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Abstract

In this paper, we investigate the influence of the clinical context of
high–resolution computed tomography (HRCT) images of the chest
on tissue classification. 2D regions of interest (ROI) in HRCT axial
slices from patients affected with an interstitial lung disease (ILD)

are automatically classified into five classes of lung tissue.
Relevance of the clinical parameters is studied before fusing them

with visual attributes. Two multimedia fusion techniques are
compared: early versus late fusion. Early fusion concatenates

features in one single vector, yielding a true multimedia feature
space. Late fusion consisting of the combination of the probability
outputs of two support vector machines (SVM) allowed a maximum

of 84% correct predictions of testing instances among the five
classes of lung tissue. This represents a significant improvement of
10% compared to a pure visual–based classification. Moreover, the
late fusion scheme showed high robustness to the number of clinical

parameters used, which suggests that it is appropriate for mining
clinical attributes with missing values in clinical routine.
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analysis, Feature ranking

1 Introduction

The interpretation of high–resolution computed tomography (HRCT) images of the chest from pa-
tients affected with interstitial lung diseases (ILDs) is challenging and time–consuming even for expe-
rienced radiologists. The term interstitial lung disease accounts for around 150 illnesses of which many
forms are rare. Images play an important role for confirming the diagnosis and patients may not require
surgical lung biopsy when the clinical and radiographic (HRCT) impression is consistent with a safe
diagnosis [15]. The most common imaging procedure used is the chest x–ray because of its low cost and
weak radiation exposure. However, chest x–rays are negative in a large proportion of diseases and often
unspecific where HRCT of the chest contains essential visual data for the characterization of lung tis-
sue patterns associated with ILDs [36]. The three–dimensional form of HRCT data requires significant
reading time, effort, and experience for a correct interpretation. Owing to this intrinsic complexity of
the interpretation of HRCTs, an image–based computerized diagnostic aid tool (CAD) can bring quick
and precious information, particularly to less experienced radiologists and non–chest experts [2, 13, 33].
Moreover, a radiologist’s ability to interpret HRCT images is likely to change based on the domain–
specific experience, human factors and time of the day where computerized image analysis is 100%
reproducible.

1.1 The clinical context of HRCT images

When analyzing an image, one interprets its content according to a given context. This is particularly
true when analyzing medical images. Radiologists do never interpret HRCT images without taking into
account the clinical context. For example, discovering some fibrotic findings in a lung belonging to an
80–year–old patient is not as surprising as finding some in a lung of a 25–years–old young person.
Several clinical parameters — in particular the age of the patient (see Fig. 1) — have a major influence
on the visual aspect (density) of HRCT images of the chest [26, 32]. In Figure 1, one can see that healthy
tissue from the 88–year–old man has lower mean density with more pre–fibrotic lesions compared to the
homogeneous healthy tissue of the 25–year–old man. To accurately analyze HRCT images an image–
based computerized diagnostic aid system for ILDs must integrate the clinical context of the images.

1.2 Contextual image analysis

Although fundamental in almost every medical field, the context is rarely used in computer vision ap-
plications. On the one hand, collecting contextual information beside images is usually time–consuming,
requiring the help of a specialist. On the other hand, a high–level of knowledge of the application do-
main is required to find relevant contextual parameters [37]. The selection of parameters for contextual
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Fig. 1. Healthy tissue from a 25–year–old man on the left, and from an 88–year–old man on the right. Both images
have identical window level settings.

medical image analysis has to be carried out based on domain–specific literature along with knowledge
bases of computer–based diagnostic decision support systems.

Contextual image analysis implies the fusion of multimodal information sources. When carrying out
contextual image analysis of lung tissue in HRCT data, the visual information extracted from HRCT im-
age series is combined with the clinical parameters of the corresponding patient. Integrating information
from multiple modalities consists of two major steps [43]. Firstly, the best modalities have to be iden-
tified. The best modalities have to be informative according to the considered classes along with being
complementary among each other. Each modality k is represented by a set of features vk. Secondly, the
information from the best modalities must be combined with an optimal scheme in order to allow for
synergy. The so–called ”fusion” can be carried out according to two main strategies [16, 35]:

• early fusion, where features are concatenated into one vector v = (v1 . . .vk) to create one unique
feature space

• late fusion, where multiple classifiers hk are built on each modality {v1, . . . ,vk} and the fusion is
carried out at the decision level

Early fusion allows for a true multimedia (images and clinical data) representation. One single clas-
sifier can learn from all information sources. However this method is confronted to the curse of dimen-
sionality because the dimension of the resulting feature space v is equal to sum of the dimensions of
the subspaces vk. Even associated with feature weighting, high–dimensional spaces tend to scatter the
homogeneous clusters of instances belonging to the same class. This is particularly true when negative
synergies occur among features [3, 22].

