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HOW TO PROVE THAT SOME BERNOULLI CONVOLUTION HAS
THE WEAK GIBBS PROPERTY

ERIC OLIVIER AND ALAIN THOMAS

ABSTRACT. In this paper we give an example of uniform convergence of the sequence
LAY

1771, A; € {A,B,C}, A, B, C being some (0, 1)-matrices of

A AV

order 7 with much null entries, and V a fixed positive column vector. These matrices

come from the study of the Bernoulli convolution in the base 8 > 1 such that 83 =

2% — B + 1, that is, the (continuous singular) probability distribution of the random

o0

of column vectors

variable (8 —1) Z w—Z when the independent random variables w,, take the values 0 and
n=1

1
1 with probability =. In the last section we deduce, from the uniform convergence of
Ay LAYV

———————— the Gibbs and the multifractal properties of this measure.
A A V]| prep

2000 Mathematics Subject Classification: 11A67, 15A48, 28A78, 28 A80.

INTRODUCTION

Given a finite set of nonnegative d x d matrices, let A := {A(0),..., A(s — 1)}, and a
nonnegative d-dimensional column vector V', we associate to any w € Q := {0,...,s—1}"

the sequence of column vectors

vy e A AV
Py(w,V): |A(wr) . .. Alw,) V|

(||| = the norm-sum).

This is not obligatory defined for any w € Q :={0,...,s — 1}, but for
weay ={weQ; VneN, Alw)...Aw,)V #0}.
This set is compact because for fixed n, the set {w € Q; A(wy) ... A(w,)V # 0} is a finite

union of cylinders of order n.

In §1 we prove a straightforward proposition, that may simplify the proof of the uniform

convergence of (P,(+, V))nen.

Key words and phrases. Infinite products of nonnegative matrices, Gibbs properties, multifractal anal-
ysis of mesures, Bernoulli convolutions.
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2 E. OLIVIER AND A. THOMAS

In §2, the set A we consider has three elements:

1000000 0011000
0010000 0000010
0001100 0001100

A=A0)=| 0000000/, B=A1):==[1000000 ]|,
1000001 0010000
0000100 0000000
0100000 0000000
1000101
0000000
1000001

C=A42):=]0001100
0000100
0000000
0000000

and, using [26l, Theorem 1.1}, we prove the following

PROPOSITION 0.1. If V has positive entries, P,(-,V) converges uniformly on {0,1,2}.
The set of the indexes of the nonnull entries in the limit vectoris {1,2,3,4,5},{1,2,3,5,6,7},
{1,2,3,5,6},{1,2,3,5}, {1,3,4,5}, {1,3,4} or {2,3,5,6,7}.

The aim of this example is to prove — in §3 — the weak Gibbs property [41] for the
(continuous singular) Bernoulli convolution related to the numeration in the base § > 1
such that 4% = 232 — 8+ 1. It can be defined as the measure u, supported by [0, 1], such
that u(F) = nh_)n;o g % -+ % p, (F) for any borelian E' C R, where

1 1
n= =00+ =0p-1.
Hn = 00 0
Using [6], we conclude that the multifractal formalism holds for this measure (see for
instance [32), B, 30], or the introduction of [35] for an interesting overview about the

multifractal formalism).

1. UNIFORM CONVERGENCE OF P, (-, V)

The conditions of uniform convergence are quite different from the ones of simple conver-
gence (see [25] and [39]). Let us show on a trivial example that the uniform convergence

of P,(+,V) is not equivalent to the pointwise convergence of P,(-, V') to a continuous map.
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101 1 01
EXAMPLE 1.1. Let B={B(0),B(1)} withB(O)=| 0 1 0 | ,B(1)={( 1/2 0 0 [,
000 0 00
1
B ...B(w,)V .
and let V=1 1 |. Then () (cn) converges to the continuous map whose
1 | B(wy) ... B(wy) V]|
2/3
constant value is the vector | 1/3 |; this convergence is not uniform because
0
BBV le?g
[1B(O)"'B(L)V]] 0

In the following proposition A := {A(0),..., A(s — 1)} is a finite set of nonnegative d x d
matrices, V' a d-dimensional nonnegative column vector, and we denote the cylinders of
Qav by

[wi..cwy) ={€Qayv; &G =wi,...,& =wn}.

PROPOSITION 1.2. P,(-,V) converges uniformly on Q4 if and only if

(1) vw € Q.A,V ) h_)m SU.p HPT(gv V) - Ps(é-’ V)H = O
N—=0 ¢efwy...wn)
r,s>n

Proof: The direct implication is obvious by the Cauchy criterion. Suppose now that
() holds. Given £ > 0 one can associate to each w € €4y some cylinder [w; ...w,]| such

that any ¢ in this cylinder and any r, s > n satisfy

The compact set €24y is a finite union of such cylinders, let [w%i) .. wy(fz)] fori=1,...,N.
Hence (2)) is true for any £ € Q4 when r,s > maxn; , and this proves that P,(-,V) is

uniformly Cauchy. m

2. PROOF OF PROPOSITION [0.1]

In this section A is the set of the three matrices A(0), A(1), A(2) defined in the introduc-
tion, that we call A, B, C respectively. We denote by {F, ..., E7} the canonical basis of
the set of the 7-dimensional column vectors and by U the row vector ( 1111111 )

We prove Proposition in the following way: for any w € {0,1,2}" we search an
increasing sequence (ny)en such that the sequence of matrices Aj, = A(wn,41) - .. A(wn, ;)
satisfies the hypotheses of [26, Theorem 1.1]. For this, we use the equivalence classes in
some graph associated to {A, B, C}; although this case is relatively simple, the method

we use may be efficient in more complicated ones.
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This graph is defined as follows:

_ Each state represents a column: for instance the state 1334 — or 1324 — represents the

1

column

OO O =N O

and the state 12735 represents all the columns

1

OO R O =R

for any integer

x > 1; now we consider only the columns that appear in the matrices A(wy) ... A(w,),
we{0,1,2}N, neN.

