f 1 + f 2 = f })
is a Banach space endowed with the norm Bergh and Löfström [4], Lemma 2.3.1 and Theorem 2.7.1).

f X1∩X2 := f X1 + f X2 (respectively f X1+X2 := inf{ f 1 X1 + f 2 X2 | (f 1 , f 2 ) ∈ E(f )}). If furthermore X 1 ∩ X 2 is a dense subset of both X 1 and X 2 , then (X 1 ∩ X 2 ) ′ = X ′ 1 + X ′ 2 and (X 1 + X 2 ) ′ = X ′ 1 ∩ X ′ 2 (cf.

Mollifiers

We shall use the following symmetric operators

R n : L 2 (R 3 ) → L 2 (R 3 ), defined by (R n f )(x) := R 3 f (y)w n (x -y)dy for x ∈ R 3 , (21) 
where

w n ∈ C ∞ 0 (R 3
) is a mollifier with supp w n ⊂ B(0, 1/(1 + n)) and R 3 w n = 1. These operators have the following well-known properties: there exists C > 0 such that for all f ∈ L 2 (R 3 ), r > 1 and n ∈ N,

f -R n f L 2 (R 3 ) → 0, R n f L 2 (R 3 ) C f L 2 (R 3 ) , (22) 
R n f || L 2 (Br ) C f L 2 (Br+1) , and R n f L 2 (R 3 \Br) C f L 2 (R 3 \Br-1) . (23) 
Moreover for all n ∈ N, there exists

C n > 0 such that for all f ∈ L 2 (R 3 ), R n f L ∞ (R 3 ) C n f L 2 (R 3 ) . ( 24 
)

Approximate solutions

The following lemma claims the existence of global solutions to some regularized problem.

Lemma 10. For all n ∈ N, there exists

U n := (u n , v n ) ∈ C([0, ∞), L 2 ), with v n ∈ C([0, ∞), L ∞ (Ω, R d )) ∩ C 1 ([0, ∞), L 2 (Ω, R d )), ( 25 
)
solution to the regularized problem:

(∂ t + B)u n = (κ -1 • l)F n for x ∈ R 3 , (26) 
∂ t v n = F n for x ∈ Ω, ( 27 
)
where

F n (t, x) := F (x, v n (t, x), R n u n (t, x)), (28) 
with U init as initial data. Moreover, for all n ∈ N, (a) For almost all x ∈ R 3 , for all t 0, |v n (t, x)| |v init (x)|e Kt (with K from (10)).

(b) For all T > 0, there is

C = C(T, F, l, κ, v init L ∞ ) such that, for all t ∈ [0, T ], (u n , v n )(t) L 2 + ∂ t v n (t) L 2 (Ω) C U init L 2 .
Proof. The local-in-time solution is constructed via a usual fixed point argument for the mapping

A n : C([0, T ], L 2 ) → C([0, T ], L 2 ), A n (u, v)(t, •) = exp(-tB)u init + t 0 exp((t -t ′ )B)(κ -1 • l)F n (t ′ , •)dt ′ , v init + t 0 F n (t ′ , •)dt ′ ,
where

F n (t, •) := F (•, v(t, •), R n u(t, •)).
For T > 0 small enough, A n is shown to be a contraction mapping thanks to properties ( 8)-( 10) of F , [START_REF] Klainerman | Space-time estimates for null forms and the local existence theorem[END_REF], and because B is a skew self-adjoint operator in the Hilbert space L 2 (R 3 , R 6 ) endowed with the scalar product •, • κ1,κ2 . Global existence is given by the a priori bounds (a) and (b). The first one follows directly from ( 10) and Gronwall's lemma. In the same way, taking the

L 2 norm of (u n , v n )(t) = A n (u n , v n )(t), one gets (u n , v n )(t) L 2 U init L 2 + t 0 (1 + κ -1 • l L ∞ ) F n (t ′ , •) L 2 dt ′ .
One may add to this inequality the one obtained from ( 27),

∂ t v n (t, •) L 2 F n (t, •) L 2 .
From ( 8), ( 9), we have

F n (t, •) L 2 C F ( v init L ∞ e Kt ) (u n , v n )(t) L 2 ,
so that Gronwall's lemma concludes.

Passing to the limit n → ∞

Let us stress that Estimate ( 24) is not uniform with respect to n. However, we have:

Proposition 11. For all T > 0, there is a subsequence of (U n ) n∈N given by Lemma 10 that strongly converges in

C([0, T ], L 2 ) to U := (u, v) ∈ C([0, ∞), L 2 )
, global finite energy solution to (11)-( 14) with U init as initial data, and satisfying the estimates (i), (ii), (iii) of Theorem 3.

Proof. First we infer from the bounds (a)-(b) in Lemma 10 that there exists a subsequence, still denoted (u n , v n ), such that u n (respectively F n ) tends to u (resp. to F lim ) in L ∞ ((0, T ), L 2 ) weak * (resp. L ∞ ((0, T ), L 2 (R 3 )) weak * ) and v n tends to v in W 1,∞ ((0, T ), L 2 (Ω)) weak * and in L ∞ ((0, T ), L ∞ (Ω)) weak * . This is enough to ensure that (u, v) satisfies [START_REF] Calderón | On the existence of certain singular integrals[END_REF]. Moreover, Fatou's lemma yields that u and v satisfy (i)-(ii) of Theorem 3 for almost every t in (0, T ) . Since the function F is not linear, these weak limits do not suffice to pass to the limit in Equation [START_REF] Lax | Asymptotic solutions of oscillatory initial value problems[END_REF]. The strategy is to carefully study the nonlinear term F n to prove that the solutions U n of the regularized problems ( 26)- [START_REF] Lax | Asymptotic solutions of oscillatory initial value problems[END_REF] actually converge (strongly) in L 2 . The key step consists in proving the strong convergence of v n .

It shall be useful several times to keep in mind that, thanks to the growth conditions (9) on F and to the pointwise bound Lemma 10, (a) of the v n , there holds, for all n, m ∈ N, for all (t, x)

∈ [0, T ] × R 3 , |F n i (t, x)| C F (e KT v init L ∞ ), ( 29 
) |F n i (t, x) -F m i (t, x)| C F (e KT v init L ∞ )|v n (t, x) -v m (t, x)|, (30) 
where

F n i = F i (x, v n ), i = 0, 1. Strong convergence of v n .
We perform energy estimates on ( 26)- [START_REF] Lax | Asymptotic solutions of oscillatory initial value problems[END_REF]. Since u may be unbounded, we introduce a weight function, which precisely depends on u. More exactly, we choose a positive function

ρ 0 (x) in L ∞ (R 3 ) ∩ L 2 (R 3 ) and define ρ(t, x) := ρ 0 (x)e -L t 0 |u(s,x)|ds , (31) 
with L C F (e KT v init L ∞ ). First, using [START_REF] Lax | Asymptotic solutions of oscillatory initial value problems[END_REF] we get

1 2 d dt ρ(v n -v m ) 2 L 2 (Ω) (t) = Ω ρ 2 (v n -v m ) • (F n -F m )dx -L Ω ρ 2 |u||v n -v m | 2 dx.
Next, decompose F n -F m according to (8) to get

1 2 d dt ρ(v n -v m ) 2 L 2 (Ω) (t) = Ω ρ 2 (v n -v m ) • (F n 0 -F m 0 )dx + Ω ρ 2 (v n -v m ) • (F n 1 R n u n -F m 1 R m u m )dx -L Ω ρ 2 |u||v n -v m | 2 dx. (32) 
The first term in the r.h.s. of ( 32) can be estimated by C ρ(v nv m ) 2 L 2 (Ω) (t) thanks to [START_REF] Loudon | The quantum theory of light[END_REF]. Now, decompose

F n 1 R n u n -F m 1 R m u m into F n 1 R n u n -F m 1 R m u m = F n 1 R n u n -u -F m 1 R m u m -u + F n 1 -F m 1 u.
The terms produced by the third parenthesis are estimated thanks to [START_REF] Loudon | The quantum theory of light[END_REF], and absorbed by the last term in [START_REF] Métivier | The Cauchy problem for semilinear hyperbolic systems with discontinuous data[END_REF], so that

1 2 d dt ρ(v n -v m ) 2 L 2 (Ω) (t) C ρ(v n -v m ) 2 L 2 (Ω) (t) + Ω ρ 2 (v n -v m ) • F n 1 (R n u n -u)dx + Ω ρ 2 (v m -v n ) • F m 1 (R m u m -u)dx.
Then, decompose R n u n and R m u m according to the orthogonal projector P to get

1 2 d dt ρ(v n -v m ) 2 L 2 (Ω) (t) C ρ(v n -v m ) 2 L 2 (Ω) (t) + 3 j=1 h j,m,n (t) + h j,n,m (t), (33) 
where

h 1,m,n (t) := Ω ρ 2 (v n -v m ) • F n 1 R n P (u n -u)dx, h 2,m,n (t) := Ω ρ 2 (v n -v m ) • F n 1 R n (Id -P )(u n -u)dx, h 3,m,n (t) := Ω ρ 2 (v n -v m ) • F n 1 (R n u -u)dx.
The following lemma deals with the term h 1,m,n (t).

Lemma 12. There holds

∀δ > 0, ∃N δ ∈ N, ∀n N δ , ∀m ∈ N, T 0 h 1,m,n (t)dt 2δ. ( 34 
)
Proof. First notice that

h 1,m,n (t) = R 3 R n ρ 2 (v n -v m ) • F n 1 P (u n -u)dx.
We first handle the case where x is outside of a large ball. Using the Cauchy-Schwarz inequality, the second property of R n in [START_REF] Joly | Global solutions to Maxwell equations in a ferromagnetic medium[END_REF], the uniform bound in L ∞ ([0, T ], L 2 (R 3 )) for v n given in Lemma 10, (b) and the bound (29) for F n 1 , we get that

T 0 R 3 \Br R n ρ 2 (v n -v m )F n 1 • P (u n -u) dxdt C T 0 ρ(t) 2 L 2 (R 3 \Br-1) dt. ( 35 
)
By definition of ρ there exists r > 0 so that this integral is less than δ.

