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In this paper we give an example of uniform convergence of the sequence of column vectors

being some (0, 1)-matrices of order 7 with much null entries, and V a fixed positive column vector. These matrices come from the study of the Bernoulli convolution in the base β > 1 such that β 3 = 2β 2β + 1, that is, the (continuous singular) probability distribution of the random variable (β -1)

ω n β n when the independent random variables ω n take the values 0 and 1 with probability 1 2 . In the last section we deduce, from the uniform convergence of A

, the Gibbs and the multifractal properties of this measure.

Introduction

Given a finite set of nonnegative d × d matrices, let A := {A(0), . . . , A(s -1)}, and a nonnegative d-dimensional column vector V , we associate to any ω ∈ Ω := {0, . . . , s -1} N the sequence of column vectors

P n (ω, V ) := A(ω 1 ) . . . A(ω n )V A(ω 1 ) . . . A(ω n )V ( • = the norm-sum).
This is not obligatory defined for any ω ∈ Ω := {0, . . . , s -1} N , but for

ω ∈ Ω A,V := {ω ∈ Ω ; ∀n ∈ N, A(ω 1 ) . . . A(ω n )V = 0}.
This set is compact because for fixed n, the set {ω ∈ Ω ; A(ω 1 ) . . . A(ω n )V = 0} is a finite union of cylinders of order n.

In §1 we prove a straightforward proposition, that may simplify the proof of the uniform convergence of (P n (•, V )) n∈N .

In §2, the set A we consider has three elements:

A = A(0) :=         
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0

         , B = A(1) :=         
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         , C = A(2) :=         
1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

        
and, using [26, Theorem 1.1], we prove the following Proposition 0.1. If V has positive entries, P n (•, V ) converges uniformly on {0, 1, 2} N . The set of the indexes of the nonnull entries in the limit vector is {1, 2, 3, 4, 5}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 5, 6}, {1, 2, 3, 5}, {1, 3, 4, 5}, {1, 3, 4} or {2, 3, 5, 6, 7}. The aim of this example is to prove -in §3 -the weak Gibbs property [START_REF] Yuri | Zeta functions for certain non-hyperbolic systems and topological Markov approximations[END_REF] for the (continuous singular) Bernoulli convolution related to the numeration in the base β > 1 such that β 3 = 2β 2β + 1. It can be defined as the measure µ, supported by [0, 1], such that µ(E) = lim n→∞ µ 1 * • • • * µ n (E) for any borelian E ⊂ R, where

µ n = 1 2 δ 0 + 1 2 δβ-1 β n .
Using [START_REF] Feng | Multifractal analysis of weak Gibbs measures and phase transition -application to some Bernoulli convolutions[END_REF], we conclude that the multifractal formalism holds for this measure (see for instance [START_REF] Peyrière | Introduction to multifractal analysis[END_REF][START_REF] Falconer | Fractal geometry[END_REF][START_REF] Pesin | Dimension theory in dynamical systems: contemporary views and applications[END_REF], or the introduction of [START_REF] Riedi | An improved multifractal formalism and self-similar measures[END_REF] for an interesting overview about the multifractal formalism).

1. Uniform convergence of P n (•, V )

The conditions of uniform convergence are quite different from the ones of simple convergence (see [START_REF] Olivier | Infinite products of 2 × 2 matrices and the Gibbs properties of Bernoulli convolutions[END_REF] and [START_REF] Thomas | Infinite products of nonnegative 2 × 2 matrices by nonnegative vectors[END_REF]). Let us show on a trivial example that the uniform convergence of P n (•, V ) is not equivalent to the pointwise convergence of P n (•, V ) to a continuous map. Proof: The direct implication is obvious by the Cauchy criterion. Suppose now that (1) holds. Given ε > 0 one can associate to each ω ∈ Ω A,V some cylinder [ω 1 . . . ω n ] such that any ξ in this cylinder and any r, s ≥ n satisfy

(2) P r (ξ, V ) -P s (ξ, V ) ≤ ε.

The compact set Ω A,V is a finite union of such cylinders, let [ω

(i) 1 . . . ω (i) 
n i ] for i = 1, . . . , N. Hence (2) is true for any ξ ∈ Ω A,V when r, s ≥ max i n i , and this proves that P n (•, V ) is uniformly Cauchy.

Proof of Proposition 0.1

In this section A is the set of the three matrices A(0), A(1), A(2) defined in the introduction, that we call A, B, C respectively. We denote by {E 1 , . . . , E 7 } the canonical basis of the set of the 7-dimensional column vectors and by U the row vector 1 1 1 1 1 1 1 .

We prove Proposition 0.1 in the following way: for any ω ∈ {0, 1, 2} N we search an increasing sequence (n k ) k∈N such that the sequence of matrices A ′ k = A(ω n k +1 ) . . . A(ω n k+1 ) satisfies the hypotheses of [START_REF] Olivier | Asymptotic properties of the columns in the products of nonnegative matrices[END_REF]Theorem 1.1]. For this, we use the equivalence classes in some graph associated to {A, B, C}; although this case is relatively simple, the method we use may be efficient in more complicated ones. This graph is defined as follows:

Each state represents a column: for instance the state 1334 -or 13 2 

4 -represents the column          1 0 2 1 0 0 0         
and the state 12 x 35 represents all the columns

         1 x 1 0 1 0 0         
for any integer

x ≥ 1; now we consider only the columns that appear in the matrices

A(ω 1 ) . . . A(ω n ), ω ∈ {0, 1, 2} N , n ∈ N.
The state X is related to the state Y by one arrow with label A (resp.

B or C) if Y = AX (resp. BX or CX).
We present this graph in two parts: in the first are represented all the states except the ones from which any infinite path leads to the four final states, that is, to the states 1 x 2 y 3 z 4 t 5 u , 1 x 2 y 3 z 5 u 6 v , 1 x 2 y 3 z 5 u 6 v 7 w , 1 x 3 z 4 t 5 u where x, y, z, t, u, v, w are some positive integers. The second graph contains the other states and -on the first line -the states of the first graph that are related to them by some arrow. The notations we use differ for the states of the third graph: for instance the state 123 2 45 represents all the columns In the sequel we denote the labels of the arrows by 0, 1 and 2 instead of A, B and C, to avoid confusion between words and products of matrices. Let W be the set of the words w = ξ 1 . . . ξ n ∈ {0, 1, 2} * such that the symmetric word ξ n . . . ξ 1 is the label of a path in the third graph, from the initial state 135 to a final state. For instance 20 3 ∈ W means that the path with label 0 3 2 from the state 135 has final state (1345) 2 , and that

         x y z t u v w          for x, y, t, u ≥ 1, z ≥ 2
A(2)A(0) 3          1 0 1 0 1 0 0          =          x 0 z t u 0 0          with x, z, t, u ≥ 2.
We prove by the six following lemmas the existence of an integer κ ∈ N such that the matrices A(w) := A(ξ 1 ) . . . A(ξ n ) -for any n ∈ N and any word w = ξ 1 . . . ξ n ∈ {0, 1, 2} n that can be written w = w 1 . . . w κ with w i ∈ W -satisfy the hypotheses (H 1 ), (H 2 ) and H M of [START_REF] Olivier | Asymptotic properties of the columns in the products of nonnegative matrices[END_REF]Theorem 1.1]. This is in part due to the existence of synchronizing words in the second graph.

Lemma 2.1. In the second graph, the words w ∈ {0, 1, 2} 3 are synchronizing from any state whose label contains the digits 1, 3 and 5, that is, the states of the second graph that are not states of the first.

Proof: We remark that any path starting from a state whose label contains 1, 3 and 5, ends to such a state. Now any word ξ 1 ξ 2 ξ 3 ∈ {0, 1, 2} 3 has the factor 0 2 , 1 2 , 01 or 2. Since 0 2 , 1 2 , 01, 2 are synchronizing from any state whose label contains 1, 3 and 5, ξ 1 ξ 2 ξ 3 also is.