_ The state X is related to the state Y by one arrow with label A (resp. B or C) if
Y = AX (resp. BX or CX).

We present this graph in two parts: in the first are represented all the states except the

ones from which any infinite path leads to the four final states, that is, to the states
172937454 172¥37546Y, 172Y37546V 7Y, 123745 where x, 1, 2, t, u, v, w are some positive in-

tegers. The second graph contains the other states and — on the first line — the states of

the first graph that are related to them by some arrow.
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The notations we use differ for the states of the third graph: for instance the state 123245

represents all the columns for z,y,t,u>1, 2 > 2 and v, w > 0. The initial state

~ 8 2 2 e

is 135 and the final states are (12345)2, (123567), (1345)>.
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In the sequel we denote the labels of the arrows by 0, 1 and 2 instead of A, B and C,
to avoid confusion between words and products of matrices. Let W be the set of the
words w = & ..., € {0,1,2}* such that the symmetric word &, ...&; is the label of a
path in the third graph, from the initial state 135 to a final state. For instance 20 € W
means that the path with label 032 from the state 135 has final state (1345)2, and that

1 x
0 0
1 z
A2)A0P | 0 | =] ¢ | withx, 2, t,u>2.
1 U
0 0
0 0

We prove by the six following lemmas the existence of an integer k € N such that the
matrices A(w) := A(&) ... A(&,) — for any n € N and any word w = &;...¢&, € {0,1,2}"
that can be written w = w; ... w, with w; € W — satisfy the hypotheses (H;), (Hs) and
(H M ) of [26] Theorem 1.1]. This is in part due to the existence of synchronizing words
in the second graph.

LEMMA 2.1. In the second graph, the words w € {0,1,2}3 are synchronizing from any
state whose label contains the digits 1,3 and 5, that is, the states of the second graph that

are not states of the first.

Proof: We remark that any path starting from a state whose label contains 1,3 and 5,
ends to such a state. Now any word £;£,&3 € {0, 1,2} has the factor 0%,12,01 or 2. Since
0%,12,01, 2 are synchronizing from any state whose label contains 1,3 and 5, &&¢;3 also

18. m

LEMMA 2.2. If some factor of a word w € {0,1,2}* belong to WS, the matriz A(w) has
the following property:

(P): Denoting by c;(A(w)) the set of the indexes of the nonnull entries in the j™ column
of A(w), either all the nonempty sets among the seven sets c1(A(w)), ..., cz(A(w)), are

equal, or they take two values ¢ and ¢ such that ¢ 2 ¢ U{1,3,5}.

Proof: Let us check first that it is sufficient to find a factor w’ of w such that A(w’) has
the property (P):

_ On the one side the columns of the right product A(w")X for X € {A,B,C} are
nonnegative linear combination of columns of A(w’); hence if ¢;(A(w')X) # 0, there
exists j’ such that ¢;(A(w')X) = ¢y (A(w')) and, if A(w’) has the property P, A(w")X

also has.
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_ On the other side the columns of the left product X A(w’) are the products of X by the
columns of A(w’) hence — since any arrow from a state containing 1,3 and 5 ends to such
a state — if A(w’) has the property (P), X A(w’) also has.

We evaluate the length of the words w € {0, 1,2}* in two ways: let us denote by |w| the
number of letters of w and by ¢*(w) the number of words (; € {0"},en U {1} U{2"}en
such that w = (i ... (= (w), Without two consecutive 0" nor two consecutive 2". Then any
w € W satsfies |w| > 4 and £*(w) > 3, except £*(20™) = £*(12") = 2 for n > 3.

Let w € {0,1,2}* have the factor wjwywswswswg € WS, From the above remark,
C*(wgwswg) > 5. We deduce that, if wyws contains the digit 0, there exists some fac-
tor w’ of wowswswswg for which the matrix A(w’) is one of the following: we make below
the list of the matrices A(w’) for w’" € W , where the set Wy — lexicographically ordered
from the left to the right — is chosen in such a way that all the words w € {0,1,2}* of
length ¢*(w) = 5 beginning by 01 or 02 has one element of W as prefix. Nevertheless we
omit the word w' = w”2 if w”1 € W, because the columns of C' are sums of columns of
B and consequently A(w”2) has the property (P) if A(w”1) has.

1000001 101 0000O0
1100000 0011000
2000001 1021000
ABA*=1000 0000 ]|, ABAB=| 0000000 [,
1000001 101 0000O0
1000001 101 0000O0
1000001 0010O0O0O
2000001 1021000
1001100 0012100
1001101 2011100
AB?A=100000001], AB*=]1 0000000 [,
2000001 1021000
1000001 1010000
000O0O0O0©O0 000O0O0O0©O0
1001101 n+1 1 0 0 0 0 n
0001200 n 10000 n-1
2000102 n+1 00 00 0 n+1
ABC=1]10 000000 |, AC'A= 0 00O0O0O0O O ,
1001101 n+1 1 000 0 n
1000001 100000 1
00 00O0O0© 0 0O 00O0O0O0 O
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000 n+1 n+1 0 0 n+2 0 0 0 0 0 n+1
000 n n 0 0 n+1 0 0 0 0 0 n
100 n+1 n+1 0 O n+1 00 1 1 0 n+4+1
AC"BA=1]1 0 0 0 0 0 00|, AC"B*A= 0O 00O0O0O0 O
000 n+1 n+1 0 O n+2 0 0 0 0 0 n+1
000 1 1 0 0 1 00 00O 1
000 O 0 00 0O 00O0O0O0O O
n+1 0 n+2 1 0 0 O n+1 00 1 1 0 n+1
n 0 n+1 1000 n 00110 n
n+2 0 n+1 1 1 0 0 n+2 00 0 1 0 n+2
AC"B? = 0 0 0 00 00|, AC"BC= 0 00 0O0O0 0
n+l1 0 n+2 1 0 0 O n+1 00 1 1 0 n+1
1 0 1 00 0O 1 00 000 1
0 0 0 0000 0 00 0O0O0 0
(n € N).