It remains to tackle the case where x ∈ B r . We use the following compactness lemma:

Lemma 13 (Jochmann [START_REF] Jochmann | Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism[END_REF], Lemma 3.4).

Let (G n ) n∈N and (K n ) n∈N be bounded sequences in L ∞ ([0, T ), L 2 (R 3 , R 6 )), with K n converging to 0 in L ∞ ([0, T ), L 2 (R 3 , R 6 )) weak * . Suppose that (G n ) n∈N is equicontinuous from [0, T ] to L 2 (R 3 , R 6 ) and that BK n = ∂ t C n with (C n ) n∈N bounded in L ∞ ([0, T ), L 2 (R 3 , R 6 )).
Then for all r > 0,

sup p∈N T 0 Br G p (t) • P K n (t)dxdt -→ n→∞ 0. ( 36 
) Let us denote G k,l = R k ρ 2 (v k -v l )•F k 1 and K n = u n -u.
Thanks to [START_REF] Littman | Fourier transforms of surface-carried measures and differentiability of surface averages[END_REF], [START_REF] Jochmann | Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism[END_REF] and to Lemma 10, (b), we get that

(G k,l ) k,l∈N and (K n ) n∈N are bounded in L ∞ ([0, T ), L 2 (R 3 )). Moreover K n tends to zero in L ∞ ([0, T ), L 2 (R 3 )) weak * , by definition of u. Let us denote F n = t 0 (κ -1 • l)F n dt ′ and F = t 0 (κ -1 • l)F lim dt ′ .
From [START_REF] Landau | Électrodynamique des milieux continus[END_REF] we infer that

BK n = ∂ t C n , with C n := F n -u n -(F -u). The sequence (C n ) n∈N is bounded in L ∞ ([0, T ), L 2 (R 3 )).
In the same way, equicontinuity is obtained from the bounds on ∂ t v n = F n . We therefore apply the lemma observing that, for all m, n ∈ N,

T 0 Br G m,n (t) • P K n (t)dxdt sup k,l∈N T 0 Br G k,l (t) • P K n (t)dxdt .
Lemma 13 therefore ensures that there is N r,δ ∈ N such that, for n N r,δ and for all m ∈ N,

T 0 Br R n ρ 2 (v n -v m )F n 1 • P (u n -u)dxdt δ,
and Lemma 12 is proved.

We now deal with the term h 2,m,n (t).

Lemma 14. There holds

∀δ > 0, ∃N δ ∈ N, ∀n N δ , ∀m ∈ N, T 0 h 2,m,n (t)dt δ + C ρ(v n -v m ) L 2 t,x ρ(v n -v) L 2 t,x . (37) 
Proof. The (u n , v n ) satisfy ( 11) and so does their weak limit (u, v). Thus

h 2,m,n (t) = - Ω ρ 2 (v n -v m ) • F n 1 R n (Id -P )(κ -1 • l)(v n -v)dx = - R 3 ρ 2 (v n -v m ) • F n 1 R n (Id -P )(κ -1 • l)(v n -v)dx.
Then we decompose

T 0 |h 2,m,n (t)|dt T 0 R 3 (v n -v m ) • F n 1 ρ 2 R n (Id -P )(κ -1 • l)(v n -v) -ρR n (Id -P )ρ(κ -1 • l)(v n -v) dx dt + T 0 R 3 ρ(v n -v m ) • F n 1 R n (Id -P )ρ(κ -1 • l)(v n -v)dx dt. (38) 
The second integral in the r.h.s. of ( 38) is estimated thanks to Hölder's inequality:

T 0 R 3 ρ(v n -v m ) • F n 1 R n (Id -P )ρ(κ -1 • l)(v n -v)dx dt C ρ(v n -v m ) L 2 t,x ρ(v n -v) L 2 t,x ,
where C depends only on T, F, l, v init L ∞ . To deal with the first integral in the right-hand side of (38), we use the following commutation lemma.

Lemma 15 (Jochmann [START_REF] Jochmann | Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism[END_REF], Lemma 3.5). Let ρ belong to L 2 ((0, T ),

L 2 (R 3 ))∩L ∞ ((0, T ), L ∞ (R 3 
)), and let

(M n ) n∈N be a bounded sequence in W 1,∞ ((0, T ), L 2 (R 3 )) ∩ L ∞ ((0, T ), L ∞ (R 3 )) which converges to 0 in L ∞ ((0, T ), L 2 (R 3 )) weak * . Then T 0 ρ(t) 2 R n (Id -P )M n -ρ(t)R n (Id -P )ρ(t)M n L 1 (R 3 )+L 2 (R 3 ) dt -→ n→∞ 0, ( 39 
)
and

T 0 ρ(t) 2 (Id -P )M n -ρ(t)(Id -P )ρ(t)M n L 1 (R 3 )+L 2 (R 3 ) dt -→ n→∞ 0. ( 40 
)
We apply Lemma 15,[START_REF] Sargent | Laser Physics[END_REF] with

M n = (κ -1 • l)(v n -v):
the first integral in the right-hand side of ( 38) is estimated by

C(T, F, v init L ∞ ) T 0 v n -v m L ∞ ∩L 2 ρ 2 R n (Id -P )M n -ρR n (Id -P )ρM n L 1 +L 2 dt,
and thus goes to zero as n goes to infinity, uniformly w.r.t. m. Hence, we get [START_REF] Rauch | Discontinuous progressing waves for semilinear systems[END_REF].

For all δ > 0, we also bound h 3,m,n by δ for all n N δ and all m ∈ N thanks to [START_REF] Jochmann | Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism[END_REF]. Finally, summing up with (34) and ( 37), we have from [START_REF] Newell | Nonlinear optics[END_REF]:

∀δ > 0, ∃N δ ∈ N, ∀n, m N δ , ∀t ∈ [0, T ], ρ(v n -v m ) 2 L 2 (Ω) (t) C δ + ρ(v n -v m ) 2 L 2 ((0,T )×Ω) + ρ(v n -v) 2 L 2 ((0,T )×Ω) . (41) 
Use Gronwall's Lemma, then let m go to ∞, and use Gronwall's Lemma again to deduce:

∀δ > 0, ∃N δ ∈ N, ∀n N δ , ∀t ∈ [0, T ], ρ(v n -v) 2 L 2 (Ω) (t) Cδ,
which implies that v n converges towards v strongly in L 2 ((0, T ) × Ω, ρ(t, x) 2 dtdx). Up to a subsequence, convergence then holds almost everywhere, for the measure ρ 2 dtdx, or dtdx, since ρ is positive almost everywhere in (0, T ) × Ω. Thanks to the pointwise estimates (a) from Lemma 10, dominated convergence thus ensures that v n converges towards

v strongly in L 2 ((0, T ) × Ω, dtdx). Then, equicontinuity of {v} ∪ {v n } n∈N in C([0, T ], L 2 (Ω)) implies (by Ascoli's The- orem) the strong convergence of v n in C([0, T ], L 2 (Ω))
. This, together with the uniform bounds on {v} ∪ {v n } n∈N and with the weak convergence of u n , is enough to pass to the limit in ( 26), [START_REF] Lax | Asymptotic solutions of oscillatory initial value problems[END_REF] to get ( 13), [START_REF] Carbou | Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain[END_REF].

Strong convergence of u n . Since u n and u satisfy ( 26) and ( 13) respectively, their difference is solution to a hyperbolic equation with source term in L 1 ((0, T ), L 2 (R 3 )),

(∂ t + B)(u n -u) = (κ -1 • l)(F n -F (x, v, u)).
The standard energy estimate then gives

u n -u L 2 (t) C t 0 F n -F (x, v, u) L 2 (t ′ )dt ′ C t 0 ( F n 0 -F 0 (x, v) L 2 (t ′ ) + F n 1 R n u n -F 1 (x, v)u L 2 (t ′ )) dt ′ . (42) 
Thanks to the growth conditions (9) of F and to the pointwise bound Lemma 10, (a) of the v n , there holds, for all n, m ∈ N and (t,

x) ∈ [0, T ] × R 3 , |F n i (t, x) -F i (x, v(t, x))| C F (e KT v init L ∞ )|v n (t, x) -v(t, x)|. (43) 
In particular this yields that for any t ′ ∈ [0, T ], F n 0 -F 0 (x, v) L 2 (t ′ ) goes to zero as n goes to infinity. Furthermore,

|F n 1 R n u n -F 1 (x, v)u| |F n 1 ||R n (u n -u)| + |F n 1 ||(R n -Id)u| + |F n 1 -F 1 (x, v)||u|.
Thanks to the L ∞ bounds on v n (cf. Lemma 10, (a)) and on F n 1 (cf. ( 29)), and to the property [START_REF] Jochmann | Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism[END_REF] of the operator R n , the first term in the r.h.s. above is bounded by C F (e KT v init L ∞ )|u n -u|. In the same way, the second term goes to zero in L 2 as n goes to infinity. Finally, up to a subsequence, the third term tends to zero almost everywhere, and is bounded by C(F, T, v init L ∞ )|u|. By dominated convergence, it thus goes to zero in L 2 . Finally, we get from (42):

u n -u L 2 (t) C(F, T, v init L ∞ ) t 0 u n -u L 2 (t ′ )dt ′ + o(1),
and Gronwall's Lemma shows that u n converges to u in C([0, T ], L 2 ).