Lemma 2.2. If some factor of a word w ∈ {0, 1, 2} * belong to W 6 , the matrix A(w) has the following property:

(P): Denoting by c j (A(w)) the set of the indexes of the nonnull entries in the j th column of A(w), either all the nonempty sets among the seven sets c 1 (A(w)), . . . , c 7 (A(w)), are equal, or they take two values c and c ′ such that c ⊇ c ′ ∪ {1, 3, 5}.

Proof: Let us check first that it is sufficient to find a factor w ′ of w such that A(w ′ ) has the property (P):

On the one side the columns of the right product A(w ′ )X for X ∈ {A, B, C} are nonnegative linear combination of columns of A(w ′ ); hence if c j (A(w ′ )X) = ∅, there exists j ′ such that c j (A(w ′ )X) = c j ′ (A(w ′ )) and, if A(w ′ ) has the property P, A(w ′ )X also has.

On the other side the columns of the left product XA(w ′ ) are the products of X by the columns of A(w ′ ) hence -since any arrow from a state containing 1, 3 and 5 ends to such a state -if A(w ′ ) has the property (P), XA(w ′ ) also has.

We evaluate the length of the words w ∈ {0, 1, 2} * in two ways: let us denote by |w| the number of letters of w and by ℓ * (w) the number of words

ζ i ∈ {0 n } n∈N ∪ {1} ∪ {2 n } n∈N such that w = ζ 1 . . . ζ ℓ * (w)
, without two consecutive 0 n nor two consecutive 2 n . Then any w ∈ W satsfies |w| ≥ 4 and ℓ * (w) ≥ 3, except ℓ * (20 n ) = ℓ * (12 n ) = 2 for n ≥ 3.

Let w ∈ {0, 1, 2} * have the factor w 1 w 2 w 3 w 4 w 5 w 6 ∈ W 6 . From the above remark, ℓ * (w 4 w 5 w 6 ) ≥ 5. We deduce that, if w 2 w 3 contains the digit 0, there exists some factor w ′ of w 2 w 3 w 4 w 5 w 6 for which the matrix A(w ′ ) is one of the following: we make below the list of the matrices A(w ′ ) for w ′ ∈ W 0 , where the set W 0 -lexicographically ordered from the left to the right -is chosen in such a way that all the words w ∈ {0, 1, 2} * of length ℓ * (w) = 5 beginning by 01 or 02 has one element of W 0 as prefix. Nevertheless we omit the word w ′ = w ′′ 2 if w ′′ 1 ∈ W 0 , because the columns of C are sums of columns of B and consequently A(w ′′ 2) has the property (P) if A(w ′′ 1) has.

ABA 2 =         
1 0 0 0 0 0 1 1 1 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1

         , ABAB =         
1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0

         , AB 2 A =         
2 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0

         , AB 3 =         
1 0 2 1 0 0 0 0 0 1 2 1 0 0 2 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 2 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

         , ABC =          1 0 0 1 1 0 1 0 0 0 1 2 0 0 2 0 0 0 1 0 2 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0          , AC n A =          n + 1 1 0 0 0 0 n n 1 0 0 0 0 n -1 n + 1 0 0 0 0 0 n + 1 0 0 0 0 0 0 0 n + 1 1 0 0 0 0 n 1 0 0 0 0 0 1 0 0 0 0 0 0 0          , AC n BA =          0 0 0 n + 1 n + 1 0 0 0 0 0 n n 0 0 1 0 0 n + 1 n + 1 0 0 0 0 0 0 0 0 0 0 0 0 n + 1 n + 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0          , AC n B 2 A =          n + 2 0 0 0 0 n + 1 n + 1 0 0 0 0 n n + 1 0 0 1 1 n + 1 0 0 0 0 0 0 n + 2 0 0 0 0 n + 1 1 0 0 0 0 1 0 0 0 0 0 0          , AC n B 3 =          n + 1 0 n + 2 1 0 0 0 n 0 n + 1 1 0 0 0 n + 2 0 n + 1 1 1 0 0 0 0 0 0 0 0 0 n + 1 0 n + 2 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0          , AC n BC =          n + 1 0 0 1 1 0 n + 1 n 0 0 1 1 0 n n + 2 0 0 0 1 0 n + 2 0 0 0 0 0 0 0 n + 1 0 0 1 1 0 n + 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0          (n ∈ N).
In case w 2 w 3 do not contain the digit 0, as seen on the third graph the words w and 2 2, 2121, 212 2 }. This is the list of the matrices A(w ′ ) for w ′ ∈ W 1 , where we omit A(21 3 2) and A(2122) because A(1 4 ) and A(2121) are in the list:

w 3 belong to {1} × {1, 2} n with n ≥ 3. Hence either w 2 = 1 4 or w 2 w 3 has a factor in {2} × {1} × {1, 2} 3 , so w 2 w 3 has a factor w ′ ∈ W 1 = {1 4 , 21 3 2, 21
B 4 =         
1 0 1 3 2 0 0 0 0 0 0 0 0 0 2 0 1 1 1 0 0 1 0 2 1 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         , CB 2 C =         
1 0 0 2 5 0 1 0 0 0 0 0 0 0 1 0 0 1 3 0 1 1 0 0 2 3 0 1 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         , CBCB =         
1 0 3 2 0 0 0 0 0 0 0 0 0 0 1 0 2 1 0 0 0 0 0 3 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         .
According to Lemma 2.1, for any X, Y, Z ∈ {A, B, C} the product of XY Z by each of these matrices has the property (P), hence A(w) also has.

Lemma 2.3. There exists an integer κ ≥ 7 such that, for any w ∈ {0, 1, 2} * with a factor in W κ , the matrix A(w) has the property (H 2 ).

Proof: Let w = ξ 1 . . . ξ n ∈ {0, 1, 2} n be a word with a factor w 1 . . . w κ ∈ W κ : w = w ′ w 1 . . . w κ w ′′ . We can apply Lemma 2.2 to the word m = w κ-5 . . . w κ w ′′ : the non empty sets, among the c j (A(m)) for j = 1, . . . , 7, are equal or they take two values, c for j ∈ J and c ′ for j ′ ∈ J ′ with c ⊇ c ′ ∪ {1, 3, 5}. There is no problem if all the non-empty c j (A(w)) are equal, so we suppose they take two values and consequently the c j (A(m)) also do. For j ∈ J, the obvious property of the final states in the third graph implies that the values of the nonnull entries in the j th column of A(w) are at least 2 κ-6 . For j ′ ∈ J ′ , A(ξ 4 . . . ξ n )E j ′ is a state of the first graph, otherwise by Lemma 2.1 the c j (A(w)) should be equal for any j ∈ J ∪ J ′ . Consequently A(ξ 4 . . . ξ n )E j ′ has entries at most 2, and A(w)E j ′ has bounded entries. Choosing κ large enough, A(w) has the property (H 2 ).