In case wows do not contain the digit 0, as seen on the third graph the words ws and
ws belong to {1} x {1,2}" with n > 3. Hence either wy = 1% or wows has a factor in
{2} x {1} x {1,2}3, so wows has a factor w’ € Wy = {1%,2132,21?2,2121,212%}. This is
the list of the matrices A(w’) for w’ € Wy, where we omit A(2132) and A(2122) because
A(1%) and A(2121) are in the list:

1013200 1002501
0000O0O0O 000O0O0OO0O
2011100 1001301
Bt=l1021000]|, CBC=|10023201/[,
0012100 0001200
000O0O0O0O 000O0O0OO0O
000O0O0OO0O 0000O0O0O
1 032000
0000O0O0O
1021000
CBCB=| 00322000
0011000
0000O0OO0O
0000O0O0O

According to Lemma 2] for any X,Y,Z € {A, B,C} the product of XY Z by each of
these matrices has the property (P), hence A(w) also has. m

LEMMA 2.3. There exists an integer k > 7 such that, for any w € {0,1,2}* with a factor
in W", the matriz A(w) has the property (Hs).

Proof: Let w = & ...&, € {0,1,2}" be a word with a factor wy...w, € W* : w =
w'wy ... wew”. We can apply Lemma to the word m = w,_5 ... w,w": the non empty

sets, among the ¢;j(A(m)) for j =1,...,7, are equal or they take two values, ¢ for j € J
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and ¢ for j' € J' with ¢ O ¢ U{1, 3,5}. There is no problem if all the non-empty ¢;(A(w))
are equal, so we suppose they take two values and consequently the ¢;(A(m)) also do. For
j € J, the obvious property of the final states in the third graph implies that the values of
the nonnull entries in the j™ column of A(w) are at least 275, For j' € J', A(&y... &) Ey
is a state of the first graph, otherwise by Lemma 2.1 the ¢;(A(w)) should be equal for any
j € JUJ'. Consequently A(&y...&,)E) has entries at most 2, and A(w)E; has bounded
entries. Choosing k large enough, A(w) has the property (Hs). m

It remains to prove that the matrices A(w), for w in some set specified later, satisfy
the condition (H*). We first notice that A(w) satisfy (H?) if w is one of the words

0104(n+1)’ 1204(n+1)’ 2104(n+1)’ 204(n+1)’ 022n+2’ O2102n+2’ 10102n+2’ 20102n+2’ 1202n+2’ 2102n+2’

20212 1272 that we denote by wy(n), ..., wia(n) for any nonnegative integer n: indeed

the Ay, ) are

n+1 01 000 0 n+2 001 100
n+1 001 100 0 0000O0O0O

n+2 01 000 0 n+2 01 0000

ABAn+Y) — 0 000O0O0OO B2AMD — 1 41 01 0 0 00
n+1 010000 n+1 001 100

n+1 010000 0 000O0O0OO

n+1 010000 0 000O0O0OO

2n+2 020000 2n+3 00 110 1

0 00O0O0GO0O 0 00O0O0O0TO

n+1 01 0000 n+2 000 0 0 1
CBA*™D = n+2 01 0000 |, CAD=] n+1 001100
n+1 01 000 0 n+1 001100

0 00O0O0GO0O 0 00O0O0O0TO
000000 0 00O0O0O0O

1 000 n+201 0001 n+t3 00
0001 n+3 00 1001 2n+5 01

1 000 n+201 0001 n+t3 00
AC"?=10000 0 0O/, A’BAC™"™>=]10000 0 00
1 000 n+201 0001 n+td 00

1 000 n+201 0001 n+t3 00

1 000n+1 01 1000 n+2 01

1 001 2n+5 01 0002 2n+7

0001 n+t3 00 0000 O

0001 n+3 00 0001 n+4
BABAC™? =100 01 n+3 00 |, CABAC™™ =100 01 n+3
1 001 2n+45 01 0001 n+3

0000 O 00 0000 0

0000 O 00 0000 O

SOOI O OO

DO O DOO
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2000 2n+4 0 2 000 2 2n+6 0 O
0000 0 0 0 0000 0 0 0
1001 2n+5 0 1 0001 n+3 00
B?AC™? =1 0001 n+3 00|, CBAC"™=|100 1 2n+5 0 1
1000 n+2 01 0001 n+3 00
0000 0 0 0 0000 0 0 0
0000 0 0 0 0000 0 0 0
2000 2n+4 0 2 1001 2n+3 0 1
0000 0 0 0 0000 0 0 0
1000 n+2 01 0001 n+3 00
CAC™*2=11000 n+2 01|, BO""2=11000 n+2 01
1000 n+2 01 1000 n+1 01
0000 0 0 0 0000 0 0 0
0000 0 0 0 0000 0 0 0
100 00 01
100 00 01
200000 2
The matrix A ((100)"+2) = (BA)™™ =11 0 0 0 0 0 1 | also do for any non-
1000001
00 0O0O0OO0© 0
00 0O0O0O0O© O

negative integer n.

In the following lemma we extend this property to the matrices that are products of a
bounded number of matrices A, B, C, A(w;(n)) and A ((100)""2).