Thanks to a diagonal extraction process (using times T ∈ N ⋆ ), Proposition 11 produces U ∈ C([0, ∞), L 2 ), solution to ( 11)-( 14) with U init as initial data. Estimates (i) and (ii) are then straightforward. To prove Theorem 3, there remains to show its last statement: the stability property. To this end, consider a sequence (U n init ) n∈N , bounded in L div , and converging to U init in L 2 . It generates a (sub)sequence of solutions (U n ) n∈N , with, from the bounds (i), (ii) in Theorem 3,

u n converging to u in L ∞ loc ((0, ∞), L 2 (R 3 )) weak * and v n converging to v in W 1,∞ loc ((0, ∞), L 2 (Ω)) weakly * and in L ∞ loc ((0, ∞), L ∞ (Ω)) weak * .
Then, define the weight ρ from (31) and estimate v nv m as in [START_REF] Métivier | The Cauchy problem for semilinear hyperbolic systems with discontinuous data[END_REF], with R n u n and R m u m replaced with u n and u m , respectively. This leads to the analogue to [START_REF] Newell | Nonlinear optics[END_REF], with no h 3,m,n and h 3,n,m terms, and no R n in h 1,m,n and h 2,m,n . Apply Lemma 13 and Lemma 15, (40) (instead of ( 39)), to get strong C([0, T ], L 2 ) convergence of v n towards v (in [START_REF] Starynkévitch | Problèmes d'asymptotique en temps en ferromagnétisme[END_REF], the term v n initv m init L 2 goes to zero, and contributes to δ). Strong convergence of the fields u n is then obtained as above , with an initial term u n initu init L 2 going to zero added to the r.h.s. of [START_REF] Sueur | Approche visqueuse de solutions discontinues de systèmes hyperboliques semilinéaires[END_REF].

The same process proves Proposition 4.

4 Propagation of smoothness and uniqueness: proof of Theorem 5

It is worth noting that, under the smoothness assumption on ε and µ in ( 16)

, u ∈ L 2 (R 3 , R 6 ) with P u ∈ H µ (R 3 , R 6 ) iff u ∈ L 2 (R 3 , R 6 ) with curl u i ∈ H µ-1 (R 3 , R 6 ) for i = 1, 2.
We thus split the proof of Theorem 5 in several steps. In Section 4.1, we isolate a Cauchy problem for the projection P u of u. This allows some dispersive estimates that we etablish in Section 4.3, while in Section 4.2, Littlewood-Paley decompositions are introduced. We consider first the case where µ is in (0, 1), then we prove the part (a) of Theorem 5 in the case µ = 1, which concerns the propagation of smoothness, and finally the part (b), which concerns uniqueness. Remark 6. Let us mention that in the proof of the propagation of H 1 regularity given in [START_REF] Dumas | Global existence for Maxwell-Bloch systems[END_REF], the step "µ ∈ (0, 1)" is missing, and the resulting estimates (collected here in Lemma 32) are claimed without proof.

Preliminaries

Lemma 16. For any solution U := (u, v) to (11)-( 14) with U init := (u init , v init ) ∈ L div as initial data given by Theorem 3, the part u := P u solves for x ∈ R 3 ,

(∂ t + B)u = P (Au) + P g, (44 
)

u| t=0 = P u init , (45) 
where

A(t, x) := (κ -1 • l)F 1 (x, v), (46) g(t, x) := (κ -1 • l)F (x, v, (Id -P )(κ -1 • l)v), (47) 
= (κ -1 • l)F 0 (x, v) + (κ -1 • l)F 1 (x, v)(Id -P )(κ -1 • l)v). ( 48 
)
Proof. First, apply the projector P to the system (13), observing that P commutes with both ∂ t and B. Then, split F according to [START_REF] Boyd | Nonlinear Optics[END_REF], split u into u = u + (Id -P )u and finally use the constraint [START_REF] Calderón | On the existence of certain singular integrals[END_REF].

The projectors P i , i = 1, 2, defined on L 2 (R 3 , R 3 ), extend to L p (R 3 , R 3 ) (this result extends the classical one by Calderón and Zygmund [START_REF] Calderón | On the existence of certain singular integrals[END_REF] on singular integrals, in the spirit of the extension by Judovič [START_REF] Judovič | Some bounds for solutions of elliptic equations[END_REF]):

Lemma 17 (Starynkevitch [START_REF] Starynkévitch | Problèmes d'asymptotique en temps en ferromagnétisme[END_REF], Lemma 3.13). Under assumption [START_REF] Cohen-Tannoudji | Processus d'interaction entre photons et atomes. Savoirs actuels[END_REF], the projectors P i , i = 1, 2, extend to L p (R 3 , R 3 ) and for all p 0 > 1, there exists C > 0 such that for all p ∈ [p 0 , ∞), their norm from L p (R 3 , R 3 ) into itself are less than Cp.

We deduce estimates for the right-hand side of (44): Lemma 18. As in Theorem 5, assume (8)-( 10) and [START_REF] Cohen-Tannoudji | Processus d'interaction entre photons et atomes. Savoirs actuels[END_REF]. Let U init := (u init , v init ) ∈ L div , and let U := (u, v) be any solution to (11)-( 14) with U init := (u init , v init ) ∈ L div as initial data given by Theorem 3. The following holds true for A and g given by (46)-(48):

A ∈ L ∞ loc ((0, ∞), L ∞ (R 3 )), ( 49 
) A ∈ C([0, ∞), L 2 (R 3 )), ( 50 
) ∂ t A ∈ L ∞ loc ((0, ∞), L 2 (R 3 )), (51) g ∈ ∩ 1 p<∞ C([0, ∞), L p (R 3 )), ( 52 
) ∂ t g ∈ ∩ 1 q 2 L ∞ loc ((0, ∞), L p (R 3 )). ( 53 
)
Proof. For all t, t ′ 0, there holds

A(t) L ∞ (R 3 ) κ -1 • l L ∞ (R 3 ) C F ( v init L ∞ e Kt ), (54) 
A(t) -A(t ′ ) L 2 (R 3 ) κ -1 • l L ∞ (R 3 ) C F ( v init L ∞ e Kt ) v(t) -v(t ′ ) L 2 (Ω) , (55) 
∂ t A(t) L 2 (R 3 ) κ -1 • l L ∞ (R 3 ) C F ( v init L ∞ e Kt ) ∂ t v(t) L 2 (Ω) , (56) 
what yields estimates (49)-(51

). Since v ∈ C([0, ∞), L 2 (Ω)) ∩ L ∞ loc ((0, ∞), L ∞ (Ω)), we have v ∈ ∩ p 1 C([0, ∞), L p (Ω)
) -using the boundedness of Ω for p < 2, and by interpolation for p > 2. Lemma 17 then yields (52). Next, using that

|F i (x, v)| C F ( v init L ∞ e Kt )|v| for i = 0, 1, we infer from (14) that ∂ t v ∈ ∩ 1 q 2 L ∞ loc ((0, ∞), L p (R 3 )). Since ∂ t g(t, x) = (κ -1 • l){∂ v F 0 (x, v) • ∂ t v + F 1 (x, v)(Id -P )(κ -1 • l) • ∂ t v + (∂ v F 1 (x, v) • ∂ t v) • (Id -P )(κ -1 • l)v},
thanks to Lemma 17, we finally get (53).

Also, for a given v, the "fields part" u is in fact uniquely determined:

Lemma 19. Let A ∈ L ∞ loc ((0, ∞), L ∞ (R 3 
)) and g ∈ L 1 loc ((0, ∞), L 2 (R 3 )). For any u init ∈ L 2 (R 3 ), there exists only one solution u ∈ C([0, ∞), L 2 (R 3 )) to (44)-( 45) with P u init as initial data. Furthermore, it satisfies u = P u.

Proof. Existence is given by Lemma 16. To prove uniqueness, consider two solutions u 1 and u 2 in C([0, ∞), L 2 (R 3 )) to ( 44)-( 45), and T > 0. Then ∀t 0, (u 1u 2 )(t) = t 0 e i(t-s)B P A(u 1u 2 )(s)ds, so that, using (49), for t ∈ [0, T ],

(u 1 -u 2 )(t) L 2 (R 3 ) C(κ, T ) t 0 (u 1 -u 2 )(s) L 2 (R 3 ) ds.
Hence, by Gronwall's Lemma, u 1 = u 2 on [0, T ], for any T > 0. Thus, there is only one solution u. Finally, in the same way, u -P u simply satisfies:

∀t 0, (∂ t + B)(u -P u)(t) = 0, so that u = P u.
where r is chosen small enough for λ ± (x, ξ) being the only eigenvalue inside the circle of integration. The matrix P ± (x, ξ) is the spectral projection associated with the eigenvalue λ ± (x, ξ), that is the projection onto the kernel of L x, -λ ± (x, ξ), ξ along its range. These spectral projections are homogeneous of degree 0 w.r.t. ξ, and the associated pseudo-differential operators P ± satisfy P + + P -= Id -P . In addition, Id -P , P + and P -are orthogonal projectors (in the weighted L 2 space introduced in Section 2.1) commuting with B, and acting on Besov spaces. Now the point is that considering the Cauchy problem (57) for solutions u satisfying (Id -P )u = 0, we select the branch of the characteristic variety which are curved, what generates dispersion. We shall need the following indices p 1 , r 1 , q 1 , s 1 , µ, σ and ρ: ∞) and 1/r 1 + 1/p 1 = 1/2;

p 1 ∈ [2,
(58) q 1 ∈ (1, 2] and 1/s 1 + 1/q 1 = 3/2;

(59) µ ∈ R, σ := µ -1 + 2/p 1 and ρ := µ -1 + 2/q 1 .