It remains to prove that the matrices A(w), for w in some set specified later, satisfy the condition H M . We first notice that A(w) satisfy (H 3 ) if w is one of the words 010 4(n+1) , 1 2 0 4(n+1) , 210 4(n+1) , 20 4(n+1) ,

0 2 2 n+2 , 0 2 102 n+2 , 10102 n+2 , 20102 n+2 , 1 2 02 n+2 , 2102 n+2 , 202 n+2 , 12 n+2
, that we denote by w 1 (n), . . . , w 12 (n) for any nonnegative integer n:

indeed the A w i (n) are ABA 4(n+1) =          n + 1 0 1 0 0 0 0 n + 1 0 0 1 1 0 0 n + 2 0 1 0 0 0 0 0 0 0 0 0 0 0 n + 1 0 1 0 0 0 0 n + 1 0 1 0 0 0 0 n + 1 0 1 0 0 0 0          , B 2 A 4(n+1) =          n + 2 0 0 1 1 0 0 0 0 0 0 0 0 0 n + 2 0 1 0 0 0 0 n + 1 0 1 0 0 0 0 n + 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          , CBA 4(n+1) =         
2n + 2 0 2 0 0 0 0 0 0 0 0 0 0 0 n + 1 0 1 0 0 0 0 n + 2 0 1 0 0 0 0 n + 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         , CA 4(n+1) =          2n + 3 0 0 1 1 0 1 0 0 0 0 0 0 0 n + 2 0 0 0 0 0 1 n + 1 0 0 1 1 0 0 n + 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          A 2 C n+2 =          1 0 0 0 n + 2 0 1 0 0 0 1 n + 3 0 0 1 0 0 0 n + 2 0 1 0 0 0 0 0 0 0 1 0 0 0 n + 2 0 1 1 0 0 0 n + 2 0 1 1 0 0 0 n + 1 0 1          , A 2 BAC n+2 =          0 0 0 1 n + 3 0 0 1 0 0 1 2n + 5 0 1 0 0 0 1 n + 3 0 0 0 0 0 0 0 0 0 0 0 0 1 n + 4 0 0 0 0 0 1 n + 3 0 0 1 0 0 0 n + 2 0 1          , BABAC n+2 =          1 0 0 1 2n + 5 0 1 0 0 0 1 n + 3 0 0 0 0 0 1 n + 3 0 0 0 0 0 1 n + 3 0 0 1 0 0 1 2n + 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0          , CABAC n+2 =          0 0 0 2 2n + 7 0 0 0 0 0 0 0 0 0 0 1 n + 4 0 0 0 0 1 n + 3 0 0 0 0 1 n + 3 0 0 0 0 0 0 0 0 0 0 0 0 0          , B 2 AC n+2 =         
2 0 0 0 2n + 4 0 2 0 0 0 0 0 0 0 1 0 0 1 2n + 5 0 1 0 0 0 1 n + 3 0 0 1 0 0 0 n + 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         , CBAC n+2 =          0 0 0 2 2n + 6 0 0 0 0 0 0 0 0 0 0 1 n + 3 0 1 0 0 1 2n + 5 0 0 0 0 1 n + 3 0 0 0 0 0 0 0 0 0 0 0 0 0          , CAC n+2 =          2 0 0 0 2n + 4 0 2 0 0 0 0 0 0 0 1 0 0 0 n + 2 0 1 1 0 0 0 n + 2 0 1 1 0 0 0 n + 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0          , BC n+2 =          1 0 0 1 2n + 3 0 1 0 0 0 0 0 0 0 0 0 0 1 n + 3 0 0 1 0 0 0 n + 2 0 1 1 0 0 0 n + 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0          . The matrix A ((100) n+2 ) = (BA 2 ) n+2 =         
1 0 0 0 0 0 1 1 0 0 0 0 0 1 2 0 0 0 0 0 2 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

        
also do for any nonnegative integer n.

In the following lemma we extend this property to the matrices that are products of a bounded number of matrices A, B, C, A(w i (n)) and A ((100) n+2 ).

Lemma 2.4. Let W k 1 ,k 2 be the set of the words

(3) w = m 0 w i 1 (n 1 )m 1 w i 2 (n 2 ) . . . w i k (n k )m k with the conditions that k ≤ k 1 , that m 0 m 1 . . . m k is the concatenation of at most k 2 elements of the alphabet {0, 1, 2} ∪ {(100) n+2 } n∈N and that n i ≥ 0. Then for w ∈ W k 1 ,k 2 ,
each nonnull entry in the j th column of the matrix A(w) has the form P n 1 , . . . , n k(j)

where k(j) ∈ {1, . . . , k} and P is a polynomial with positive coefficients and degree 1 in each variable, or k(j) = 0 and

P = constant. Moreover A(w) satisfies H M for some constant M = M(k 1 , k 2 ).
Proof: Let j ∈ {1, . . . , 7}, one consider the path -in the first graph and then in the second -with initial state j, whose label is the word w read from the right to the left.

Let e ι be the final state of the subpath with label s ι = m ι w i ι+1 (n ι+1 ) . . . w i k (n k )m k (from the right to the left). Notice that only the first column of A(w i (n)), for i ≤ 4, depends on n, and only the fifth do for i > 4. Consequently, if i ι ≤ 4 and the state e ι do not contain the letter 1, or if i ι > 4 and this state do not contain the letter 5, the column A (w iι (n ι )) A (s ι ) E j do not depend on n ι and A(w)E j no more do .

Conversely suppose that ι is the greatest integer such that i ι ≤ 4 and the state e ι contains the letter 1, or such that i ι > 4 and this state contains the letter 5. The nonnull entries of A (w iι (n ι )s ι ) E j have the form an ι + b with a and b positive, in particular the entries of indexes 1, 3, 5 have this form. We multiply this column vector by A (m ι-1 ), A w i ι-1 (n ι-1 ) , . . . , A (m 0 ) successively; this leads to a column vector whose nonnull entries have the form a i n i + b i for any i ∈ {1, . . . , ι}, with positive a i and b i because, in the second graph, each arrow whose initial state contains the digits 1, 3, 5 ends to such a state.

Clearly, a map f : R ι → R which is a polynomial of degree 1 with positive coefficients in each of the variables, is a polynomial with 2 ι positive coefficients, that is,

f (X 1 , . . . , X ι ) = a 0 + a 1 X 1 + • • • + a ι X ι + a ι+1 X 1 X 2 + a ι+2 X 1 X 3 + • • • + a 2 ι -1 X 1 . . . X ι .
In our case, the coefficients of the polynomial belong to some finite set because they only depend on the (at most) k 1 + k 2 elements of the decomposition (3) of the word w in letters 0, 1, 2 and words (001) n , w i (n). The ratio between two polynomials (with positive coefficients and with the same nonnegative variables) being bounded by the ratio of the greatest coefficient of the first by the lowest of the second, we conclude that the ratio between two nonnull entries of the column A(w)E j is bounded by some constant that only depends on k 1 and k 2 .

Lemma 2.5. Let w ∈ W κ and let s be the suffix of a word of W κ . Then (ii) Let s be a suffix of a word w ∈ W κ ; we decompose w in the form (3). Suppose that s do not begin by 0. There is no problem if s = mw i j (n j )m j . . . w i k (n k )m k where m is a suffix of m j-1 . If not, s begins by some strict and non empty suffix of some w i j (n j ), more precisely this suffix is 10 4(n+1) , 2 n+2 or 102 n+2 for some n ≥ 0, or it is 2. Hence 0 2 s begins with 0w 1 (n), w 5 (n), w 6 (n) or 0 2 2m j . In this last case we have

(i) w ∈ W 2κ,
|0 2 2m j | = |m j | + 3,
and in all the cases 0 2 s ∈ W 2κ,21κ+3 . The proof is similar for 2s if s do not begin by 2: if s begins by some strict and non empty suffix of some w i j (n j ), this suffix is s ′ = 10 4(n+1) , 0 4(n+1) , 02 n+2 , 102 n+2 , 0102 n+2 , 0 3 , 0 2 or 0 and, except in the three last cases, 2s ′ is some of the words w i (n).