LEMMA 2.4. Let W, i, be the set of the words
(3) w = mow;, (N1)Miwiy(n2) ... w;, () my,

with the conditions that k < ki , that momy ... my is the concatenation of at most ks
elements of the alphabet {0,1,2} U {(100)""},cn and that n; > 0. Then for w € Wi, , ,
each nonnull entry in the j™ column of the matriz A(w) has the form P (ni, ... n;)
where k(j) € {1,...,k} and P is a polynomial with positive coefficients and degree 1 in
each variable, or k(j) = 0 and P = constant. Moreover A(w) satisfies (H™) for some
constant M = M (ky, ko).

Proof: Let 7 € {1,...,7}, one consider the path — in the first graph and then in the
second — with initial state j, whose label is the word w read from the right to the left.
Let e, be the final state of the subpath with label s, = m,w; ,, (n,41) . . . w;, (ng)my, (from
the right to the left). Notice that only the first column of A(w;(n)), for i < 4, depends
on n, and only the fifth do for ¢ > 4. Consequently, if i, < 4 and the state e, do not
contain the letter 1, or if 4, > 4 and this state do not contain the letter 5, the column
A (w;,(n,)) A(s,) E; do not depend on n, and A(w)E,; no more do .
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Conversely suppose that ¢ is the greatest integer such that ¢, < 4 and the state e, contains
the letter 1, or such that ¢, > 4 and this state contains the letter 5. The nonnull entries of
A (w;, (n,)s,) Ej have the form an, +b with a and b positive, in particular the entries of in-
dexes 1,3, 5 have this form. We multiply this column vector by A (m,_1), A (w;,_, (n,—1)),

., A(myg) successively; this leads to a column vector whose nonnull entries have the
form a;n; +b; for any i € {1,...,¢}, with positive a; and b; because, in the second graph,

each arrow whose initial state contains the digits 1, 3,5 ends to such a state.

Clearly, a map f : R* — R which is a polynomial of degree 1 with positive coefficients in

each of the variables, is a polynomial with 2* positive coefficients, that is,
f(Xy,. ., X)) =a+aiXi+- - +aX, +aXiXo+ a0 X0 Xs+- - Fax 1 Xy X,

In our case, the coefficients of the polynomial belong to some finite set because they only
depend on the (at most) ki + ko elements of the decomposition (B)) of the word w in
letters 0, 1,2 and words (001)", w;(n). The ratio between two polynomials (with positive
coefficients and with the same nonnegative variables) being bounded by the ratio of the
greatest coefficient of the first by the lowest of the second, we conclude that the ratio
between two nonnull entries of the column A(w)E; is bounded by some constant that

only depends on k£ and ko . m

LEMMA 2.5. Let w € W*" and let s be the suffiz of a word of W*. Then
(i) w e Wk 21k
(ii) 0%s (if s do not begin by 0) and 2s (if s do not begin by 2) belong to Way 2144

(ZZZ) ws € W4,i742,€+8 .

Proof: (i) We consider first a word w € W, that is, w read from the right to the left is the
label of a path of the third graph from the initial state 135 to a final state. We distinguish
the four cases: either it has one succession of at least four arrows from 12(356)%7 to itself,
or one succession of at least two arrows from (134)25 to itself, or it has successively the
first and the second subpath, or it has no such subpath. In the first case the arrows from
12(356)%7 to itself are followed by one arrow with label 2, or successively by one arrow
with label 1 — without reaching the state (134)?5 — and one other arrow; so there is a
subpath whose label is the symmetrical of w;(n), 1 < i < 4. In the same way, in the
second case there exists a subpath whose label is the symmetrical of w;(n), 5 < i < 12.
Now if w do not have such subpaths, it cannot be the concatenation of more than 21 words
in {0,1,2} U {(100)"*2},,cny . This proves that w € Who; . Of course the concatenation

of kK words in W91 gives a word in W, 21 -
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(ii) Let s be a suffix of a word w € W"; we decompose w in the form (B]). Suppose that
s do not begin by 0. There is no problem if s = mw;,(n;)m; ... w;, (ng)my where m is
a suffix of m;_;. If not, s begins by some strict and non empty suffix of some w;, (n;),
more precisely this suffix is 10**+1), 27+2 or 10272 for some n > 0, or it is 2. Hence 0%s
begins with Ow; (n), ws(n), we(n) or 0*2m;. In this last case we have [0%2m;| = |m;| + 3,
and in all the cases 0%s € W o1k+s - The proof is similar for 2s if s do not begin
by 2: if s begins by some strict and non empty suffix of some w;,(n;), this suffix is
s = 104+ 4+ 02742 1027+2, 0102712, 03,02 or 0 and, except in the three last cases,

25" is some of the words w;(n).

(iii) Let now w,w’ € W* and let s be a suffix of w’, we decompose w and w’ in the form

@) and deduce the following decomposition of ws:

ws = mow;, (n1)mwiy (na) . .. wi, (ne)mgs miwy, | (0G) .. wir (ng)my,

where j € {1,...,k'} and s is a — possibily empty of full — suffix of m;_lw,g (n)). This
suffix has the form () except in case it is a strict suffix of w; (n}), and in this case it is
sufficient to find a decomposition of w, (ng)mys’ in the form (B)). If the word s’ has length
at most 4, it ends by 0* or 22 hence it can be completed in order to obtain a factor of
w;, (ng)mys’ of the form w;(n). We distinguish the cases whenever this factor is disjoint
or not from the word w;, (n), and the cases whenever it is or not disjoint from its prefix
w;, (0) (which has length at most 6). The decomposition of w;, (nx)mgs’ we obtain is the
following, where & and & belong to {¢,0,0?% 03, 2}:

w;, (ng)mys’ (in case || < 3)
' ;) wi, (ng)mw;(n)€  (m prefix of my,)
wzk(nk)mks = wik(n’)€’wi(n ¢ (0<n' <n)
mw;(n)é (m strict prefix of w;, (0)).