Combining classifiers has been a very active domain over the past ten years [21, 24]. Wide inter-
est for the latter mainly relies on the assumption that the heterogeneity of classifiers hk leads to better
results [12]. Late fusion is a special case of classifier combination where heterogeneity occurs in the
input spaces. It allows for a reduction of the data dimensionality by dividing the feature space with-
out neglecting information contained in features that would be discarded by classical feature selection
methods [34].
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1.3 Related work

Context has been used in content–based image retrieval (CBIR) where information from textual an-
notations of images was fused with image features [41] (i.e. grey–level histograms and texture features).
In [5], a CBIR system combined visual statistics with textual statistics directly in the feature vector space
representation. Inter–media medical image retrieval was carried out in [23] using textual features seman-
tically parsed and described with the Unified Medical Language System (UMLS) along with color and
texture features. The visual and textual information was combined in the calculation of the similarity
measure. Investigation of the effectiveness of combining text and image for retrieval including medical
image retrieval is one of the main goals of the CBIR benchmarking campaign ImageCLEF 1 [17, 27].

Combined decision of classifiers constructed on sequentially selected sets of features were tested on
four datasets including medical data in [34]. Best results were obtained when the combination approach
was applied on top of feature selection. Unfortunately, experiments were carried out with homogeneous
datasets which did not contain heterogeneous features such as visual, textual, audio, etc.

Early fusion of clinical parameters and genetic factors was used to predict the risk of coronary artery
disease in [7]. Interaction among features were studied using Bayesian network representations. Al-
though visually identified feature groups were in accordance with medical knowledge, no quantitative
analysis of the interactions was performed.

A combination of radiologic findings on chest radiographs and clinical parameters to provide proba-
bility output of 11 possible ILDs using an artificial neural network is carried out in [1]. By using these
probabilities, radiologists were able to significantly improve their diagnosing accuracies. However, au-
tomatic detection of relevant patterns in the chest radiographs was not investigated.

Utilization of knowledge of disease location to improve detection of fibrosis patterns in HRCT data
was carried out in [44]. The locations of the patterns showed to significantly improve detection perfor-
mance but require an accurate segmentation of the anatomy of the lung.

Many image–based diagnostic aid systems for ILDs achieved high classification accuracy of lung tis-
sue patterns in HRCT data [33, 38, 39] and showed to be effective in clinical routine [2]. Yet, most of
these systems are based on visual data, only (HRCT images). To our knowledge no system attempted
to integrate clinical parameters for automatic detection of lung tissue patterns associated with ILDs in
HRCT data. Texture analysis of lung images using Wavelet frames was investigated in [9, 11] and sup-
port vector machines (SVM) showed to be optimal for the categorization of lung tissue using quincunx
Wavelet frames in [10]. In this paper, we study the influence of the integration of the clinical context of
HRCT images on classification performance of 2D regions of interest (ROI) drawn by two radiologists
in axial slices from patients affected with an ILD.

The paper is structured as follows. In Section 2, the dataset and software used for evaluating the
influence of the clinical context on lung tissue classification in HRCT images is described. Section 3 is
divided into two parts. Section 3.1 describes the composition of the multimodal feature space whereas

1 http://www.imageclef.org/
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the comparison of the fusing techniques is carried out Section 3.2. Results are interpreted and discussed
in Section 4, future work is proposed in Section 5 and final conclusions are drawn in section 6.