(iii) Let now w, w ′ ∈ W κ and let s be a suffix of w ′ , we decompose w and w ′ in the form (3) and deduce the following decomposition of ws:

ws = m 0 w i 1 (n 1 )m 1 w i 2 (n 2 ) . . . w i k (n k )m k s ′ m ′ j w i ′ j+1 (n ′ j+1 ) . . . w i ′ k ′ (n ′ k ′ )m ′ k ′
where j ∈ {1, . . . , k ′ } and s ′ is a -possibily empty of full -suffix of m ′ j-1 w i ′ j (n ′ j ). This suffix has the form (3) except in case it is a strict suffix of w i ′ j (n ′ j ), and in this case it is sufficient to find a decomposition of w i k (n k )m k s ′ in the form [START_REF] Collet | The dimension spectrum of some dynamical systems[END_REF]. If the word s ′ has length at most 4, it ends by 0 4 or 2 2 hence it can be completed in order to obtain a factor of w i k (n k )m k s ′ of the form w i (n). We distinguish the cases whenever this factor is disjoint or not from the word w i k (n k ), and the cases whenever it is or not disjoint from its prefix w i k (0) (which has length at most 6). The decomposition of w i k (n k )m k s ′ we obtain is the following, where ξ and ξ ′ belong to {• /, 0, 0 2 , 0 3 , 2}: 

w i k (n k )m k s ′ =        w i k (n k )m k s ′ ( in case |s ′ | ≤ 3) w i k (n k )mw i (n)ξ (m prefix of m k ) w i k (n ′ )ξ ′ w i (n)ξ (0 ≤ n ′ < n) mw i (n)ξ (m strict prefix of w i k (0)).
ζ 2 , ζ 3 , • • • ∈ W such that ω 1 ω 2 ω 3 • • • = ζ 1 ζ 2 ζ 3 . . . . Proof: By Lemma 2.7, ω 1 . . . ω n = ζ 1 (n) . . . ζ α(n) (n)
where

ζ i (n) ∈ W, except ζ 1 (n)
which is a possibly empty strict suffix of a word in W.

Let us prove -for fixed k -that the word ζ k (n) can take only a finite number of values when n ∈ N. By hypothesis there exists one unique sequence of words

ξ i ∈ A * = {0 n } n∈N ∪ {1} ∪ {2 n } n∈N ∪ {(100) n } n∈N such that (4) ω 1 ω 2 ω 3 • • • = ξ 1 ξ 2 ξ 3 . . . and such that for any i, n, n ′ ∈ N, (5) 
ξ i = 0 n ⇒ ξ i+1 = 0 n ′ , ξ i = 2 n ⇒ ξ i+1 = 2 n ′ , ξ i = (100) n ⇒ ξ i+1 = (100) n ′ , ξ i = 1 ⇒ ξ i+1 = 0 n ′ +1 .
In the same way each word ζ i (n) can be written as a concatenation of words of A * that satisfy (5); we see on the third graph that the number of such words is at most 11.

We 

(n) = ζ 1 , ζ 2 (n) = ζ 2 , . . . , ζ k (n) = ζ k for infinitely many n.
Proof of Proposition 0.1: We use Proposition 1.2, that is, given ω ∈ Ω A,V and ε > 0 we prove the existence of N(ω, ε) such that

(6) n ≥ N(ω, ε), ξ ∈ [ω 1 . . . ω n ], r, s ≥ n ⇒ P r (ξ, V ) -P s (ξ, V ) ≤ ε.
Suppose first that the sequence ω is not eventually 0 nor eventually 2 nor eventually 100.

Lemma 2.8 implies there exist ζ 1 , possibly empty strict suffix of a word in W κ , and 

ζ 2 , ζ 3 , • • • ∈ W κ such that ω 1 ω 2 ω 3 • • • = ζ 1 ζ 2 ζ 3 . . . .
(ξ n ′ +1 ) . . . A(ξ r ) for n ′ = |ζ 1 | + • • • + |ζ k-1 |.
The square matrix V ′ whose all columns are equal to V satisfy obviously (H 1 ), (H 2 ) and H M ′′ when M ′′ is the maximum of M and the ratio of the greatest entry in V by the lowest one. By [START_REF] Olivier | Asymptotic properties of the columns in the products of nonnegative matrices[END_REF]Lemma 1.3] 

the matrix A(ξ n ′ +1 ) . . . A(ξ r )V ′ satisfies H 2M ′′ d ,
hence the ratio between two nonnull entries of the column vector A(ξ n ′ +1 ) . . . A(ξ r )V is bounded for any ξ ∈ [ω 1 . . . Suppose now there exists n 0 ∈ N ∪ {0} such that ω n 0 +1 ω n 0 +2 • • • = 0 or 2 or 100; as previously we consider all the sequences ξ ∈ [ω 1 . . . ω n ] and we choose n in order that (6) holds. We treat the first case, the second being similar, and the third trivial because in this case P r (ξ, V ) -P s (ξ, V ) = 0 for any r, s ≥ n 0 + 6. We use the same decomposition ξ n+1 . . . ξ r = w 1 . . . w ν as in [START_REF] Garsia | Entropy and Singularity of infinite convolutions Pac[END_REF]. Let 0 i , i ≥ 0, be the greatest prefix of ξ n+1 . . . ξ r that contains only the letter 0. If ν ≥ 2, w 2 ∈ W κ contains some other letters than 0 hence 0 i is a strict prefix of w 1 w 2 . We suppose n ≥ n 0 + 2 and we make the Euclidean division ( 8)

n + i -n 0 -2 = 4k + k ′ , k ∈ N, k ′ ∈ {0, 1, 2, 3},
so there exists a suffix s of w 1 (if ν = 1) or w 1 w 2 (if ν ≥ 2) that begins by 1 or 2 (if non empty) and such that

ξ n 0 +1 . . . ξ n 0 +4k = 0 4k and ξ n 0 +4k+1 . . . ξ r = 0 k ′ +2 ξ n+i+1 . . . ξ r = 0 k ′ +2 s if ν ≤ 2 0 k ′ +2 sw 3 . . . w ν if ν ≥ 3.
From Lemma 2.5(ii) one has 0 k ′ +2 s ∈ W 4κ,42κ+7 , 0 k ′ +2 sw 3 ∈ W 6κ,63κ+7 and, from Lemma 2.5(i), w i ∈ W 2κ,21κ for any i ≥ 2. The matrices A(0 k ′ +2 s), A(0 k ′ +2 sw 3 ) and A(w i ) for i ≥ 2 satisfy the condition H M by Lemma 2.4. The second and the third matrix also satisfy (H 1 ) and (H 2 ) from Lemmas 2.2 and 2.3; so by [START_REF] Olivier | Asymptotic properties of the columns in the products of nonnegative matrices[END_REF]Lemma 1.3] the matrix A (ξ n 0 +4k+1 ) . . . A(ξ r )V ′ satisfies H 2M ′′ d in all the cases, where V ′ and M ′′ are defined as above, and the nonnull entries in the column vector X = X(ξ, r) := A (ξ n 0 +4k+1 ) . . . A (ξ r ) V have bounded ratios independently on ξ ∈ [ω 1 . . . ω n ] and r ≥ n.

Consequently, denoting by x 1 = x 1 (ξ, r) the first entry -obviously nonnull -of X we have

A(ξ n 0 +1 . . . ξ r )V = A 4k X = x 1          1 k k 0 k k k          + O(x 1 ). Hence A(ξ n 0 +1 . . . ξ r )V , which is equal to UA(ξ 1 . . . ξ r )V , is x 1 (5k + 1) + O(x 1 ) and, denoting by σ the shift-map on {0, 1, 2} N , P r-n 0 (σ n 0 ξ, V ) = A(ξ n 0 +1 . . . ξ r )V A(ξ n 0 +1 . . . ξ r )V = 1 5          0 1 1 0 1 1 1          + O 1 k .
Since P r (ξ, V ) = P n 0 (ω, P r-n 0 (σ n 0 ξ, V )) and since the map P n 0 (ω, •) is continuous and do not vanish at the point 1 5

         0 1 1 0 1 1 1         
-see the first and the second graph -we deduce

P r (ξ, V ) = P n 0          ω, 1 5 
         0 1 1 0 1 1 1                   + o(1)
for ξ ∈ [ω 1 . . . ω n ] and r ≥ n, where the term o(1) tends to 0 when n → ∞ because, from [START_REF] Grassberger | Generalized dimensions of strange attractors[END_REF], 4k ≥ nn 0 -5. It follows that ( 6) holds for n large enough.