This proves (iii), since |s'| < 3 in the first case, |m| < 5 in the last case, and |£], |¢'| < 3. =

LEMMA 2.6. The set of the matrices A(ws) for w € W* and s — possibly empty — suffix
of a word in W*, has the properties (Hy), (Hs) and (HM).

Proof: From Lemma 22 A(ws) has the property (H;) because ws = w'w” with w’ € W°
and w” € {0,1,2}*. It has the property (Hs) from Lemma 2.3 and, from Lemmas [2.4] and
2Al(iii), the set of such matrices A(ws) has the property (H). m

LEMMA 2.7. For any word w € {0, 1,2}* there exist an integer a > 1, (; — possibly empty
— strict suffix of a word in W and (s, ..., o € W such that w =1 ..., .

Proof: Reading the word w from the right to the left, we may go many times from the
initial state to a final state in the third graph by some paths and we call (,,(q—1,...,(o
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the symmetricals of their labels; finally we go from the initial state to a non final state

by some path and we call (; the symmetrical of its label. m

LEMMA 2.8. For any sequence w € {0,1,2}Y that is not eventually 0 nor eventually 2
nor eventually 100 there exist (1, — possibly empty — strict suffiz of a word in W, and
C2,C3, -+ € W such that

Wiwows + = (1G2C3 . .. -

Proof: By Lemma 2.7]

Wi Wy = C(n) .. Camy(n)
where (;(n) € W, except (1(n) which is a possibly empty strict suffix of a word in W.
Let us prove — for fixed k — that the word (i(n) can take only a finite number of values

when n € N. By hypothesis there exists one unique sequence of words & € A* =
{0"}en U {1} U{2"},en U {(100)" } e such that

(4) wiwaws -+ = £16283 . . .
and such that for any i,n,n’ € N,

5 E=0"=&6n A0, E=2"=&0 #27, &= (100)" = &1 # (100)",
( ) L — . n'+1

gz =1= gz—i-l 7é 0 :
In the same way each word (;(n) can be written as a concatenation of words of A* that
satisfy (Hl); we see on the third graph that the number of such words is at most 11.
We deduce the decomposition of (j(n)...(x(n) — grouping together if necessary some
suffix of each (;(n) with some prefix of (;11(n) — in at most 11k words of A*. Since the

decomposition () is unique, (1(n) ... k(n) is a prefix of & ... &1x -

For fixed k, the word (i(n) — for n € N — belongs to the finite set of the factors of &; ... &1
hence it takes infinitely many times the same value. So we can define by induction the
sequence of words (i, C, ... : at the k' step we define (j as a word such that (;(n) = (; ,
Gn)=C, ..., ((n) = ¢ for infinitely many n. m

Proof of Proposition [01: We use Proposition [[L2] that is, given w € Q4 and € > 0 we

prove the existence of N(w,¢) such that

(6) n> N(w,e), € wr...wy], ms >n=||P.(&V)— P& V)| <e.

Suppose first that the sequence w is not eventually 0 nor eventually 2 nor eventually 100.
Lemma [2.§ implies there exist (; , possibly empty strict suffix of a word in W*", and
Ca2, (3, -+ € W" such that

wWiwaws = (1G2C3 . . . .
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According to Lemma 20 the matrices A((;) satisfy (H,), (H) and (HM) for any i > 2.
Since the sequence w is fixed, one can use the obvious fact that A((i(,) satisfies (H ’)
when M’ is the maximum of M and the ratio of the greatest nonnull entry in A((;(s) by
the lowest one. It also satisfies (H;) and (Hs) by Lemmas 2.2l and 2.3

We do not exactly apply [26, Corollary 1.2] to the product A((1¢2)A(C) ... A(¢x) and the
column vectors A(&,11) ... A(&)V and A(§per) .. A(&)V, n = |G| + - -+ + |k, because
the ratio between two nonnull entries in these column vectors is not necessarily bounded
for r > n, for instance in the case &,,1 = &,40 = - -+ = 0. There exist — from Lemma 2.7
v > 1, wy — possibly empty — strict suffix of a word in W* and wy, ..., w, € W" (if v # 1)
such that

(7) §n+1...§r:w1...w,,.

By Lemma [2.6] A(Cyw;)A(ws) ... A(w,) is a product of matrices which satisfy the condi-
tions (H,), (Hs) and (H™); this product is equal to A(&yi1) ... A(&,) for 0/ = |G| +- -+
|Ck—1]. The square matrix V' whose all columns are equal to V' satisfy obviously (H;),
(Hy) and (H M ”) when M" is the maximum of M and the ratio of the greatest entry in V'
by the lowest one. By [26, Lemma 1.3] the matrix A(&y41) ... A(&)V satisfies (H*M"?),
hence the ratio between two nonnull entries of the column vector A(&,41) ... A(&)V is
bounded for any & € |w;...w,] and r > n. We can use [26, Corollary 1.2] for the
product A((1¢2)A((3) ... A(Cr—1) and each of the column vectors A(&y41) ... A(&.)V and
A(&pi1) ... A(&)V . Since — by Lemma 2] - the emplacement of the nonnull entries in
both columns vectors is the same, we conclude that (@) holds for n = |(3| +- - -+ (x| when

k is large enough.