(60)

Proposition 20. Let p 1 , r 1 , q 1 , s 1 , µ, σ and ρ be given by (58)-(60). Under assumption [START_REF] Bidégaray-Fesquet | -Bloch à Schrödinger non linéaire : une hiérarchie de modèles en optique quantique[END_REF], there is a non-decreasing function C : (0, ∞) → (0, ∞) such that, for any T > 0, for any initial data u init in Ḣµ such that (Id -P )u init = 0, and for any source term f in L s1 ((0, T ), Ḃρ q1,2 (R 3 )) such that (Id -P )f = 0, any (weak) solution u to the Cauchy problem (57) belongs to L r1 ((0, T ), Ḃσ p1,2 (R 3 )) and satisfies u = P u, as well as

P u L r 1 ((0,T ), Ḃσ p 1 ,2 (R 3 )) C(T ) P u init Ḣµ + P f L s 1 ((0,T ), Ḃρ q 1 ,2 (R 3 )) . ( 61 
)
In the case

p 1 = 2 (hence r 1 = ∞, σ = µ), the function u = P u is even in C([0, T ], Ḣµ (R 3 )).
The result of Proposition 20 is false for r 1 = 2, p 1 = ∞, s 1 = 1, q 1 = 2 and µ = ρ = 1, σ = 0. However, it is true when truncating frequencies. We use, for λ > 0, the low frequency cut-off operator S λ , which is the Fourier multiplier with symbol χ λ := χ(•/λ), where the cut-off function χ ∈ C ∞ c (R d , [0, 1]) takes value 1 when |ξ| 1/2, and 0 when |ξ| 1. Then, we have: Proposition 21. Under assumption [START_REF] Bidégaray-Fesquet | -Bloch à Schrödinger non linéaire : une hiérarchie de modèles en optique quantique[END_REF], there is a non-decreasing function C : (0, ∞) → (0, ∞) such that, for all λ, T > 0 and for any u ∈ C([0, T ), H 1 (R 3 )) solution to (57),

S λ P u L 2 ((0,T ),L ∞ (R 3 )) C(T ) ln(1 + λT ) ∂ x P u init L 2 (R 3 ) + ∂ x P f L 1 ((0,T ),L 2 (R 3 )) . (62) 
Estimate ( 62) is proved in the case where the operator P is P := -∆ in [START_REF] Joly | Global solutions to Maxwell equations in a ferromagnetic medium[END_REF] Proposition 6.3. Even in this case Estimate (62) without the cut-off S λ is false [START_REF] Klainerman | Space-time estimates for null forms and the local existence theorem[END_REF], [START_REF] Lindblad | Counterexamples to local existence for semi-linear wave equations[END_REF]. Proposition 21 extends [START_REF] Joly | Global solutions to Maxwell equations in a ferromagnetic medium[END_REF]'s result to (smooth) variable coefficients.

Let us mention that one can deduce from these results some similar estimates for the R N -valued solutions u of wave equations of the form:

(∂ 2 t + A)u = f in R 3 , ∂ ν t u| t=0 = u ν for ν = 0, 1, where A := -a(x)∆ + n j=1 B j (x)∂ j + C(x), when a -1 ∈ C ∞ K (R 3 ), a(x) c 0 > 0 and the B j and C are in C ∞ K (R 3 , M N ×N (R)
). These equations stand for the propagation of waves in an inhomogeneous isotropic compact medium K ⊂ R 3 surrounded by vacuum.

To prove Proposition 20 and Proposition 21 we use the Lax method, that is an explicit representation of the solution which allows to take advantage of oscillations via the method of stationary phase, for each dyadic block, to get a pointwise dispersive estimate. The final step relies on the TT* argument and the summation over the dyadic blocks.

This kind of strategy is now very classical and we refer here to the book [START_REF] Bahouri | Fourier Analysis and nonlinear partial differential equations[END_REF] by Bahouri, Chemin and Danchin for a larger overview of its use and of its consequences. However we did not find Proposition 21 in the literature so that we now detail a little bit its proof.

Proof of Proposition 20. Let us first remark that it is sufficient to prove Estimate (61) for smooth data (by the usual regularization process) and locally in time. More precisely, it suffices to prove that there is a constant C > 0 and T 1 > 0 such that, for all λ > 0 and for all u ∈ C([0, T 1 ], H 1 (R 3 )) solution to (57),

P u L r 1 ((0,T1), Ḃσ p 1 ,2 (R 3 )) C P u init Ḣµ + P f L s 1 ((0,T1), Ḃρ q 1 ,2 (R 3 )) . (63) 
Indeed, apply several times Estimate (63) on time intervals of the form (kT 1 , (k + 1)T 1 ), with k an integer ranging from zero to the integral part K of T /T 1 (plus the interval (KT 1 , T )): on the right hand side, P u(kT 1 ) Ḣµ is estimated by C P u((k -1)T 1 ) Ḣµ + P f L s 1 (((k-1)T1,kT1), Ḃρ q 1 ,2 (R 3 )) . Summing up gives (61). Now, consider the operator S(t) := e -tB P . It admits a parametrix, and thus is given by a sum S(t) = I + (t) + I -(t) of operators on the dispersive eigenspaces, which are Fourier Integral Operators: for any smooth function u(x),

(I ± (t)u)(x) = R 3 ×R 3 e i Ψ(t,x,ξ)-2πy•ξ a(t, x, ξ)u(y)dξdy,
and we drop the subscript ± in the sequel. The phase Ψ(t, x, ξ) is real, positively homogeneous of degree one in ξ, C ∞ for ξ = 0, and satisfies the eikonal equation:

∂ t Ψ(t, x, ξ) = ±(κ 1 κ 2 (x)) -1/2 |Ψ ′ x (t, x, ξ)|, ( 64 
) with Ψ| t=0 (x, ξ) = 2πx • ξ. (65) 
The amplitude a is in Hörmander's class S 0 , and admits an asymptotic expansion whose successive orders satisfy a sequence of linear hyperbolic equations. Such a method was initiated by Lax in his pioneering paper [START_REF] Lax | Asymptotic solutions of oscillatory initial value problems[END_REF]. Because of the caustic phenomenon, the lifespan of smooth solutions to Equation ( 64) is limited. However, since Ψ is homogeneous in ξ and the set K × S 2 is compact, there exists T 1 > 0 such that the solution to (64)-( 65) remains smooth on [-T 1 , T 1 ].

Let us mention here that Ludwig [START_REF] Ludwig | Exact and asymptotic solutions of the Cauchy problem[END_REF] succeeded in extending Lax' analysis into a global-in-time result. The arguments have been refined thanks to Hörmander's theory of Fourier Integral Operators [START_REF] Hörmander | Fourier integral operators[END_REF], [START_REF] Duistermaat | Fourier integral operators[END_REF]. But we use the parametrices (and the solution operators I(t)) only locally in time and we refer for their construction to the work of Chazarain [START_REF] Chazarain | Opérateurs hyperboliques a caractéristiques de multiplicité constante[END_REF], Nirenberg and Treves [START_REF] Nirenberg | A correction to: "On local solvability of linear partial differential equations. II. Sufficient conditions[END_REF] and [START_REF] Nirenberg | On local solvability of linear partial differential equations. II. Sufficient conditions[END_REF], Kumano-go [START_REF] Kumano-Go | A calculus of Fourier integral operators on R n and the fundamental solution for an operator of hyperbolic type[END_REF] and Brenner [START_REF] Brenner | On the existence of global smooth solutions of certain semilinear hyperbolic equations[END_REF]. In particular we refer to the last one for the following precious informations about the phase ([9] Lemma 2.1): there exist c, C > 0 such that

(i). c|ξ| |Ψ ′ x | C|ξ| on [-T 1 , T 1 ] × R 3 × (R 3 \ {0}); (ii). cId ±Ψ ′′ xξ CId, Ψ ′′ xξ being real symmetric, on [-T 1 , T 1 ] × R 3 × (R 3 \ {0}); (iii) 
. Ψ ′′ ξξ is semi-definite with rank 2 for |ξ| = 0, t = 0; and for |ξ| = 1, x ∈ K, there is a constant c 0 > 0 such that the moduli of the non-zero eigenvalues of Ψ ′′ ξξ are bounded from below by c 0 |t|;

(iv). for x / ∈ K, the above results are consequence of the exact formula:

Ψ(t, x, ξ) = 2πx • ξ ± 2π(κ 1 κ 2 (x)) -1/2 t|ξ|.
Note that these results imply that the kernel of I(t) is a Lagrangian distribution. We use the T T ⋆ method for the frequency localized operators

T j (t) := ∆ j I(t), j ∈ Z.
The composed operator T j (t)T j (t ′ ) ⋆ is then

T j (t)T j (t ′ ) ⋆ = ∆ j I(t -t ′ )∆ j .
Here is the T T ⋆ result.

Lemma 22. There exist 0 < c < C such that for all j ∈ Z, u ∈ L 2 (R 3 ), p, r ∈ [1, ∞] and f ∈ L r ′ ((0, T ), L p ′ (R 3 )), T j (t)u L r ((0,T ),L p (R 3 )) u L 2 (R 3 ) sup g∈B j r,p (b j (g, g)) 1 2 , ( 66 
)
and

T 0 T j (t)T j (t ′ ) ⋆ f (t ′ )dt ′ L r ((0,T ),L p (R 3 )) = sup g∈B j r,p |b j (f, g)|, (67) 
with b j (f, g) := (0,T )×(0,T ) T j (t)T j (t ′ ) ⋆ f (t ′ ), g(t) L 2 (R 3 ) dtdt ′ ,
B j r,p the space of functions g(t, x) in B r,p whose Fourier transform is supported in c2 j |ξ| C2 j , and B r,p the space of smooth functions g(t, x) satisfying g L r ′ ((0,T ),L p ′ (R 3 )) 1.