It remains to specify the form of the limit vector. In case the sequence ω is not eventually 0 nor eventually 2 nor eventually 100 we use the notations of [START_REF] Olivier | Asymptotic properties of the columns in the products of nonnegative matrices[END_REF]Theorem 1.1]: by [26, Corollary 1.2] the limit vector is V 1 and, by the second and the fourth assertion in [26, Theorem 1.1], c (V 1 ) = c (P ′ n V ) for n large enough. Using Lemmas 2.2, 2.8 and the second graph, c (P ′ n V ) for n large enough is {1, 2, 3, 4, 5}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 5, 6} or {1, 3, 4, 5}. Suppose now ω = 0, 2 or 100; by computation c lim n→∞ P n (ω, V ) = {2, 3, 5, 6, 7}, {1, 3, 4} or {1, 2, 3, 4, 5} respectively. Finally if σ n ω0, 2 or 100 for some n ∈ N but not for n = 0, then -in view of the first and the second graph -c lim n→∞ P n (ω, V ) = {1, 2, 3, 4, 5}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 5, 6}, {1, 2, 3, 5} or {1, 3, 4, 5}.

Application to some Bernoulli convolution

As we see in §3.4, the matrices we use in the previous section come from the study of some continuous singular measure, which is a Bernoulli convolution. So, before computing the values of this measure on certain intervals, we give the general definitions about the Bernoulli convolutions, the Gibbs measures and the multifractal formalism.

3.1. The Bernoulli convolutions. The probability measures defined by Bernoulli convolutions have been studied from the 30th, see [START_REF] Erdös | On a family of symmetric Bernoulli convolutions[END_REF][START_REF] Jessen | Distribution functions and the Riemann zeta function[END_REF][START_REF] Kahane | Sur la convolution d'une infinité de distributions de Bernoulli[END_REF][START_REF] Garsia | Entropy and Singularity of infinite convolutions Pac[END_REF], and [START_REF] Peres | Sixty years of Bernoulli convolutions[END_REF] for an overview on the subject. They also have been considered in view of their application to fractal geometry [START_REF] Ledrappier | A Dimension Formula for Bernoulli Convolution[END_REF][START_REF] Lau | L q -spectrum of the Bernoulli Convolution associated with the Golden Ratio[END_REF][START_REF] Lalley | Random series in powers of algebraic integers, Hausdorff dimension of the limit distribution[END_REF][START_REF] Pollicott | The Hausdorff dimension of λ-expansions with deleted digits[END_REF][START_REF] Keane | On the Morphology of γ-Expansion with Deleted Digits[END_REF] and ergodic theory [START_REF] Sidorov | Ergodic properties of the Erdős measure, the entropy of the goldenshift, and related problems[END_REF][START_REF] Sidorov | Ergodic-theoretic properties of certain Bernoulli convolutions[END_REF].

Given a real β > 1 and a parameter vector p = (p 0 , . . . , p s-1 ), p i > 0, i p i = 1, one calls the Bernoulli convolution µ β,p the infinite product (in the sense of the pointwise convergence on the set of the borelian subsets of R) of the discrete measures

p 0 δ0•α β n + • • • + p s-1 δ(s-1)•α β n for n = 1, 2, . . . , where α = β -1 s -1 .
In other words this measure is defined -for any

Borelian E ⊂ R -by µ β,p (E) := P ω ∈ {0, . . . , s -1} N ; α ∞ n=1 ω n β n ∈ E
where P is the product-probability defined on {0, . . . , s -1} N by P [ω 1 . . . ω n ] = p ω 1 . . . p ωn ([ω 1 . . . ω n ] is the set of the sequences whose first terms are ω 1 , . . . , ω n ). The measure µ β,p is also the unique probability measure with bounded support that satisfies the self-similarity relation (see [START_REF] Peres | Sixty years of Bernoulli convolutions[END_REF]):

µ β,p = s-1 i=0 p i • µ β,p • S -1 i where S i (x) := x + iα β .
The Bernoulli convolutions are non-atomic probability measures of support included in [0, 1]. From [START_REF] Jessen | Distribution functions and the Riemann zeta function[END_REF], they are either absolutely continuous or purely singular; moreover, according to [START_REF] Erdös | On a family of symmetric Bernoulli convolutions[END_REF], they are singular when p = 1 2 , 1 2 and β is a Pisot number, that is, an algebraic integer whose conjuguates have modulus less than 1. Some open questions are to know if µ β,p has the weak Gibbs property in this case (see §3.3), and if µ β,p can be singular with support [0, 1] when β is not Pisot.

The Bernoulli convolution µ β,p can also be seen as the probability distribution of the first entry in some infinite product of 2 × 2 stochastic matrices, let lim n→∞ S ωn . . . S ω 1 (easily computable, [40, §1.2]), when the sequence (ω n ) belongs to {0, . . . , s -1} N endowed with the product probability P . More precisely, one obtain µ β,p by setting

S k = x k 1 -x k y k 1 -y k with y k = k s -1 1 - 1 β and x k = y k + 1 β , 0 ≤ k ≤ s -1.
Mukherjea, Nakassis and Ratti [START_REF] Mukherjea | On the distribution of the limit of products of i. i. d. 2 × 2 random stochastic matrices[END_REF] computed the (piecewise polynomial) density of µ β,p in the case

p 0 = • • • = p s-1 = 1 s and β = m
√ s for some positive integer m.

3.2. The multifractal analysis. By a simple application of the fixed point theorem,

Hutchinson [START_REF] Hutchinson | Fractals and self similarity[END_REF] shows that, in any complete metric space, given some contraction maps S 1 , . . . , S N , there exists a unique closed bounded nonempty set K such that

K = N i=1 S i (K).
This set, called the attractor of the S i , is compact. The most simple example is the Cantor set, with S 1 (x) = x 3 and S 2 (x) = x + 2 3 . But in the example we study in §3.4, K is simply the interval [0, 1]; so we are more concerned by the second result of Hutchinson: given some contraction maps S 1 , . . . , S N and some positive reals ρ 1 , . . . , ρ n whose sum is 1, there exists a unique Borel probability measure µ such that

µ = N i=1 ρ i • µ • S i -1 .
This measure has for support the attractor K of the S i .

The multifractal analysis is concerned by the local dimensions, defined by The multifractal analysis studies the relation between the singularity spectrum and the scale spectrum (or L q -spectrum), let τ sing and τ scale respectively. They are defined by

τ sing (α) := H-dim(E α ) (Hausdorff dimension of E α ), τ scale (q) := lim inf r→0 log r inf I n k=1 (µ(I k )) q ,
where I is the set of the covers of the support of µ by closed intervals of length r [START_REF] Pesin | Dimension theory in dynamical systems: contemporary views and applications[END_REF][START_REF] Grassberger | Generalized dimensions of strange attractors[END_REF][START_REF] Hentschel | The finite number of generalized dimensions of fractals and strange attractors[END_REF].

By convention, the empty set has Hausdorff dimension -∞.

The scale spectrum is often computable or approximable, and it is expected (see for instance [START_REF] Halsey | Fractal measures and their singularities: the characterization of strange sets[END_REF]) that the singularity spectrum is the Legendre transform conjugate of the scale spectrum, which means that, for any α ∈ R, τ sing (α) = inf{αqτ scale (q) ; q ∈ R}.