Suppose now there exists ng € N U {0} such that w,,41wWygs2--- = 0 or 2 or 100; as
previously we consider all the sequences £ € [w; . ..w,] and we choose n in order that (@)
holds. We treat the first case, the second being similar, and the third trivial because in
this case ||P.(&,V) — Ps(&, V)| = 0 for any 7, s > ng+ 6. We use the same decomposition
Cpi1-- & = wi...w, as in [@). Let 0°, i > 0, be the greatest prefix of &, ...&, that
contains only the letter 0. If v > 2, wy € W contains some other letters than 0 hence 0°

is a strict prefix of wiwy . We suppose n > ng + 2 and we make the Euclidean division
(8) n+i—ng—2=4k+k, keN, k' €{0,1,2,3},

so there exists a suffix s of wy (if v = 1) or wyws (if ¥ > 2) that begins by 1 or 2 (if non
empty) and such that

0+ +2g if v <2

_ 4k _ nk'+2 _
gno—i-l s €n0+4k =0 and €n0+4k+1 s 57’ =0 €n+i+1 cee 57’ — { 0k’+2$w3 w, if v Z 3.
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From Lemma E5(ii) one has 025 € Wi, aoei7 , 0¥ F25w3 € Wy, 63047 and, from Lemma
25(1), w; € Waeon, for any i > 2. The matrices A(0%*2s), A(0¥*2sw3) and A(w;) for
1 > 2 satisfy the condition (H M ) by Lemma [Z4l The second and the third matrix
also satisfy (H;) and (H,) from Lemmas and 23} so by |26l Lemma 1.3] the matrix
A (Engrart1) - - - A(E)V satisties (HQM”d) in all the cases, where V’ and M" are defined as
above, and the nonnull entries in the column vector X = X (&,7) := A (&ngpapt1) -- - A(&)V

have bounded ratios independently on £ € [w; ...w,] and r > n.

Consequently, denoting by z; = x1(§,r) the first entry — obviously nonnull — of X we

have

Albpgir - &)V = A%X =1, + O(z1).

FTTTO T[T [T

Hence ||A(&ng41---&)V ||, which is equal to UA(& ...&.)V, is x1(bk + 1) + O(2) and,
denoting by o the shift-map on {0, 1,2},

0
1
1
Prny (0™, V) = . =—-10|4+0|-+
V) = &V 5| i
1
1
Since P.(&,V) = Py, (w, Pr_py(0™&,V)) and since the map P, (w,-) is continuous and
0
1
1 1
do not vanish at the point R 0 | — see the first and the second graph — we deduce
1
1
1
0
1
1 1
PT(£7V> = Pno wvg 0 +O(1>
1
1
1

for £ € [wy...w,] and r > n, where the term o(1) tends to 0 when n — oo because, from
@), 4k > n — ng — 5. It follows that (@) holds for n large enough.
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It remains to specify the form of the limit vector. In case the sequence w is not even-
tually 0 nor eventually 2 nor eventually 100 we use the notations of [26, Theorem 1.1]:
by [26, Corollary 1.2] the limit vector is V; and, by the second and the fourth assertion
in [26, Theorem 1.1}, ¢(V}) = ¢(P.V) for n large enough. Using Lemmas 2.2] 2.8 and
the second graph, ¢ (P!V') for n large enough is {1,2,3,4,5},{1,2,3,5,6,7},{1,2,3,5,6}
or {1,3,4,5}. Suppose now w = 0,2 or 100; by computation c(nh_{go Pn(w,V)> =
{2,3,5,6,7},{1,3,4} or {1,2,3,4, 5} respectively. Finally if "w0, 2 or 100 for some n € N
but not for n = 0, then — in view of the first and the second graph — ¢ ( lim P, (w, V)) =
(1,2,3,4,5),{1,2,3,5,6,7},{1,2,3,5,6},{1,2,3,5} or {1,3,4,5}.m

3. APPLICATION TO SOME BERNOULLI CONVOLUTION

As we see in §3.4, the matrices we use in the previous section come from the study of
some continuous singular measure, which is a Bernoulli convolution. So, before computing
the values of this measure on certain intervals, we give the general definitions about the

Bernoulli convolutions, the Gibbs measures and the multifractal formalism.

3.1. The Bernoulli convolutions. The probability measures defined by Bernoulli con-
volutions have been studied from the 30th, see [4 15 16] 7], and [29] for an overview

on the subject. They also have been considered in view of their application to fractal
geometry [211 20, [19] [33], 18] and ergodic theory [38] [37].

Given a real § > 1 and a parameter vector p = (po,...,ps—1), pi > 0, >, p;i = 1, one
calls the Bernoulli convolution pg, the infinite product (in the sense of the pointwise

convergence on the set of the borelian subsets of R) of the discrete measures

Podoa + -+ Ds_10(s-1)a
B Bn

-1
s—1°

=

forn = 1,2,..., where a = In other words this measure is defined — for any

Borelian £ C R — by

fgp(E) = P ({we{O,...,s—l}N; QZ% eE})

where P is the product-probability defined on {0,...,s— 1} by Plw; ... w,] = puy - - - P,
([wy ... wy) is the set of the sequences whose first terms are wy, . . ., w,). The measure ug,, is

also the unique probability measure with bounded support that satisfies the self-similarity
relation (see[29]):
i Tt

L p = Zpi . (ug,p o S[l) where S;(x) := 7
i=0
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The Bernoulli convolutions are non-atomic probability measures of support included in

[0,1]. From [I5], they are either absolutely continuous or purely singular; moreover,
11

272
an algebraic integer whose conjuguates have modulus less than 1. Some open questions

according to [4], they are singular when p = and [ is a Pisot number, that is,

are to know if g, has the weak Gibbs property in this case (see §3.3), and if p5,, can be
singular with support [0, 1] when £ is not Pisot.