Proof. Begin with

T j (t)u L r ((0,T ),L p (R 3 )) = sup g∈Br,p (0,T )×R 3 T j (t)u(x) • g(t, x)dtdx .
Then, use the Plancherel identity plus the properties of the support of the Fourier transform of T j (t)u to get

T j (t)u L r ((0,T ),L p (R 3 )) = sup g∈B j r,p (0,T )×R 3 T j (t)u • gdtdx .
Using Fubini's principle, transposition and Cauchy-Schwarz inequality, observe that

T j (t)u L 2 ((0,T ),L ∞ (R 3 )) u L 2 (R 3 ) sup g∈B j r,p T 0 T j (t) ⋆ gdt L 2 (R 3 ) . ( 68 
)
Using again Fubini's principle and transposition, get

T 0 T j (t) ⋆ g(t)dt 2 L 2 (R 3 ) = b j (g, g). (69) 
This leads to (66). Moreover,

T 0 T j (t)T j (t ′ ) ⋆ f (t ′ )dt ′ L r ((0,T ),L p (R 3 )) = sup g∈B j r,p (0,T )×R 3 T 0 T j (t)T j (t ′ ) ⋆ f (t ′ )dt ′ • g(t)dtdx = sup g∈B j r,p |b j (f, g)|.
Now, we need to estimate b j (f, g). We start with a pointwise estimate.

Lemma 23. There exists C > 0 such that for all j ∈ Z, (t, t ′ ) ∈ (0, T ) × (0, T ) and u ∈ L 1 (R 3 ),

T j (t)(T j )(t ′ ) ⋆ u L ∞ (R 3 ) C2 3j (1 + 2 j |t -t ′ |) -1 u L 1 (R 3 ) .
Proof. Since ∆ j is a bounded operator on L p (R 3 ) for all p ∈ [1, ∞], it is sufficient to prove that for all t ∈ (-T, T ) and u ∈ L 1 (R 3 ),

I(t)∆ j u L ∞ (R 3 ) C2 3j (1 + 2 j |t|) -1 u L 1 (R 3 ) . (70) 
Writing down I(t)∆ j u, we get, for all x ∈ R 3 :

(I(t)∆ j u)(x) = R 3 ×R 3 e i Ψ(t,x,ξ)-2πy•ξ a(t, x, ξ)ϕ(2 -j D)u(y)dξdy = R 3 e iΨ(t,x,ξ) a(t, x, ξ)ϕ(2 -j ξ)û(ξ)dξ = 2 3j R 3 e i2 j Ψ(t,x,η) a(t, x, 2 j η)ϕ(η)û(2 j η)dη, so that |(I(t)∆ j u)(x)| 2 3j sup y∈R 3 R 3 e i2 j (Ψ(t,x,η)-y•η) a(t, x, 2 j η)ϕ(η)dη u L 1 (R 3 ) .
To get (70), simply apply the following lemma of stationary phase.

Lemma 24 (Littman [29]). Let Ψ(ξ) be a real function C ∞ such that the rank of its Hessian matrix Ψ ′′ ξξ is at least ρ and let v(ξ) be a function supported in a ring. Then there exists M ∈ N and C > 0 (which depends only on a finite number of derivatives of Ψ, of a lower bound of the maximum of the abolute values of the minors of order ρ of Ψ ′′ ξξ , on supp v) such that, for all Λ ∈ R,

F -1 (e iΛΨ v) L ∞ (R 3 )) C(1 + |Λ|) -ρ 2 • |α| M D α v L 1 (R 3 ) .
To use this lemma, distinguish between short times, for which the eikonal equation (64) implies that the phase Ψ admits the expansion

Ψ(t, x, ξ) = 2π x • ξ ± t(κ 1 κ 2 (x)) -1/2 |ξ| + O(t 2 ), (thus ρ = 2, Λ = 2 j (κ 1 κ 2 (x)) -1/2 t
is suitable), and subsequent times, for which Estimate (ii) on the phase gives ρ = 2 (and Λ = 2 j ). This yields sup

y∈R 3 R 3 e i2 j (Ψ(t,x,η)-y•η) a(t, x, 2 j η)ϕ(η)dη C(1 + 2 j t) -1 . (71) 
Since T j (t)T j (t ′ ) ⋆ is also bounded on L 2 (R 3 ), from the above result and the Riesz-Thorin Interpolation Theorem, we infer the following. Lemma 25. There exists C > 0 such that for all j ∈ Z, (t,

t ′ ) ∈ (0, T ) × (0, T ), p ∈ [2, ∞] and u ∈ L p ′ (R 3 ), T j (t)T j (t ′ ) ⋆ u L p (R 3 ) C2 3j(1-2/p) (1 + 2 j |t -t ′ |) -(1-2/p) u L p ′ (R 3 ) . (72) 
Lemma 26. For any p 1 , p 2 ∈ [2, ∞), define r 1 and r 2 by 1/r 1 + 1/p 1 = 1/2 and 1/r 2 + 1/p 2 = 1/2. Then, there exists

C > 0 such that for all j ∈ Z, f ∈ L r ′ 1 ((0, T ), L p ′ 1 (R 3 )) and g ∈ L r ′ 2 ((0, T ), L p ′ 2 (R 3 )), |b j (f, g)| C2 2j(1/r1+1/r2) f L r ′ 1 (0,T ),L p ′ 1 (R 3 ) g L r ′ 2 (0,T ),L p ′ 2 (R 3 ) . ( 73 
)
Proof. Using (72), we apply Hölder's inequality to get

|b j (f, g)| C2 6j/r1 (1 + 2 j | • |) -2/r1 ⋆ f L p ′ 1 (R 3 ) (t ′ ) g(t ′ ) L p ′ 1 (R 3 ) L 1 (0,T )
.

Using again Hölder's inequality, we get

|b j (f, g)| C2 6j/r1 (1 + 2 j | • |) -2/r1 ⋆ f L p ′ 1 (R 3 ) (t ′ ) L r 1 (0,T ) g L r ′ 1 (0,T ),L p ′ 1 (R 3 ) .
Thus, the Hardy-Littlewood-Sobolev inequality implies

|b j (f, g)| C2 4j/r1 f L r ′ 1 (0,T ),L p ′ 1 (R 3 ) g L r ′ 1 (0,T ),L p ′ 1 (R 3 ) . (74) 
Moreover, (69) yields

T 0 T j (t) ⋆ f (t)dt L 2 (R 3 ) = b j (f, f ) 1/2 C2 2j/r1 f L r ′ 1 (0,T ),L p ′ 1 (R 3 ) . (75) 
Now, we observe that

b j (f, g) = T 0 T 0 T j (t ′ ) ⋆ f (t ′ )dt ′ , T j (t) ⋆ g(t) L 2 (R 3 ) dt.
We use the Cauchy-Schwarz and the uniform boundedness of the T j (t) ⋆ , for t in (0, T ), in L 2 (R 3 ) to get

|b j (f, g)| b j (f, f ) 1/2 g L 1 ((0,T ),L 2 (R 3 )) . (76) 
Using now Eq. (75) yields

|b j (f, g)| C2 2j/r1 f L r ′ 1 (0,T ),L p ′ 1 (R 3 ) g L 1 ((0,T ),L 2 (R 3 )) . (77) 
Interpolating between (74) and (77), we find (73).

To complete the proof of Proposition 20, we need to sum over all frequencies. Apply Duhamel's principle to get

P u(t) = e -tB P u init + t 0 e (t ′ -t)B P f (t ′ )dt ′ . ( 78 
)
The first term in ∆ j P u(t) is thus

∆ j I(t)u init = k∈Z ∆ j I(t)∆ k u init .
An important fact in order to estimate ∆ j I(t)u init is that the quasi-orthogonality of the dyadic blocks is not destroyed by the parametrix I(t). Actually, according to [9, Proposition 1.1 and Lemma 1.4], there exists L ∈ N * such that for all j ∈ Z,

∆ j I(t) = |j-k| L ∆ j I(t)∆ k + R j (t),
where R(t) := j∈Z R j (t) satisfies

R(t)v L r 1 ((0,T ), Ḃσ p 1 ,2 (R 3 )) C v Ḣµ . (79) 
This shows that there is C > 0 such that

∆ j I(t)u init L p 1 (R 3 ) C ∆ j I(t)∆ j u init L p 1 (R 3 ) + R j (t)u init L p 1 (R 3 ) ,
so that

I(t)u init L r 1 ((0,T ), Ḃσ p 1 ,2 (R 3 )) C (2 jσ ∆ j I(t)∆ j u init L p 1 (R 3 ) ) j l 2 (Z) L r 1 (0,T ) + (2 jσ R j (t)u init L p 1 (R 3 ) ) j l 2 (Z) L r 1 (0,T ) C (2 jσ ∆ j I(t)∆ j u init L r 1 ((0,T ),L p 1 (R 3 )) ) j l 2 (Z) + (2 jσ R j (t)u init L r 1 ((0,T ),L p 1 (R 3 )) ) j l 2 (Z)
by Minkowski's inequality

C (2 j(σ+2/r1) ∆ j u init L 2 (R 3 ) ) j l 2 (Z) + (2 jσ R j (t)u init L r 1 ((0,T ),L p 1 (R 3 )) ) j l 2 (Z)
by ( 66) and (73) C u init Ḣµ for some new constant C, using µ = σ + 2/r 1 and (79).