If this holds, one says that µ satisfies the multifractal formalism. The multifractal formalism was established for Gibbs measures [START_REF] Collet | The dimension spectrum of some dynamical systems[END_REF][START_REF] Pesin | The Multifractal Analysis of Gibbs Measures: Motivation, Mathematical Foundation, and Examples[END_REF][START_REF] Rand | The singularity spectrum f (α) for cookie-cutters[END_REF] and this was extended in [6, Theorem A'] to the weak-Gibbs measures in the sense of Yuri [41, §5]. In the following section we give a definition of the Gibbs and the weak-Gibbs measures related to the Parry expansions.

The multifractal formalism also holds for the quasi-Bernoulli measures [START_REF] Brown | On the multifractal analysis of measures[END_REF][START_REF] Heurteaux | Estimation de la dimension inférieure et de la dimension supérieure des mesures[END_REF]. An overview can be found in [START_REF] Olsen | Multifractal geometry, Fractal geometry and stochastics[END_REF]. Notice that the g-measures [START_REF] Keane | Strongly Mixing g-Measures[END_REF] and the conformal measures [START_REF] Hofbauer | Local dimension for piecewise monotonic maps on the interval[END_REF] are weak-Gibbs.

The scale spectrum can be considered as a thermodynamic function (see [START_REF] Feng | Multifractal analysis of weak Gibbs measures and phase transition -application to some Bernoulli convolutions[END_REF]), and any point of discontinuity of its derivative a phase transition [START_REF] Ruelle | Statistical mechanics. Rigorous results[END_REF]. The existence of a phase transition has been proved for the Erdős measure, that is, the Bernoulli convolution µ β,p

for β = 1 + √ 5 2 and p = 1 2 , 1 2 [6, Appendix A].
It has also been proved for the 3-fold convolution of the Cantor measure [START_REF] Hu | Multifractal Structure of Convolution of the Cantor Measure[END_REF], which is -modulo some homotety -the Bernoulli convolution µ 

I ε 1 ...εn := {x ∈ [0, 1[ ; ε 1 (x) = ε 1 , . . . , ε n (x) = ε n } .
We say that a measure η supported by [0, 1] is weak Gibbs, or has the weak Gibbs property, with respect to the β-adic intervals if there exists a map Φ : Adm β → R, continuous for the product topology, such that [START_REF] Hentschel | The finite number of generalized dimensions of fractals and strange attractors[END_REF] 

lim n→∞       η (I ε 1 ...εn ) exp n-1 k=0 Φ(σ k ε)       1/n = 1 uniformly on (ε n ) n∈N ∈ Adm β .
It has the Gibbs property if the ratio

η (I ε 1 ...εn ) exp n-1 k=0 Φ(σ k ε)
is bounded from 0 and ∞. In both cases Φ is called a potential of η (it may have several potentials).

These definitions recover the classical ones of Bowen [1, Chapter 1.A] and Yuri [41, §5] because, setting T (x) = βx-⌊βx⌋ and denoting by

X 0 = 0, 1 β , X 1 = 1 β , 2 β , . . . , X κ = κ β , 1 
the intervals where T is continuous, we have

I ε 1 ...εn = X ε 1 ∩ T -1 (X ε 2 ) ∩ • • • ∩ T -(n-1) (X εn ) .
Let us give a sufficient condition for a measure η to have the weak Gibbs property. For each ε ∈ Adm β we put φ 1 (ε) = log η (I ε 1 ) and for n ≥ 2, (11)

φ n (ε) = log η (I ε 1 ...εn ) η (I ε 2 ...εn ) .
The continuous map φ n : Adm β → R (n ≥ 1) is called the n-step potential of η. Assume the existence of the uniform limit Φ = lim n→∞ φ n ; then it is straightforward that for n ≥ 1,

K n ≤ η (I ε 1 ...εn ) exp n-1 k=0 Φ(σ k ε) ≤ K n with K n = exp n k=1 Φ -φ n ∞ . (12) 1 
By a well known lemma on the Cesàro sums, K 1 , K 2 , . . . form a subexponential sequence of positive real numbers, that is lim n→∞ (K n ) 1/n = 1 and thus, [START_REF] Hofbauer | Local dimension for piecewise monotonic maps on the interval[END_REF] means that η has the weak Gibbs property with respect to the β-adic intervals.

In case of the Erdős measure, that is, µ β,p for β

= 1 + √ 5 2 and p = 1 2 , 1 2 
, the weak Gibbs property is proved and the multifractal analysis detailed in [START_REF] Feng | Multifractal analysis of weak Gibbs measures and phase transition -application to some Bernoulli convolutions[END_REF]. Now in case β is a multinacci number (i.e. β m = β m-1 +• • •+β +1) and p = (p 0 , p 1 ) and except in one special case, µ β,p has the weak Gibbs property [START_REF] Olivier | On the Gibbs properties of Bernoulli convolutions related to β-numeration in multinacci bases[END_REF]. This property seems more complicated to prove for the other Pisot numbers of degree at least 3.

3.4.

Proof of the weak Gibbs property in one example. From now β ≈ 1.755 is the unique solution greater than 1 of the equation

β 3 = 2β 2 -β + 1
and µ is the Bernoulli convolution associated with β and p = 1 2 , 1 2 (here s = 2 and α = β -1).

Lemma 3.1. A sequence of integers (ε n ) n∈N is β-admissible if and only if its terms are 0 or 1, and each couple of consecutive 1 is followed by a couple of consecutive 0, and (ε k ) k>n = 1100 for any integer n ≥ 0.

Proof: The condition ( 9) is equivalent to

β n (x -s n ) = β n (x -s n-1 ) -ε n ∈ [0, 1[, hence ε n = ⌊β n (x -s n-1
)⌋ -with the convention that s 0 = 0. This proves that ε n = 0 or 1 because, using (9) at the rank n -1, one has

β n (x -s n-1 ) ∈ [0, β[. Now (9) also implies n+4 k=n+1 ε k β k ≤ x -s n < 1 β n = 1 β n+1 + 1 β n+2 + 1 β n+4 hence if ε n+1 = ε n+2 = 1, ε n+3 and ε n+4 are different from 1.
Conversely, for any sequence (ε n ) n∈N that satisfies the conditions of the lemma, each subsequence (ε k ) k>n begins by (1100) i 0 or (1100) i 10 for some integer i ≥ 0. The reals

x = ∞ k=1 ε k β k and s n = n k=1 ε k β k satisfy 0 ≤ x -s n < 1 β n ∞ k=1 α k β k where (α k ) k∈N = (1100) i 0 1 or (1100) i 10 1,
from what we deduce by a simple computation that 0

≤ x -s n < 1 β n , that is, (ε n ) n∈N is β-admissible.
As a consequence of this lemma, each β-admissible sequence (ε n ) n∈N can be decomposed from the left to the right in one sequence of words ( 13)

ε 1 ε 2 • • • = w 1 w 2 . . . where ∀i, w i ∈ A 1 := {0, 10, 1100},
and in the sequel we denote I w 1 ...w k := I ε 1 ...εn when a word ε 1 . . . ε n ∈ {0, 1} n is the concatenation of words w 1 , . . . , w k ∈ A 1 . We recall that the β-adic interval I ε 1 ...εn is the set of the reals x whose expansion in base β begins by ε 1 . . . ε n and, in the two following lemmas, we compute the measure of this set. Proof: For any real γ we evaluate µ 1 β (γ + I w 1 ...w k ) in the three cases: w 1 = 0, 10 or 1100. In the first, (β -1)