2 Methods

The dataset used to investigate the influence of clinical parameters on classification accuracy of lung
tissue is part of an internal multimedia database of ILD cases containing HRCT images created in Tal-
isman 2 . 99 relevant clinical parameters were chosen according to the 15 most frequent ILDs [18] based
on the literature [20, 40], along with knowledge bases of computer–based diagnostic decision support
systems. Discussions and remarks from lung specialists, radiologists and the medical informatics service
(SIM 3 ) at the University Hospitals of Geneva (HUG) allowed an iterative review of the selected param-
eters as well as standardized units and data format to be used. The parameters that were not available
from the electronic health record (EHR) were removed. An HTML form and PHP scripts were used to
collect the clinical parameters and to store them into a MySQL database (see Fig. 2). When multiples
instances of clinical parameters (e.g. laboratory data) were available in the EHR, the instance as close
as possible to HRCT examinations was retained. 96 patients with confirmed diagnosis were retrospec-
tively collected at the HUG between 2003 and 2006. For each patient, a physician filled as many clinical
parameters as possible and a total of 1104 ROIs of lung tissue patterns were drawn in full–resolution
DICOM images by two experienced radiologists. The slice thickness of the images is limited to 1mm. A
graphical user interface implemented in Java was developed in order to meet the needs of the radiologists
for the various annotation tasks.

736 ROIs from healthy and four pathologic lung tissue patterns belonging to 48 patients with filled
clinical parameters were selected for this study (see Table 1). Patterns that are represented by less than 4
patients are left aside. The selected patterns are healthy, emphysema, ground glass, fibrosis and micron-
odules. Distributions of the classes are highly imbalanced as the largest class fibrosis contains 312 ROIs
and the smallest class only 58 ROIs. There is a mean of 147.2 ROIs per class.

Implementation of the SVMs’ C–support vector classification is taken from the open source Java
library Weka 4 using a wrapper for LIBSVM 5 . The image feature extraction and the optimization of
SVMs is implemented in Java. Quincunx Wavelet frames are implemented in Java [14].

3 Results

The first part of this section describes the composition of the features in each modality used for the
classification of the lung tissue patterns. The second part describes and details the results of the fusion

2 TALISMAN: Texture Analysis of Lung ImageS for Medical diagnostic AssistaNce,
http://www.sim.hcuge.ch/medgift/01 Talisman EN.htm
3 http://www.sim.hcuge.ch/
4 http://www.cs.waikato.ac.nz/ml/weka/
5 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Fig. 2. A screenshot of the form used for data entry of the 99 clinical parameters.

Table 1
Distribution of the ROIs and patients per class of lung tissue pattern. Each patient may contain several kinds of
lung tissue patterns.

visual
aspect

class healthy emphysema ground glass fibrosis micronodules

# of ROIs 63 58 148 312 155

# of patients 5 4 14 28 5

of the two modalities.

3.1 Modalities

The two modalities used for classifying the lung tissue patterns are made up of the visual information
from HRCT images of the chest as well as the corresponding textual information describing the clinical
state of the patient at the time of the disease episode.
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3.1.1 Clinical features cn

The clinical parameters entered in the MySQL database are not directly usable for data–mining. Pre–
processing steps are required to build a workable feature space. Nominal variables are divided into binary
features. Textual variables and binary variables that contained one single modality are left aside. Since
leaving aside cases with missing values is not conceivable, variables with less than 50% of the values
filled were removed and average values were substituted. Note that a filled value means not an unknown
value which is used when the clinical parameter was not detailed in the EHR. After having gathered
binary and continuous variables, the created clinical feature space contains 72 attributes (63 binary and
9 continuous). For example, over the 48 selected patients, the parameter host HIV has 3 yes, 43 no and
2 unknown values. yes values are coded with 1, no with 0 and thus the missing values are substituted
by the mean: 0.065. The continuous features were not discretized as it is preferable not to group their
values together into categories with a further purpose of separating clusters of instances in the feature
space. The mean filling rate of the retained attributes is 88.7%.

3.1.2 Visual features tm

Visual features consist of texture features with 22 bins of grey–level histograms of Hounsfield Units
(H.U.) within the ROIs, along with quincunx Wavelet frame (QWF) coefficients extracted at 8 scales.
The distributions of the wavelet coefficients in each subband i are characterized through the parameters
of mixtures of two Gaussians. With fixed means μi

1,2 = μi, the standard–deviations σi
1,2 (σi

1 > σi
2) are

estimated using the expectation–maximization (EM) algorithm. An additional feature airpix measuring
the number of pixels of the ROI with value inferior to −1000 H.U. (which corresponds to the density
of air) is used. In total, the visual feature set is composed of 47 attributes. A complete description and
evaluation of the visual feature space can be found in [9].