The estimate for t 0 e (t ′ -t)B P f (t ′ )dt ′ follows the same lines, using (67) instead of (66).

To conclude the proof of Proposition 20, consider the case p 1 = 2. As (61) holds, it is easy to see that u is continuous w.r.t. time: using a smooth approximation f k ∈ L s1 ((0, T ), Ḣµ ) of f , we get Lu k = f k , and since s 1 1, the usual energy estimates show that (u k ) k is a Cauchy sequence in C([0, T ], Ḣµ ). By (61), as f k tends to f in L s1 ((0, T ), Ḃρ q1,2 ), u k tends to u in C([0, T ], Ḣµ ).

Lemma 33. Define A and g by ( 46)-(48

). If u ∈ L ∞ loc ((0, ∞), H 1 (R 3 )) ∩ W 1,∞ loc ((0, ∞), L 2 (R 3 )) then f := P (Au + g) satisfies ∂ t f ∈ L ∞ loc ((0, ∞), L 2 (R 3 
)), and for any T > 0, there exists C > 0, which only depends on T , A and g, such that

∂ t f L ∞ ((0,T ),L 2 (R 3 )) C( u L ∞ ((0,T ),H 1 (R 3 )) + ∂ t u L ∞ ((0,T ),L 2 (R 3 )) + 1).
(91)

Proof. We have ∂ t f = P (∂ t Au + A∂ t u + ∂ t g), so that using Hölder's inequality, the continuous embedding L 6 (R 3 ) ⊂ H 1 (R 3 ) and the estimates (89)-(90), we get (91). Now we observe that ∂ t u solves for x ∈ R 3 , (∂ t + B)∂ t u = ∂ t (P (Au) + P g), (92) ∂ t u| t=0 = -Bu init + P (A| t=0 u init ) + P g| t=0 .

(93)

This provides an estimate of ∂ t u in L ∞ loc ((0, ∞), L 2 (R 3 )), and using ( 44)-(45

), of Bu in L ∞ loc ((0, ∞), L 2 (R 3 )), hence of u in L ∞ loc ((0, ∞), H 1 (R 3 )).
4.6 Uniqueness: proof of Theorem 5 (b)

Let us recall that in this section we assume that there exists j ∈ {1, 2} such that l 3-j F = 0 and such that F depends only on (x, v, u j ). Let U init ∈ L div with curl u init,i ∈ L 2 (R 3 ), for i = 1, 2. Let U and U ′ be two solutions to ( 11)-( 14), given by Theorem 3, both with U init as initial data. The difference δU := U ′ -U = (δu, δv) between U = (u, v) and U ′ = (u ′ , v ′ ) is solution to the following hyperbolic system

M (δU ) := ((∂ t + B)δu, ∂ t δv) = ((κ -1 • l)δF, δF ), where δF = F (x, v ′ , u ′ j ) -F (x, v, u j ). ( 94 
)
Thanks to [START_REF] Boyd | Nonlinear Optics[END_REF] we have

δF = F 0 (x, v ′ , u ′ j ) -F 0 (x, v, u j ) + (F 1 (x, v ′ ) -F 1 (x, v)) • u j + F 1 (x, v ′ ) • (u j -u ′ j ). (95) 
The first and last terms in (95) are easily estimated in

L 2 (R 3 ) by C F ( v 0 L ∞ (R 3 ) e Kt ) δU L 2 (R 3
) . To deal with the second one we construct a L ∞ approximation of the field u j (analogous to the ones of [START_REF] Joly | Global solutions to Maxwell equations in a ferromagnetic medium[END_REF], Lemma 6.2, and [START_REF] Haddar | Modèles asymptotiques en ferromagnétisme : couches minces et homogénéisation[END_REF], Lemma 2.7).

Lemma 34. There is a non-decreasing function C : (0, ∞) → (0, ∞) and for all T > 0, there exists (u λ ,j ) λ e ⊂ L ∞ ((0, T ) × R 3 ) such that for all λ e, u λ ,j (t) L ∞ ((0,T )×R 3 ) C(T ) ln λ, and (Id -P j )u ju λ ,j (t) L 2 (R 3 ) C(T )/λ, for all t ∈ [0, T ], (96)

S λ P j u j L 2 ((0,T ),L ∞ (R 3 )) C(T ) √ ln λ, and 
(Id -S λ )P j u j (t) L 2 (R 3 ) C(T )/λ, for all t ∈ [0, T ]. ( 97 
)
Let us admit for a while Lemma 34 in order to finish the proof of Theorem 5. Fix T > 0 and consider t ∈ (0, T ). In the second term on the right-hand side of (95), decompose u j = u λ ,j + (Id -P j )u ju λ ,j + S λ P j u j + (Id -S λ )P j u j . We infer from Lemma 34 that

δF L 2 (R 3 ) C F v init L ∞ (R 3 ) e KT δU L 2 (R 3 ) + C(T ) ln λ + S λ P j u j L ∞ (R 3 ) δv L 2 (R 3 ) + 2 C(T ) λ δv L ∞ (R 3 ) .
(98) The energy estimate, together with Gronwall's Lemma, gives

δU (t) L 2 (R 3 ) 2C F C(T ) t λ exp C F t 0 (1 + C(T ) ln λ + S λ P j u j (t ′ ) L ∞ (R 3 ) )dt ′ . Since t 0 (1 + C(T ) ln λ + S λ P j u j (t ′ ) L ∞ (R 3 ) )dt ′ C(T ) ln λ with C(T ) -→ T →0
0, we choose T 0 small enough (in order to have C(T 0 ) < 1), and let λ go to infinity. This shows that δU (t) vanishes on [0, T 0 ]. Repeat this procedure on intervals of size T 0 to get the desired conclusion.

Proof of Lemma 34. We define u λ ,j by setting u λ ,j (t, x) := (Id -P j )u j (t, x) if |(Id -P j )u j (t, x)| C ln λ, and u λ ,j (t, x) := 0 otherwise, where the constant C is chosen below (independently of (t, x) ∈ [0, T ] × R 3 ). Therefore, for p ∈ [2, ∞),

((Id -P j )u j -u λ ,j )(t) 2 L 2 = |(Id-Pj)uj | C ln λ |(Id -P j )u j (t)| 2 dx (C ln λ) 2-p (Id -P j )u j (t) p L p . (99) 
Now, according to Lemma 17, the projection Id-P acts continously in any L p with a norm less than C 0 p. Furthermore, we have

v init p L p v init p L ∞ |Ω|, so that ( v init L p ) 1 p ∞ is
bounded. Thus, using Equation [START_REF] Calderón | On the existence of certain singular integrals[END_REF] and the bound from Theorem 3 (iii), we infer from (99) that

((Id -P j )u j -u λ ,j )(t) 2 L 2 (C 0 p e KT v init L p ) p (C ln λ) p-2 = (C ln λ) 2 λ 2 ln(2 C 0 C e KT sup 1 q ∞ vinit L q ) , choosing p = 2 ln λ. With C big enough, we obtain (96) (C(T ) = 2C 0 e KT +1 sup 1 q ∞ v init L q is suitable).
We are now concerned with the first inequality in (97). Coming back to ( 44)-( 45), the idea is to use the Strichartz estimate (62). However, since we are not able to bound

∂ x f in L ∞ loc ((0, ∞), L 2 (R 3 
)), we cannot apply (62) directly. To overcome this difficulty we introduce some potential vectors. Since P u init ∈ H

1 (R 3 ) (respectively since f = (f 1 , f 2 ) ∈ W 1,∞ loc ((0, ∞), L 2 (R 3 
)) (cf. ( 88) and ( 91)) and P f = f ), for i = 1, 2, there exists

φ init := (φ init,1 , φ init,2 ) ∈ H 2 (R 3 ) (resp. ψ := (ψ 1 , ψ 2 ) ∈ W 1,∞ loc ((0, ∞), H 1 (R 3 ))) such that div(κ 3-i φ init,i ) = 0, curl(φ init,i ) = κ i u init,i (resp. div(κ 3-i ψ i ) = 0, curl(ψ i ) = κ i f i ).
We consider the operator B defined by

B(φ 1 , φ 2 ) = (κ -1 2 curl φ 2 , -κ -1 1 curl φ 1 ) for φ := (φ 1 , φ 2 ) ∈ D( B) := D(B) = H curl × H curl .
The operator B is simply deduced from B by switching κ 1 and κ 2 . It therefore shares the same properties and estimates. In addition it satisfies the identity:

κ -1 1 curl 0 0 κ -1 2 curl B = B κ -1 1 curl 0 0 κ -1 2 curl . ( 100 
)
Let φ := (φ 1 , φ 2 ) be the solution (for x ∈ R 3 ) of

(∂ t + B)φ = ψ, with φ| t=0 = φ init . (101) 
Using the identity (100) and Lemma 19 we obtain 

curl(φ i ) = κ i u i , for i = 1, 2. ( 102 
S λ ∂ t φ L 2 ((0,T ),L ∞ (R 3 )) C(T ) ln(1 + λT ) ∂ x ∂ t φ| t=0 L 2 (R 3 ) + ∂ t ∂ x ψ L 1 ((0,T ),L 2 (R 3 )) . (103) 
From the definitions of φ and ψ and from the estimates (88) and (91) of the previous sections we get :

∂ x ∂ t φ| t=0 L 2 (R 3 ) + ∂ t ∂ x ψ L 1 ((0,T ),L 2 (R 3 )) C(T ) P u init H 1 (R 3 ) . (104) 
Using now (101), observing that f 3-j and therefore ψ 3-j vanish because of Assumption 17, and using (102), we obtain the first inequality in (97). The second one follows by applying Bernstein lemma.

5 Generic uniqueness: proof of Theorem 6

We apply the following general result of generic uniqueness for evolution equations by Saint-Raymond.