Lemma 3.2. Setting i 1 = 0, i 2 = 1, i 3 = 1 -(β -1) 2 , i 4 = -(β -1) 2 , i 5 = β -1, i 6 = β -(β -1) 2 , i 7 = β(β -1) one has, for any w 1 . . . w k ∈ A 1 * (14)     µ 1 β (i 1 + I w 1 ...w k ) . . . µ 1 β (i 7 + I w 1 ...w k )     = M(w 1 ) . . . M(w k )V where V :=          3 
∞ n=1 ω n β n belongs to 1 β (γ + I w 1 ...w k ) if and only if (β -1) ∞ n=1 ω n+1 β n ∈ 1 β (γ ′ + I w 1 ...w k ) with γ ′ = γβ -ω 1 β(β -1) and, since ω 1 ∈ {0, 1}, (15) 
µ 1 β (γ + I w 1 ...w k ) = 1 2 γ ′ ∈Γ ′ (γ) µ 1 β (γ ′ + I w 1 ...w k ) , where Γ ′ (γ) = {γβ -xβ(β -1) ; x ∈ {0, 1}}.
We proceed in the same way if w 1 = 10: Since the measure µ has support [0, 1], we can restrict the sums in ( 15), ( 16) and ( 17) to the indexes γ (i) such that µ 1 β γ (i) + [0, 1[ = 0, that is, γ (i) ∈] -1, β[. The relations R 0 , R 1 , R 2 defined by γR 0 γ ′ ⇔ γ ′ ∈ Γ ′ (γ), γR 1 γ ′′ ⇔ γ ′′ ∈ Γ ′′ (γ) and γR 2 γ ′′′ ⇔ γ ′′′ ∈ Γ ′′′ (γ) respectively, are represented below: each relation R i is represented by the edges with label i, and the set of states is the set of elements of ] -1, β[ that can be reached by some path from the initial state 0. The incidence matrices of the three graphs being A(0), A(1) and A(2), we deduce from ( 15), ( 16) and ( 17) that We make k = 1 in this relation and we sum for w 1 ∈ A 1 . Since -by Lemma 3.1 -the I w 1 make a partition of [0, 1[ , we obtain that V is an eigenvector of M(0) + M(10) + M(1100). Moreover the sum of the two first entries in V is µ 1 β ([0, 2[) hence it is µ([0, 1[) = 1. Computing this eigenvector we obtain the expected value for V .

    µ 1 β (i 1 + I w 1 ...w k ) . . .
As a direct consequence of this lemma we can compute the values of the measure µ on the β-adic intervals: From the definition of the weak Gibbs property, µ has this property if µ ′ has. Now, µ ′ has this property if the exponential of its n-step potential, that is,

µ ′ [[ε 1 . . . ε n ]] µ ′ [[ε 2 . . . ε n ]] , converges
uniformly in (ε n ) n∈N ∈ Adm β to a nonnull limit. For the same reason as above it is sufficient to prove this convergence for the integers n such that ε 1 . . . ε n is a concatenation of words in A 1 * . We distinguish the cases ε 1 . . . Proof: In order to apply [6, Theorem A'] we must use some partitions of [0, 1[ in intervals J α 1 ,...,αn defined for any α 1 , . . . , α n in a finite alphabet. Now I ε 1 ...εn is not defined if the (0, 1)-sequence ε 1 . . . ε n 0 is not β-admissible. But, using the intervals (24) J α 1 ,...,αn := I w 1 ,...,wn , for α 1 . . . α n ∈ {0, 1, 2} n , with

w i =    0 if α i = 0 10 if α i = 1 1100 if α i = 2,

Example 1 . 1 .B(ω 1 )

 111 Let B = {B(0), B(1)} with B(0) . . . B(ω n )V B(ω 1 ) . . . B(ω n )V converges to the continuous map whose constant value is the vectorIn the following proposition A := {A(0), . . . , A(s -1)} is a finite set of nonnegative d × d matrices, V a d-dimensional nonnegative column vector, and we denote the cylinders ofΩ A,V by [ω 1 . . . ω n ] := {ξ ∈ Ω A,V ; ξ 1 = ω 1 , . . . , ξ n = ω n } . Proposition 1.2. P n (•, V ) converges uniformly on Ω A,V if and only if (1) ∀ω ∈ Ω A,V , lim n→∞ sup ξ∈[ω 1 ...ωn]r,s≥n P r (ξ, V ) -P s (ξ, V ) = 0.

  and v, w ≥ 0. The initial state is 135 and the final states are (12345) 2 , (123567) 2 , (1345) 2 .

  ω n ] and r ≥ n. We can use [26, Corollary 1.2] for the product A(ζ 1 ζ 2 )A(ζ 3 ) . . . A(ζ k-1 ) and each of the column vectors A(ξ n ′ +1 ) . . . A(ξ r )V and A(ξ n ′ +1 ) . . . A(ξ s )V . Since -by Lemma 2.1 -the emplacement of the nonnull entries in both columns vectors is the same, we conclude that (6) holds for n = |ζ 1 | + • • • + |ζ k | when k is large enough.

  dim(x) := lim r→0 log r (µ([xr, x + r])), where log r (•) := log(•) log(r) , when this limit exists. One can also define dim inf (x) := lim inf r→0 log r (µ([x-r, x+r])) and dim sup (x) := lim sup r→0 log r (µ([x-r, x+r])).It turns out that, at least in the case where the S i are affine contractions of R, the "fat level-sets"F α := {x ; d inf (x) ≤ α} and G α := {x ; d sup (x) ≤ α} are (non-closed) attractors in the sense that F α = ∪ N i=1 S i (F α ) and G α = ∪ N i=1 S i (G α). The level-set himself is defined byE α := {x ; d(x) exists and d(x) = α}.It is likely that E α has the same Hausdorff dimension as F α or G α (see[START_REF] Feng | Multifractal analysis of weak Gibbs measures and phase transition -application to some Bernoulli convolutions[END_REF] Theorem 3.4 and Appendix B]).

(16) µ 1 β 4 γ 16 γ

 1416 (γ + I w 1 ...w k ) = 1 ′′ ∈Γ ′′ (γ) µ 1 β (γ ′′ + I w 1 ...w k ) , where Γ ′ (γ) ′ = {γβ 2 + β -(xβ + y)β(β -1) ; x, y ∈ {0, 1}} . and if w 1 = 1100: (17) µ 1 β (γ + I w 1 ...w k ) = 1 ′′′ ∈Γ ′′′ (γ) µ 1 β (γ ′′′ + I w 1 ...w k ) , where Γ ′′′ (γ) = {γβ 4 + β 3 + β 2 -(xβ 3 + yβ 2 + zβ + t)β(β -1) ; x, y, z, t ∈ {0, 1}} .

µ 1 β (i 7 +

 7 I w 1 ...w k )     = M(w 1 ) . . . M(w k )V, where V =

1 β (i 7 +

 17 

  ε n = 0w ′ (n) or 10w ′ (n) or 1100w ′ (n) with w ′ (n) ∈ A 1 * and we obtain 2µ ′ [[ε 1 . . . ε n ]] µ ′ [[ε 2 . . . ε n ]S n respectively, where S n = M(w ′ (n))V M(w ′ (n))V .The three ratios converge uniformly to some nonnull limits because, from Proposition 0.1, their numerators and denominators do.Corollary 3.5. µ satisfies the multifractal formalism.

  read from the right to the left is the label of a path of the third graph from the initial state 135 to a final state. We distinguish the four cases: either it has one succession of at least four arrows from 12(356) 2 7 to itself, or one succession of at least two arrows from (134) 2 5 to itself, or it has successively the first and the second subpath, or it has no such subpath. In the first case the arrows from 12(356) 2 7 to itself are followed by one arrow with label 2, or successively by one arrow with label 1 -without reaching the state (134) 2 5 -and one other arrow; so there is a subpath whose label is the symmetrical of w i (n), 1 ≤ i ≤ 4. In the same way, in the second case there exists a subpath whose label is the symmetrical of w

21κ , (ii) 0 2 s (if s do not begin by 0) and 2s (if s do not begin by 2) belong to W 2κ,21κ+4 , (iii) ws ∈ W 4κ,42κ+8 .