3.2 Combining features: early versus late fusion

In order to study the effect of the integration of the clinical context of HRCT images on the classifica-
tion accuracy of the lung tissue patterns, optimized SVMs with a Gaussian kernel are used to categorize
ROIs from the multimodal feature space. SVMs with a Gaussian kernel have shown to be effective to
categorize lung tissue patterns from visual features in [10] and are adapted to mine clinical parameters
as shown in [8]. Two methods for combining visual and clinical attributes are compared: early versus
late fusion (Sections 3.2.2 and 3.2.3). The relevance of clinical attributes is studied in Section 3.2.1.

3.2.1 Ranking the clinical attributes

Integrating the clinical context in lung tissue classification implicitly assumes that clinical parameters
contain relevant information to predict the types of lung tissue contained in HRCT image series of a
patient affected with an ILD. Although parameters such as age are clearly related to the visual aspect of
the lung tissue (see Section 1.1), dependencies between clinical attributes and classes of lung tissue must
be investigated before any fusion with the visual features. Indeed, due to missing values, binarization or
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irrelevance according to the studied diseases, some features might introduce noise by scattering homo-
geneous clusters of instances in the feature space. High presence of binary attributes increases the risk of
obtaining XOR configurations of instances, which leads to highly non-linear decision boundaries. More-
over, it is preferable to keep as few as possible features to limit the curse of dimensionality, especially
for early fusion. A feature ranking is thus required to build an effective set of attributes.

Two measures are compared in their ability to rank the clinical attributes for lung tissue classification:
the information gain ratio IGratio

and the single testing accuracy Asingle. IGratio
is derived from the

information gain measure IG originally used by Quinlan in decision trees in [30]. The information gain
IG(Y |X) of a given attribute X with respect to the class attribute Y quantifies the change in information
entropy when the value of X is revealed:

IG(Y |X) = H(Y ) − H(Y |X) (1)

The information entropy H(Y ) measures the uncertainty about the value of Y and the conditional infor-
mation entropy H(Y |X) measures the uncertainty about the value of Y when the value of X is known:

H(Y ) = − ∑
y∈Y

p(y) log p(y) (2)

H(Y |X) = − ∑
x∈X ,y∈Y

p(x, y) log p(y|x) (3)

The information gain ratio IGratio
is derived from IG using

IGratio
(Y |X) =

IG(Y |X)

−∑l
i=1

|Ti|
|T | log( |Ti|

|T | )
(4)

with T the training set and l the number of possible values of X . Compared to IG the gain ratio will
not give advantage to attributes with a high range of possible values [29, 31]. As the clinical feature
space is populated with binary as well as continuous attributes, it is highly preferable to use the IGratio

for ranking. Another measure proposed for ranking the clinical attributes is the single testing accuracy
Asingle. Asingle is defined as the classification accuracy with SVMs (see Section 3.2.4) based on a feature
vector concatenating all visual features tm with the studied clinical feature cn:

v = (t1 . . . tM cn) (5)

The correlation of IGratio
and Asingle obtained using the experimental setup described in Section 3.2.4 is

studied in Figure 3. Table 2 lists the first 20 clinical attributes with highest Asingle value. The correlation
matrix of the feature space containing the visual features along with the first 20 clinical attributes is
shown in Figure 4.
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Table 2
List of the first 20 clinical attributes with highest Asingle when combined with visual features. Abbreviations:
HTA: arterial hypertension, subOAP: acute pulmonary edema, LDH: serum lactate dehydrogenase.

rank Asingle IGratio name type

1 0.813 0.403 laboratory hematocrit continuous

2 0.809 0.421 age continuous

3 0.796 0.438 laboratory hemoglobin continuous

4 0.794 0.193 past medical allergy binary

5 0.793 0.549 findings physical generals lymph binary

6 0.784 0.519 past medical lymphom binary

7 0.779 0.469 findings physical generals fever binary

8 0.779 0.225 medication cordarone binary

9 0.778 0.218 host diabetes binary

10 0.763 0.227 biopsy bronchoscopy transbronchial eosinophil binary

11 0.759 0.239 past medical HTA binary

12 0.758 0.261 past medical dyspnea attack binary

13 0.754 0.237 past medical subOAP binary

14 0.752 0.124 findings physical respiratory tachypnea binary

15 0.751 0.506 host chemotherapy binary

16 0.746 0.182 past medical wheezing binary

17 0.745 0.192 findings physical abdominals liver binary

18 0.745 0.227 biopsy bronchoscopy transbronchial interstitial fibrosis binary

19 0.745 0.361 laboratory LDH continuous

20 0.743 0.52 host hemopathy binary

3.2.2 Early fusion: feature concatenation

In order to create a multimodal feature space, clinical attributes and visual features are normalized
and concatenated into one single feature vector v as follows:

v = ( t1 . . . tM c1 . . . cN) (6)

with tm, m ∈ [1; M ] the visual features and cn, n ∈ [1; N ] the clinical attributes. Using all 72 clinical
attributes, the maximum dimensionality of the multimodal feature space reaches 119 with 56 continuous
and 63 binary features. v is used as input of SVMs which directly output the predicted class using one
versus one multiclass approach. Testing accuracies are obtained using the experimental setup described
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Fig. 5. Classification scheme for late fusion. Two expert SVM classifiers ht and hc output probabilities pk(wj)
which are multiplied to obtain the final probability of each class wj .

in Section 3.2.4.

3.2.3 Late fusion: Combination of SVM classifiers

Two SVM classifiers ht and hc are trained using visual features t and clinical attributes c respectively.
Attributes in t and c are normalized (within each group) in order to give equal importance to each
of them. Both SVM output probabilities pt and pc using pairwise coupling [42]. For each class wj

(j = 1 . . . 5), probabilities are multiplied to compute final probability p(wj) = pt(wj) · pc(wj). The
final predicted class wj is given by argmax

j
p(wj). Using the product of probabilities for predicting the

final class assumes that the modalities t and c are conditionally statistically independent [4, 21], which is
admissible as mean correlation value ρmean of each feature pair (tm, cn) is equal to 0.0143 (see Figure 4).
Late fusion scheme is summarized in Figure 5.

Smaller feature subspaces have the advantage to reduce the computational complexity for solving the
quadratic problem of finding the maximum margin hyperplane of SVMs. Moreover the subspaces can
be processed in parallel to allow for faster training of the SVMs.

3.2.4 Experimental setup

In order to test the influence of clinical parameters on classification accuracy of the 2D ROIs, a leave–
one–patient–out cross–validation was used. The latter is in accordance with a clinical usage of the CAD.
Each of the ROIs belonging to one same patient are left aside for testing and all remaining ROIs are
used to train and optimize the SVMs. Indeed, the training set is used both for grid search for optimal
parameters and adjustment of the maximum–margin hyperplane of the SVMs. Optimized parameters of
the SVM are the cost of the errors C and the width σ of the Gaussian kernel. A grid search is carried
out within the intervals C ∈ [1; 100] and σ ∈ [10−2; 102]. For every coordinate of the grid, a 10–fold
cross–validation (CV) is carried out on the training set. Optimal parameters (Copt, σopt) that allowed best
mean CV accuracy Acv are used to train the final model on the entire training set. A preliminary coarse
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Table 3
Averaged accuracies obtained with the various techniques. Best performances are highlighted in bold.

visual
features

clinical
features

concatenated
features

combined
SVMs

combined SVMs,
PCA on clinical

features

PCA on
concatenated

features

healthy 0.46 0.01 0.19 0.43 0.48 0.22

emphysema 0.64 0.08 0.26 0.43 0.47 0.78

ground glass 0.57 0.56 0.6 0.71 0.62 0.5

fibrosis 0.91 0.77 0.95 0.95 0.95 0.87

micronodules 0.68 0.8 0.86 0.83 0.45 0.21

global 0.74 0.61 0.74 0.79 0.72 0.58

grid search was performed to locate regions of the space with high Acv values.

As the toughness of the classification task can strongly vary depending on the drawdown of the test-
ing patient, the global experimentation is repeated for all 48 patients to obtain reliable accuracy values.
In order to study the optimal number n of clinical attributes to be used, mean classification accuracies
over the 48 patients are computed for each n ∈ [1; 72], with clinical attributes ordered by Asingle val-
ues (see Section 4.1). Mean classification accuracies according to n obtained with the test set using
visual features only, clinical features only and combined features with early and late fusion are shown
in Figures 6, 7, 8, 9, 10 for each class. Global accuracies of each method are summarized in Figure 11.
Mean accuracies over n values as well as classification based on principal component analysis (PCA)
are contained in Table 3. First, a PCA transform is applied only on the clinical feature set cn to be used
with combined SVMs. Second, a PCA transform is applied on the whole concatenated feature set. The
number of principal components P kept is chosen according to [28]:

P > 1 + 2

√
N − 1

K − 1
(7)

with N the number of features and K the number of instances. In both cases, P = 2 is chosen based
on (7).