The Bernoulli convolution 1, can also be seen as the probability distribution of the first
entry in some infinite product of 2 x 2 stochastic matrices, let lim S, ...S,, (easily com-

n—oo

putable, [40, §1.2]), when the sequence (w,) belongs to {0, ...,s — 1} endowed with the

7. : 1 1 1 -
product probability P. More precisely, one obtain pz, by setting S, = ( :;k 1 :;jk )
kL= Uk

k 1 1
with y, = 1 (1 — E) and x, = yp+ B, 0 < k < s—1. Mukherjea, Nakassis and Ratti
S J—
1
[22] computed the (piecewise polynomial) density of s, in the case pg = -+ = ps_1 = —
s
and 3 = /s for some positive integer m.

3.2. The multifractal analysis. By a simple application of the fixed point theorem,
Hutchinson [14] shows that, in any complete metric space, given some contraction maps

St, ..., Sy, there exists a unique closed bounded nonempty set K such that

K = JSi(K).

This set, called the attractor of the S;, is compact. The most simple example is the Cantor
2
set, with S (z) = % and Sy(z) = Tt

the interval [0, 1]; so we are more concerned by the second result of Hutchinson: given

. But in the example we study in §3.4, K is simply

some contraction maps S, ..., Sy and some positive reals py, ..., p, whose sum is 1, there

exists a unique Borel probability measure p such that

N
p=> pi-(poS).
i=1

This measure has for support the attractor K of the S;.

The multifractal analysis is concerned by the local dimensions, defined by

dim(z) := limlog, (u([x — 7,z + r])),

r—0

_ log(")
log(r)
dimyy¢(z) ;= lim iglf log, (p([x—r,z+7])) and dimg,,(x) := limsuplog, (p([x—7r, z+7])).

r—0

where log, (+) : , when this limit exists. One can also define
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It turns out that, at least in the case where the S; are affine contractions of R, the "fat

level-sets”

F, ={z; dine(z) < a} and G, :={z; dyp(z) <a}
are (non-closed) attractors in the sense that F,, = UY | S;(F,) and G, = UY,S;(G,).
The level-set himself is defined by

E, :={x; d(x) exists and d(z) = a}.

It is likely that E, has the same Hausdorff dimension as F,, or G, (see [6l, Theorem 3.4
and Appendix B]).

The multifractal analysis studies the relation between the singularity spectrum and the

scale spectrum (or Li-spectrum), let Tgne and Tycale respectively. They are defined by

Tsing (@) := H-dim(E,) (Hausdorff dimension of E,),

Tocale(¢) := lim Inf <1ogr <igf (Z(u(lk))q>)> ,

where Z is the set of the covers of the support of 1 by closed intervals of length r [30] 8] [10].

By convention, the empty set has Hausdorff dimension —oo.

The scale spectrum is often computable or approximable, and it is expected (see for
instance [9]) that the singularity spectrum is the Legendre transform conjugate of the

scale spectrum, which means that, for any o € R,
Tsing (@) = Inf{aq — Tecale(q) ; ¢ € R}.

If this holds, one says that p satisfies the multifractal formalism. The multifractal formal-
ism was established for Gibbs measures [3, [31],34] and this was extended in [6, Theorem A’]
to the weak-Gibbs measures in the sense of Yuri [41] §5]. In the following section we give

a definition of the Gibbs and the weak-Gibbs measures related to the Parry expansions.

The multifractal formalism also holds for the quasi-Bernoulli measures [2,[11]. An overview
can be found in [27]. Notice that the g-measures [I7] and the conformal measures [12] are
weak-Gibbs.

The scale spectrum can be considered as a thermodynamic function (see [6]), and any
point of discontinuity of its derivative a phase transition [36]. The existence of a phase

transition has been proved for the Erdés measure, that is, the Bernoulli convolution 4,

14++v5 11
for f = 5 and p = (5,5

convolution of the Cantor measure [13], which is — modulo some homotety — the Bernoulli

convolution pug, for p (1 5 3 1)
Y 3,p = \135'35'35° 95 |-
88 88

) [0, Appendix A]. It has also been proved for the 3-fold
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3.3. Gibbs and weak-Gibbs measures in a base § > 1. The Parry expansion [28] of
the real number = € [0, 1[ in base § > 1 is the unique sequence of integers (£,)en such

that

1 n
(9) VnEN,ze[sn,sn—l——[, Wheresnzzg—i.

g —~f
We denote this sequence by (€,(2))nen. The set Admg of the S-admissible sequences is
the set of the Parry expansions of the elements of [0, 1[. This set is invariant under the
shift ¢ : (en)neny — (Ent1)nen - We use the partition of [0, 1[ by the S-adic intervals of

order n, defined by
Iyc, ={x€[0,1]; e1(z) = €1,...,ea(x) = en}.

We say that a measure 1 supported by [0, 1] is weak Gibbs, or has the weak Gibbs property,
with respect to the f-adic intervals if there exists a map ® : Admg — R, continuous for

the product topology, such that
1/n

=1 uniformly on (&,,)nen € Admg.

n (L. z)

exp ( "2:1 @(aka)>

both cases ® is called a potential of n (it may have several potentials).

It has the Gibbs property if the ratio is bounded from 0 and oo. In

These definitions recover the classical ones of Bowen [I, Chapter 1.A] and Yuri |41, §5]
1 1 2
because, setting T'(x) = Sz — | fz| and denoting by X, = [0, 3 {,Xl = [B, 3 [, o X =

[g, 1 [ the intervals where T is continuous, we have
[€1...€n = X€1 m T_l (X52) ﬂ c ﬂ T_(n_l) (X€n> .