Theorem 35 (Saint-Raymond [START_REF] Saint-Raymond | Un résultat générique d'unicité pour les équations d'évolution[END_REF], Theorem 1). Let E init be a topological space and E a metric space. Let (S) be an evolution equation admitting a solution in E for any initial data in E init . Consider the following hypotheses.

(H1) For any initial data U init ∈ E init , for any (U ε init ) ε tending to U init in E init , for any (U ε ) ε in E respective solutions to (S) with U ε init as initial data, (i) there exists a limit point of (U ε ) ε in E;

(ii) any limit point of (U ε ) ε in E is solution to (S) with U init as initial data.

(H2) There exists D, dense subset of E, such that for any U init in D, there exists only one solution to (S) in E with U init as initial data.

Under these two hypotheses, there exists a G δ dense E init of E init such that for any U init ∈ E init , there exists only one solution to (S) in E with U init as initial data.

Recall that we denote by τ s and τ w respectively the strong and weak topologies of L 2 (R 3 , R 6 ), and by τs the strong topology of L 2 (Ω, R d ). We consider the product topology τ ss (resp. τ ws ) on L 2 obtained from τ s (resp. τ w ) and τs .

For any C init > 0, consider

E init := {U init ∈ L div | v init L ∞ (Ω) C init },
endowed with the topology τ ss (resp. τ ws ) inherited from L 2 , and

E := {U ∈ C([0, ∞), L 2 
), satisfying [START_REF] Carbou | Time average in Micromagnetism[END_REF] and the estimates (i), (ii), (iii) of Theorem 3}, endowed with the strong topology (resp. the weak * topology relative to τ ws ) of C([0, ∞), L 2 ). Hypothesis (H1) is a direct consequence of the stability property stated in Theorem 3 (resp. Proposition 4). Now, set

D := {U init ∈ L div with curl u init,i ∈ L 2 (R 3 ), for i = 1, 2},
which is dense in E init for the topology τ ss inherited from L 2 . Moreover Theorem 5 yields that Hypothesis (H2) is satisfied. We can therefore apply Theorem 35, what proves Theorem 6.

6 Quasi-stationary limits: proof of Theorem 7, Proposition 8 and Theorem 9

Proof of Theorem 7. We first observe that the bounds (i), (ii) given by Theorem 3 for U η are uniform in η ∈ (0, 1). Therefore, up to a subsequence, U η converges to U := (u, v) in W 1,∞ loc ((0, ∞), L 2 (Ω)) weak * and v η converges to v in L ∞ loc ((0, ∞), L ∞ (Ω)) weak * . In addition, there holds Bu η = ∂ t D η , with D η := -η(u η -(κ -1 • l)v η ). Passing to the limit already yields that U satisfies the (linear) equations [START_REF] Calderón | On the existence of certain singular integrals[END_REF] and Bu = 0. Using Proposition 4, we also get that U satisfies [START_REF] Carbou | Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain[END_REF], which means that v solves [START_REF] Haddar | Modèles asymptotiques en ferromagnétisme : couches minces et homogénéisation[END_REF].

Proof of Proposition 8. The proof is very similar to the uniqueness proof in Theorem 5 (b): it relies on some L ∞ approximation of (Id -P )(κ

-1 • l)v. Consider v 1 , v 2 ∈ C([0, ∞), L 2 (Ω)) ∩ L ∞ loc ((0, ∞), L ∞ (Ω)
), solutions to [START_REF] Haddar | Modèles asymptotiques en ferromagnétisme : couches minces et homogénéisation[END_REF] with the same initial data v init , and define δv := v 1v 2 . Fix T > 0. From the properties (8)- [START_REF] Brown | Micromagnetics[END_REF] of F , we get the pointwise estimate

∂ t (|δv| 2 ) C F (|(Id -P )(κ -1 • l)v 1 | + 1)|δv| 2 + |(Id -P )(κ -1 • l)δv| |δv| on [0, T ] × Ω, (105) 
for some constant C F = C F v init e KT L ∞ (Ω) . Now, defining for M > 0

w M := 1 |(Id-P )(κ -1 •l)v1| M (Id -P )(κ -1 • l)v 1 ,
we get from Lemma 34 that there is C(T ) > 0 such that ∀M 1, w M L ∞ ((0,T )×Ω)

M, (Id -P )(κ -1 • l)v 1w M L ∞ ((0,T ),L 2 (Ω))

C(T )e -M/C(T ) .

Integrating (105) over Ω, using the Cauchy-Schwarz inequality and increasing the constant C (which is still independent of M ), we obtain ∂ t δv 2 L 2 (Ω)

C F (M + 1) δv 2 L 2 (Ω) + C(T )e -M/C(T ) .

Then, Gronwall's lemma yields Proof of Theorem 9. For each η ∈ (0, 1), consider a solution U η (given by Theorem 3) to ( 11), ( 14) and [START_REF] Dumas | Global existence for Maxwell-Bloch systems[END_REF]. Convergence of v η (and (Id -P )u η ) is obtained as in the proof of Theorem 7 above. Now, drop the index η for simplicity.

Then, symmetrizing the system by the change of dependent variables

u i = κ 1/2 i u i ,
we get in the distributional sense:

for i = 1, 2, η∂ t u i + (-1)

3-i R 3-i u 3-i = ηκ -1/2 i • l i ∂ t v,
and therefore, applying ∂ t and combining,

for i = 1, 2, η 2 ∂ 2 t u i + R ⋆ i R i u i = (-1) i ηR 3-i κ -1/2 3-i l 3-i ∂ t v + η 2 κ -1/2 i l i ∂ 2 t v, (106) 
where we have set System (106) shall be understood as a system of wave equations for the "divergence free" parts π i u i , when for i = 1, 2, π i := κ 1/2 i P i κ -1/2 i .

Then, π = (π 1 , π 2 ) is an orthogonal projector in the space L 2 (R 3 , dx) × L 2 (R 3 , dx). Furthermore, from the description of ran P i and ran (1 -P i ) in ( 7), we deduce that for i = 1, 2, R i π i = R i (and π i R ⋆ i = R ⋆ i by transposition).

Thus, we have finally:

for i = 1, 2, η 2 ∂ 2 t π i u i -Q i π i u i = (-1) i ηR 3-i κ -1/2 3-i l 3-i ∂ t v + η 2 π i κ -1/2 i l i ∂ 2 t v, (107) 
with for i = 1, 2,

Q i := -R ⋆ i R i + κ 1/2 i ∇ κ -2 i κ -1 3-i div(κ 1/2 i •) .
From [41, Lemma 3.10], we know that for i = 1, 2, the differential second-order operator (-Q i ) is a self-adjoint, positive, and elliptic. Thus, with v ∈ L ∞ loc ((0, ∞), L ∞ (Ω)) ∩ W 1,∞ loc ((0, ∞), L 2 (Ω)) given, and for given initial data,

π i u i| t=0 = π i κ 1/2 i u init,i and η(∂ t π i u i ) |t=0 = ηπ i κ -1/2 i l i F (v init , u init ) + (-1) i R 3-i κ 1/2
3-i u init,3-i , the solution (π 1 u 1 , π 2 u 2 ) to the linear wave equation system (107) is uniquely determined. We recover it via vector potentials: defining

     for i = 1, 2, η 2 ∂ 2 t φ i -Q i φ i = ηπ i κ -1/2 i l i ∂ t v, φ i|t=0 = 0, η∂ t φ i|t=0 = π i u i| t=0 , (108) 
we have for i = 1, 2, π i u i = η∂ t φ i + (-1) i R 3-i φ 3-i .

The problem (108) also determines uniquely the vector potentials φ i . Since π i φ i also satisfies the problem (108) we infer that π i φ i = φ i . Furthermore, [START_REF] Starynkévitch | Problèmes d'asymptotique en temps en ferromagnétisme[END_REF]Lemma 3.10] ensures that for i = 1, 2, Q i does not admit 0 as a resonance.

One then needs to assume the following:

for i = 1, 2, Q i is non-trapping. ( 110 
)
This is enough to apply Theorem 36 (Starynkevitch [START_REF] Starynkévitch | Problèmes d'asymptotique en temps en ferromagnétisme[END_REF], Theorem 3.2). Let Q be a non-trapping, (L 2 -)self-adjoint, negative, and elliptic differential second-order operator, for which 0 is not a resonance. Let s > 1/2, γ ∈ (-3/2, 1/2) and R > 0. Then, there exists C 0 such that: for all (u 0 , u 1 ) ∈ Ḣγ+1 Q (R 3 ) × Ḣγ Q (R 3 ), and f such that x s (-Q) γ/2 f ∈ L 2 ((0, ∞) × R 3 ), the solution u to

∂ 2 t u -Qu = f on (0, ∞) × R 3 , with u |t=0 = u 0 , ∂ t u |t=0 = u 1 , satisfies (u, ∂ t u) L 2 ((0,∞), Ḣγ+1 Q (BR)× Ḣγ Q (BR)) C u 0 Ḣγ+1 Q (R 3 ) + u 1 Ḣγ Q (R 3 ) + x s (-Q) γ/2 f L 2 ((0,∞)×R 3 ) .
For all µ ∈ R, the space Ḣµ Q (R 3 ) is defined by the norm

v Ḣµ Q (R 3 ) = (-Q) µ/2 v L 2 (R 3 ) .
We apply the result above to φ i (ηt, x), whith γ = 0 and s = 1. This leads to:

∀R > 0, ∃C R > 0, (φ i , η∂ t φ i ) L 2 ((0,∞), Ḣ1 (BR)×L 2 (BR)) C R η 1/2 π i κ 1/2 i u init,i L 2 (R 3 ) + η x π i κ -1/2 i l i ∂ t v L 2 ((0,∞),L 2 (R 3 )) .