4 Interpretation

The first part of this section discusses the limitations of the ranking measures IGratio
and Asingle. The

second part verifies the relevance of the 20 clinical attributes with highest Asingle value to the medical
domain. The third part studies the consistency and the complementarity of the multimodal feature space
through the correlation matrix presented in Figure 4. The last section interprets the performances of
classification of the two fusion designs presented in Table 3 and Figures 6-11.
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4.1 Measures for ranking

Figure 3 shows that IGratio
is little correlated to both Asingle and testing accuracy obtained with each

single-handedly clinical parameter. Pearson’s coefficient of regression R2 is below 0.25 for both com-
parisons. Even if Asingle is averaged over 30 experiments, the values obtained still have high variance
according to the drawdowns of the training and testing sets. This is a first explication for having low
values of R2. A second explication comes with the definition of IGratio

which measures the relevance
of each separated single attribute. One feature generally distinguishes classes in combination with other
features [19], which suggests that IGratio

is not convenient to rank the clinical attributes with a purpose
of fusing them with visual features. IGratio

is also known to be unstable as it is very sensitive to small
changes in the training set [12] which is not desirable for ranking attributes from a high–dimensional set
of heterogeneous features. Due to the several drawbacks of IGratio

, Asingle is used for ranking the clinical
attributes.

4.2 Relevance of clinical attributes

The relevance of the clinical attributes for classifying lung tissue patterns in HRCT data is subject to
many external factors such as the availability of the parameters in the EHR, its binarization required to
be added to v and relevance according to the studied diseases. Indeed a parameter such as the result of
a lung biopsy is obviously highly informative for characterizing the lung tissue but is rarely carried out
and available in the EHR. The categorization and binarization has also major influence on the quality
of clinical data. At last, the relevance of the parameter according to the studied diseases is of course
primordial.

As observed in Section 1.1, the age has an important influence on the visual aspect of lung tissue (see
Figure 1) and this is confirmed by finding it at the 2nd rank in Table 2. The presence of the parameter
laboratory hematocrit at the top of the list is a bit more subtle. An explication for this is that large
homogeneous regions of air, characterizing emphysema patterns, will cause hypoxia and may elicit an
increased production of red blood cells by the kidney, and thus increase the level of hematocrit. This
phenomenon is indeed commonly observed in cases affected with chronic obstructive pulmonary disease
(COPD) [6], characterized by HRCT images showing emphysema patterns. The latter observation is
firmly confirmed by looking at the correlation matrix in Figure 4, where the first clinical parameter
(laboratory hematocrit) is strongly anticorrelated with the means μi of the QWF and highly correlated
to airpix the number of pixels of air within the ROIs. Indeed the means μi of the QWF have high
values for inhomogeneous patterns, where emphysema patterns are very homogeneous due to absence of
lung tissue. Coherently, the 3rd rank is occupied by the parameter laboratory hemoglobin which is also
involved in the transport of oxygen. Indeed, hemoglobin is the protein contained in red blood cells that
is responsible for delivery of oxygen to the tissues. To ensure adequate tissue oxygenation, a sufficient
hemoglobin level must be maintained.

The presences of parameters findings physical general lymph (enlargement of lymph node(s)) and
findings physical general fever at the 5th and 7th ranks are not surprising as they usually highlights the
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presence of a host illness. Finding the parameter medication cordarone at the 8th rank is in accordance
with the well-known side effect of the cordarone drug creating pulmonary fibrosis on the long range.

4.3 Consistency of the multimodal feature space

The study of the correlation of the multimodal feature space is carried out in Figure 4. A first look at
the correlation matrix shows that clinical features have small correlation with the visual features. This is
confirmed as mean correlation ρmean is equal to 0.0143. Several homogeneous groups can be identified
within the visual features. The first histogram bin representing pixels values within [−1050;−975[ H.U.
is of course highly correlated with airpix and is anticorrelated with bins in range [−900;−450[. This
partly due to patterns with low-density tissues (mostly emphysema) are mainly composed by air and thus
do contain few pulmonary tissue in range [−900;−450[. Globally, histograms are logically correlated in
contiguous pairs. Bins 14–20 form a strongly correlated group (ρmean = 0.95) which shows that high–
density tissues with H.U. values in [−75; 375[ only occur together, most probably in fibrosis and ground
glass patterns. Bins 21 and 22 are very sparse and thus not correlated to any other attribute. Within the
QWF features, two groups can be identified: the means μi and the standard–deviations σi

1,2. ρmean is
equal to -0.04 between the two groups. Within the groups, it is not surprising to observe that means and
standard–deviations of two consecutive Wavelet subbands are correlated.