Proof: (i) We consider first a word w ∈ W, that is, w i (n), 5 ≤ i ≤ 12. Now if w do not have such subpaths, it cannot be the concatenation of more than 21 words in {0, 1, 2} ∪ {(100) n+2 } n∈N . This proves that w ∈ W 2,21 . Of course the concatenation of κ words in W 2,21 gives a word in W 2κ,21κ .

  ′′ ∈ {0, 1, 2} * . It has the property (H 2 ) from Lemma 2.3 and, from Lemmas 2.4 and 2.5(iii), the set of such matrices A(ws) has the property H M . the symmetricals of their labels; finally we go from the initial state to a non final state by some path and we call ζ 1 the symmetrical of its label.Lemma 2.8. For any sequence ω ∈ {0, 1, 2} N that is not eventually 0 nor eventually 2 nor eventually 100 there exist ζ 1 , -possibly empty -strict suffix of a word in W, and

	Lemma 2.7. For any word w ∈ {0, 1, 2}

This proves (iii), since |s ′ | ≤ 3 in the first case, |m| ≤ 5 in the last case, and |ξ|, |ξ ′ | ≤ 3. Lemma 2.6. The set of the matrices A(ws) for w ∈ W κ and s -possibly empty -suffix of a word in W κ , has the properties (H 1 ), (H 2 ) and H M . Proof: From Lemma 2.2, A(ws) has the property (H 1 ) because ws = w ′ w ′′ with w ′ ∈ W 6 and w * there exist an integer α ≥ 1, ζ 1 -possibly empty -strict suffix of a word in W and ζ 2 , . . . , ζ α ∈ W such that w = ζ 1 . . . ζ α . Proof: Reading the word w from the right to the left, we may go many times from the initial state to a final state in the third graph by some paths and we call ζ α , ζ α-1 , . . . , ζ 2

  According to Lemma 2.6 the matrices A(ζ i ) satisfy (H 1 ), (H 2 ) and H M for any i ≥ 2. Since the sequence ω is fixed, one can use the obvious fact that A(ζ 1 ζ 2 ) satisfies H M ′ when M ′ is the maximum of M and the ratio of the greatest nonnull entry in A(ζ 1 ζ 2 ) by the lowest one. It also satisfies (H 1 ) and (H 2 ) by Lemmas 2.2 and 2.3. We do not exactly apply [26, Corollary 1.2] to the product A(ζ 1 ζ 2 )A(ζ 3 ) . . . A(ζ k ) and the column vectorsA(ξ n+1 ) . . . A(ξ r )V and A(ξ n+1 ) . . . A(ξ s )V , n = |ζ 1 | + • • • + |ζ k |,because the ratio between two nonnull entries in these column vectors is not necessarily bounded for r ≥ n, for instance in the case ξ n+1 = ξ n+2 = • • • = 0. There exist -from Lemma 2.7ν ≥ 1, w 1 -possibly empty -strict suffix of a word in W κ and w 2 , . . . , w ν ∈ W κ (if ν = 1)

	such that	
	(7)	ξ

n+1 . . . ξ r = w 1 . . . w ν .

By Lemma 2.6 A(ζ k w 1 )A(w 2 ) . . . A(w ν ) is a product of matrices which satisfy the conditions (H 1 ), (H 2 ) and H M ; this product is equal to A

  Gibbs and weak-Gibbs measures in a base β > 1. The Parry expansion [28] of the real number x ∈ [0, 1[ in base β > 1 is the unique sequence of integers (ε n ) n∈N such We denote this sequence by (ε n (x)) n∈N . The set Adm β of the β-admissible sequences is the set of the Parry expansions of the elements of [0, 1[. This set is invariant under the shift σ : (ε n ) n∈N → (ε n+1 ) n∈N . We use the partition of [0, 1[ by the β-adic intervals of order n, defined by

	3.3. that								
	(9)	∀n ∈ N, x ∈ s n , s n +	1 β n , where s n =	n k=1	ε k β k .
		3,p for p =	1 8	,	3 8	,	3 8	,	1 8	.

  1 8 • 16 ν-1 • t E 5 .Finally we obtain[START_REF] Mukherjea | On the distribution of the limit of products of i. i. d. 2 × 2 random stochastic matrices[END_REF] µ′ (I ε 1 ...εn ) µ (I ε 1 ...εn ) V n and m - n = min t E 1 + t E 7 V n , t E 3 V n , minNow we use Proposition 0.1 in the following way: the column vector V n is equal to P n ′ (ω, V ) for some ω ∈ {0, 1, 2} N and n ′ ∈ N ∪ {0}. The uniform convergence stated in this proposition and the form of the limit vector imply that the sequencesm + n (ω) = max i t E i P n (ω, V ) and m - n (ω) = min t E 1 + t E 7 P n (ω, V ) , t E 3 P n (ω, V ) , minconverge uniformly and that their limits are two continued maps from the compact set{0, 1, 2} N to ]0, ∞[, hence m + n (ω) m - n (ω)is bounded for any ω ∈ {0, 1, 2} N and n ∈ N ∪ {0}. So[START_REF] Mukherjea | On the distribution of the limit of products of i. i. d. 2 × 2 random stochastic matrices[END_REF], with the inequality ν ≤ n, imply that lim

		≤ 21ν •	m + n m -n		
	where m + n = max i	t E i i	t E i	V V	.
			i	t E i	V V
			1/n		
			= 1.		

n→∞ µ ′ (I ε 1 ...εn ) µ (I ε 1 ...εn )

Lemma 3.3. (i) For any w 1 . . . w k ∈ A 1 * , (18)

if w 1 = 10 t E 2 M(10)M(0)M(w 2 ) . . . M(w k )V if w 1 = 1100.

(ii) For any ε 1 . . . ε n ∈ {0, 1} * , [START_REF] Lalley | Random series in powers of algebraic integers, Hausdorff dimension of the limit distribution[END_REF] 

It remains to prove that µ has the weak-Gibbs property, although we can't use n-step potential of µ because its limit is infinite at the point 10.

Theorem 3.4. µ has the weak-Gibbs property with respect to the β-adic intervals.

Proof: By the Kolmogorov consistency theorem there exists a unique measure µ ′ on [0, 1] such that -for any w 1 . . .

We first prove that lim

itself tends to ∞ in the cases ε = 0 and ε = 1100. Notice that in all cases this ratio is at least 1, in consequence of Lemma 3.3 and the inequalities UM(0) ≥ t E 1 , UM(10) ≥ t E 2 M(0), UM(1100) ≥ t E 2 M(10)M(0).

It remains to find some upper bound for µ ′ (I ε 1 ...εn ) µ (I ε 1 ...εn ) ; it is sufficient to consider only the integers n such that ε 1 . . . ε n ∈ A 1 * , because µ ′ as well as µ satisfies [START_REF] Lalley | Random series in powers of algebraic integers, Hausdorff dimension of the limit distribution[END_REF]. From now ε 1 . . . ε n ∈ A 1 * and -except in the case ε 1 ε 2 = 10 -we use the greatest prefix 0 ν or (1100) ν of ε 1 . . . ε n , with ν ∈ N: we have in all cases 21), ( 20) and ( 18) that

By direct computation the entries of UM(0) ν are at most 2ν 2 ν and the ones of UM(1100) ν at most 3ν 16 ν . On the other side t E 1 M(0

it is clear that the weak Gibbs property of µ with respect to the intervals I ε 1 ...εn , as defined in [START_REF] Hentschel | The finite number of generalized dimensions of fractals and strange attractors[END_REF], implies the same property for µ with respect to the intervals J α 1 ,...,αn , with the potential defined -for any α ∈ {0, 1, 2} N -by

where the sequence ε is the infinite concatenation of the words w i defined as in [START_REF] Olivier | On the Gibbs properties of Bernoulli convolutions related to β-numeration in multinacci bases[END_REF].

We can apply [6, Theorem A'] to the transformation

β + 1 β 2 , 1 and conclude that µ satisfies the multifractal formalism.