The right-hand side is controlled thanks to Lemma 37 (Starynkevitch [START_REF] Starynkévitch | Problèmes d'asymptotique en temps en ferromagnétisme[END_REF], Lemma 3.11). For all R > 0, there exists C R > 0 such that, if m ∈ L 2 (R 3 ) and supp(m) ⊂ B R , then for i = 1, 2, |π i m(x)| C R x -3 m L 2 (R 3 ) for a.e. x ∈ R 3 .

Since π i φ i = φ i , by the usual T T ⋆ argument, R i φ i L 2 (BR) φ i Ḣ1 (BR) , and we deduce from (109):

for i = 1, 2, π i u i = O( √ η) in L 2 ((0, ∞), L 2 loc (R 3 )),
which yields the convergence of P u η to zero in L 2 ((0, ∞), L 2 loc (R 3 )).

1 e

 1 CF (M+1)T -M/C(T ) . Now, choose T so small that C F M T -M/C(T ) < 0 (which is possible, since C is a non-decreasing function of T ), and let M go to infinity. This shows that δv vanishes on [0, T ]. Repeating the argument on successive time intervals yields v 1 = v 2 .

i = 1 , 2 ,

 12 R i := κ , for the duality in L 2 (R 3 , dx)).

Technical interlude 2: Fourier analysis

We recall the existence of a smooth dyadic partition of unity: there exist two radial bump functions χ and φ valued in the interval [0, 1], supported respectively in the ball B(0, 4/3) := {|ξ| < 4/3} and in the annulus C(3/4, 8/3) := {3/4 < |ξ| < 8/3}, such that

The Fourier transform F is defined on the space of integrable functions f ∈ L 1 (R 3 ) by (F f )(ξ) := R 3 e -2iπx•ξ f (x)dx, and extended to an automorphism of the space S ′ (R 3 ) of tempered distributions, which is the dual of the Schwartz space S(R 3 ) of rapidly decreasing functions. The so-called dyadic blocks ∆ j correspond to the Fourier multipliers ∆ j := φ(2 -j D), that is

h(2 j y)u(xy)dy for j 0, where h := F -1 φ.

We also introduce S 0 := χ(D), that is

h(y)u(xy)dy, where h := F -1 χ.

We will use the inhomogeneous Littlewood-Paley decomposition Id = S -1 + j∈N ∆ j , which holds in the space of tempered distributions S ′ (R 3 ), and the homogeneous Littlewood-Paley decomposition Id = j∈Z ∆ j , which holds in S ′ h (R 3 ), the space of tempered distributions u such that lim j→-∞ k j ∆ k u L ∞ (R 3 ) = 0. We now recall the definition of the inhomogeneous (respectively homogeneous) Besov spaces B λ p,q (resp. Ḃλ p,q ) on R 3 which are, for λ ∈ R (the smoothness index), p, q ∈ [1, +∞] (respectively the integral-exponent and the sum-exponent), the spaces of tempered distributions

) is finite. These Banach spaces do not depend on the choice of the dyadic partition above (cf. for instance the book [START_REF] Bahouri | Fourier Analysis and nonlinear partial differential equations[END_REF]).

Dispersion

Propagation of smoothness or singularities for solutions to hyperbolic Cauchy problems, such as

obeys the laws of geometrical optics. Let us refer here to the survey [START_REF] Gårding | Hyperbolic equations in the twentieth century[END_REF] by Gårding for an introduction to the subject. The characteristic variety of the operator L is defined as

where L(t, x, τ, ξ) denotes the (principal) symbol of the operator L, which is the 6 × 6 matrix

and 0, each one with multiplicity 2. The eigenspace associated with the eigenvalue 0 is precisely ran (Id -P ). We introduce

Proof of Proposition 21. Now, in order to prove Proposition 21, it suffices to come back to the proof of Lemma 26, taking p 1 = ∞ (and r 1 = 2). Using the standard Young inequality instead of the Hardy-Littlewood-Sobolev inequality leads to

In particular for any g in L 2 ((0, T ), L 1 (R 3 )), this yields

Then we apply Lemma 22 with (p, r) = (2, ∞) and use (76), where we commute f and g, to estimate the right hand side of (67). We find that for any u ∈ L 2 (R 3 ), for any f ∈ L 1 ((0, T ), L 2 (R 3 )),

Then we proceed as in the proof of Proposition 20 to sum over the dyadic blocks whose frequencies are below the cut-off parameter λ, with an extra factor ln(1 + λT ) (and (79) holds for r 1 = 2, p 1 = ∞).

4.4 Propagation of smoothness: proof of Theorem 5, case where µ ∈ (0, 1)

In the case where µ ∈ (0, 1), Theorem 5 is a consequence of the following proposition:

Proposition 27. Suppose that A and g satisfy the estimates (49)-( 53), that µ ∈ (0, 1) and

)) of ( 44)-( 45) given by Lemma 19 belongs to

In order to prove Proposition 27 we introduce, for T > 0, the space

where p := 2/(1-µ) and r := 2/µ. These indices belong to (2, ∞). We shall also use the space Z µ (T ) := Z µ 1 (T )+Z µ 2 (T ), where

where q = 2/(2µ) and s = 2/(1 + µ). These indices belong to (1, 2).

Lemma 28. Suppose that µ, T ∈ (0, 1), and f ∈ Z µ (T ). Then there exists C > 0 such that for any

, and u into u = u 0 + u 1 + u 2 , where the u i solve the following hyperbolic Cauchy problems:

We already have by energy estimates that the u i are in C([0, ∞), L 2 (R 3 )). Then one gets the estimates of the u i in C 1 ([0, T ], H µ-1 (R 3 )) by using the equations. To get the estimates in Y µ (T ) it therefore only remains to get the estimates in L r ((0, T ), B 0 p,2 (R 3 )).

For u 0 this just follows the energy estimate thanks to Bernstein lemma.

In order to estimate u 1 we apply Proposition 20 with p 1 = p, r 1 = r, q 1 = 2, s 1 = 1, σ = 0, ρ = µ. This gives the estimate of u 1 in L r ((0, T ), B 0 p,2 (R 3 )) by the right-hand side of (85). In order to estimate u 2 we observe that

By assumption there exists g a ∈ L 1 ((0, T ), H µ-1 (R 3 )) and g b ∈ L s ((0, T ), B 0 q,2 (R 3 )) such that ∂ t f 2 = g a + g b . We split accordingly ∂ t u 2 into ∂ t u 2 = u a + u b , where u a solves Lu a = g a , with u a | t=0 = (Id -S 0 )f 2 | t=0 , and u b solves Lu b = g b , with u b | t=0 = 0. In order to estimate u a (respectively u b ) we apply Proposition 20 with p 1 = p, r 1 = r, q 1 = 2, s 1 = 1, σ = -1, ρ = µ -1 (respectively with p 1 = p, r 1 = r, q 1 = q, s 1 = s, σ = -1, ρ = 0 and µ -1 instead of µ). This yields the estimate of

p,2 (R 3 )). Since P u 2 = u 2 this entails that u 2 ∈ L r ((0, T ), B 0 p,2 (R 3 )).

The proof of Proposition 27 follows by induction of the following lemma:

Lemma 29. Suppose that A and g satisfy the estimates (49)-( 53), and µ ∈ (0, 1). Then there exists T 1 > 0 and C > 0 such that for any

)) to ( 44)-( 45) given by Lemma 19 belongs to Y µ (T 1 ) and

Proof. In order to prove Lemma 29 we recall the following estimate:

Lemma 30 (Joly-Métivier-Rauch [START_REF] Joly | Global solutions to Maxwell equations in a ferromagnetic medium[END_REF], Lemma 5.3). There is a constant C, which depends only on

)) and µ, such that for all T ∈ (0, 1) and u ∈ Y µ (T ), Au belongs to Z µ (T ), and

Let us warn the reader that there is a small misprint in the right hand side in Lemma 5.3 of [START_REF] Joly | Global solutions to Maxwell equations in a ferromagnetic medium[END_REF], which is corrected above. We also have: Lemma 31. If g satisfies (52)-( 53), then for any T > 0, g belongs to Z µ (T ).

Proof. Since 1 < q < 2 < p < ∞ there hold continuous embeddings L q ⊂ B 0 q,2 and L p ⊂ B 0 p,2 ⊂ B -1 p,2 , so that, using (52)-(53), we get, for any T > 0, that g is in Z µ 2 (T ) ⊂ Z µ (T ).

According to Lemma 30 and Lemma 31 there is a constant C such that for all T ∈ (0, 1), if u ∈ Y µ (T ) then f := P (Au) + P g ∈ Z µ (T ) and

Therefore applying Lemma 28 and choosing T 1 small enough we get Lemma 29.

4.5 Propagation of smoothness: proof of Theorem 5 (a), case where µ = 1

We now consider U init in L div with curl u init,i ∈ L 2 (R 3 ), for i = 1, 2, and we consider U solution to ( 11)-( 14) with U init as initial data given by Theorem 3. The idea is to estimate B(P u) = P (Au) + P g -∂ t P u from [START_REF] Judovič | Some bounds for solutions of elliptic equations[END_REF].

Lemma 32. Define A and g by ( 46)-(48). The following holds true:

Proof. We apply Theorem 5 in the case µ = 1/2. This yields that u belongs to C([0, ∞), H 1/2 (R 3 )) and thus also to L ∞ loc ((0, ∞), L 3 (R 3 )). We then infer that ∂ t v ∈ L ∞ loc ((0, ∞), L 3 (R 3 )) and then we get the estimates (89) and (89).