Within the clinical parameters, 3 are highly correlated: past medical lymphom, host chemotherapy
and host hemopathy (ρmean = 0.84). This is not surprising as past medical lymphom, which stands
for having had a lymphoma or leukemia, which is a type of hemopathy (blood cancer), is treated with
chemotherapy. Those three parameter are all involved in ILDs as chemotherapy can induce diverse in-
juries of the lung tissue [25].

4.4 Influence of the clinical context on lung tissue classification: early versus late fusion

Influence of the clinical context of HRCT images on lung tissue classification accuracy is studied in
Figures 6, 7, 8, 9, 10 and 11. As baseline performance, let us consider the accuracy achieved by using vi-
sual features only which has a mean global value of 74%. The last line of Table 3 shows that integrating
the clinical context of the images allows for significant global improvements of the classification accu-
racies. In the mean, 5% is gained in global accuracy using combined SVMs compared to using visual
features only. Classification accuracies of combined modalities are in mean always superior to single
modalities as observed in Table 3. However, the clinical features can harm the classification accuracy
if they are not integrated using an appropriate fusing technique. With early fusion, positive interactions
between clinical and visual features are allowed as showed in Fig. 10 and for low n values in Fig. 6.
However, concatenating all features in a single vector has the drawback that less informative attributes
scatter homogeneous clusters of instances in the feature space. Figures 6, 7 and 11 confirm that phe-
nomenon where the curve of the concatenated features drops when adding more noisy clinical attributes
with low discriminatory power. Some clinical features have negative interactions among them as well as
with the visual ones. Separating visual and clinical features for mining using late fusion avoid interac-
tions between the feature groups which show more stable performances compared to early fusion. This
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is particularly true when clinical attributes carry low information as it is the case for classes healthy.
Moreover, the combined SVMs show high robustness towards the number n of clinical parameters used
and allowed the best accuracy of 84% correct predictions of testing instances (ROIs) among the five
classes of lung tissue with an optimal number of clinical attributes n = 35. Although PCA transform
allows best results for classes where clinical attributes have low discriminatory power (see Table 3), it
does not improves the global accuracy.

5 Future work

We believe that negative synergies still occur among features using a late fusion scheme. Groups of
features with positive synergy [3] which allows for homogeneous cluster of instances belonging to the
same class must be identified and mined into separated subspaces. Indeed, part of the fluctuations of
the performances according to n are the result of interactions among the various groups of features. An
approach for identifying feature groups with positive synergy based on mutual information is described
in [22]. Identifying the groups should also include medical knowledge. A visual approach based on
Bayesian networks is proposed in [7].

6 Conclusions

In this paper, the influence of the clinical context on lung tissue classification from HRCT data is
investigated. Correlation analysis of the multimedia feature space shows that the dataset is in accordance
with medical knowledge. Two fusion scheme of the modalities are studied: early versus late fusion. The
combination of two SVM classifiers achieved highest classification accuracies and allowed a mean of
79% and a maximum of 84% correct predictions of testing instances among the five classes of lung tissue.
This represents a significant benefit of 10% compared to a pure visually–based classification. Late fusion
shows robustness towards the number of clinical parameters used, which suggests that it is appropriate
for mining clinical attributes with missing values. Accuracy values are trustworthy for further usage
in clinical routine as we never train and test with ROIs that belongs to the same patient. In addition,
the leave–one–patient–out cross–validation testing approach is in accordance with a clinical usage of
the CAD where the radiologist analyzes one patient at a time and the system was trained with all the
previously analyzed patients. We believe that the late fusion scheme can still be improved by identifying
group of attributes with high synergy and mining them separately in order to preserve homogeneous
clusters of instances in the feature space. Moreover, the combination rules among the modalities must
be investigated in order to allow optimal complementarity of the modalities.
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