Let us give a sufficient condition for a measure n to have the weak Gibbs property. For
each € € Admg we put ¢1() =logn (I,) and for n > 2,

(1) ou(e) = log (%) |

The continuous map ¢, : Admg — R (n > 1) is called the n-step potential of n. Assume

the existence of the uniform limit ® = lim ¢, ; then it is straightforward that for n > 1,
n—oo
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1 I .
(12) i < ”i i) <K, with K, =exp (Z |® — ¢n||oo> .
exp ( d( aké)) k=t
=0
By a well known lemma on the Cesaro sums, K, K, ... form a subexponential sequence

of positive real numbers, that is lim,_.. (K,)"" = 1 and thus, ([Z) means that 7 has the
weak Gibbs property with respect to the -adic intervals.

1++5
9

11
In case of the Erdés measure, that is, pg, for g = and p = (—, —), the weak

272
Gibbs property is proved and the multifractal analysis detailed in [6]. Now in case f is a

multinacci number (i.e. f™ = " 14+ +1) and p = (py, p1) and except in one special
case, fig, has the weak Gibbs property [24]. This property seems more complicated to

prove for the other Pisot numbers of degree at least 3.

3.4. Proof of the weak Gibbs property in one example. From now § ~ 1.755 is

the unique solution greater than 1 of the equation

§ =282 — 5+1

11
and p is the Bernoulli convolution associated with g and p = (— —) (here s = 2 and

272
a=0F-1).

LEMMA 3.1. A sequence of integers (€,)nen s f-admissible if and only if its terms are
0 or 1, and each couple of consecutive 1 is followed by a couple of consecutive 0, and
(ex)k>n 7 1100 for any integer n > 0.

Proof: The condition (@) is equivalent to 5™(x — s,,) = 8™(x — s,_1) — &, € [0, 1], hence
en = |B"(x — s,_1)] — with the convention that sy = 0. This proves that ¢, = 0 or 1
because, using ([@) at the rank n — 1, one has "(z — s,_1) € [0, 5.

Now (@) also implies

n+4

1 1 1
Z 6k—x_5"<@_6n+1+5n+2+5n+4

k=n+1
hence if €,,11 = €,40 = 1, €,43 and €, are different from 1.

Conversely, for any sequence (€,),en that satisfies the conditions of the lemma, each

subsequence (£;)r>n begins by (1100)%0 or (1100)"10 for some integer i > 0. The reals
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> £ " £
k k .
= Z @ and s, = Z @ satisfy
k=1 k=1
1 > . inT P
0<z—s,< 5 > 7 where (o )reny = (1100)°01 or (1100)'101,

1
from what we deduce by a simple computation that 0 < x — s, < @, that is, (e,)nen is

[-admissible. m

As a consequence of this lemma, each S-admissible sequence (g,),en can be decomposed

from the left to the right in one sequence of words
(13) €19+ = wWiWsq ... where Vi, w; € Ay := {0,10, 1100},

and in the sequel we denote I, ., = I, ., when a word &...g, € {0,1}" is the
concatenation of words wy,...,w; € A;. We recall that the g-adic interval I, ., is the
set of the reals x whose expansion in base  begins by ¢; ...¢g, and, in the two following
lemmas, we compute the measure of this set.

LEMMA 3.2. Setting iy, =0, i =1, is=1— (81?2 iy = —(8—-1)% i5=8-1,
ic =B —(B—1)2 ir=p6(8—1) one has, for any wy ... wy € A"

al

(14) p (

3/5

» 2/5

(Zl + ]w1~~~wk)> 13?20
: = M(wy)... M(wy)V  where V := 1/5

» 3/5

(Z7 =+ ]w1~~~wk)> 3//10
1/5

=

|

and M(0) = %A(O), M(10) = iA(l), M(1100) := %A(Q).

6

1
Proof: For any real v we evaluate u (B (v+ le,,,wk)) in the three cases: w; = 0,10 or

1 n
1100. In the first, ( E — belongs to B (v + L., ) if and only if (5 E d +1 €
1
5 (Y + Lo, ., ) With »/ = fyﬁ — w1 B( — 1) and, since w; € {0, 1},

(15) H (% (v+ Iw1...wk)> = % Z«/el“’(fy) K (% (v + [w1~~~wk>> )
where I"(7) = {y8 —zB(8—1); x € {0,1}}.
We proceed in the same way if w; = 10:

(16) 2 (% (7 + I’wl---wk)) - i Z F"('y (% (7// + [wl wk)) )
where I"(v) = {7*+ B — (2B +y)B(B—1); x,y € {0,1}}.
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and if wy; = 1100:
(17)

7 (% (v + le...wk)> = 16 Domerm(y) B (% (v + le,,,wk)> ,

where T"(y) = {y8* + 8% + 8° — (2B + yB> + 28 + )B(B — 1) ; ,y,2,t € {0, 1}}.
Since the measure p has support [0, 1], we can restrict the sums in (1), (I6) and (I7) to
the indexes 7 such that p (% (v + o, 1[)) # 0, that is, v) €] — 1, 8[. The relations
Ro, R1, Ry defined by YRoy < v € T'(y), YR1y' < 7" € T”(y) and YRY" & +" €

() respectively, are represented below: each relation R; is represented by the edges
with label 7, and the set of states is the set of elements of | — 1, 5[ that can be reached by

some path from the initial state 0.

The incidence matrices of the three graphs being A(0), A(1) and A(2), we deduce from
(13), (@G) and (I7) that

(3 G+ Ty ) u (30 +[0,1D)

: = M(wy) ... M(wg)V, where V = :

o (4G + L) (4G +10,1D)
We make k& = 1 in this relation and we sum for w; € A; . Since — by Lemma B.1] - the [,
make a partition of [0, 1] , we obtain that V' is an eigenvector of M (0)+ M (10)+ M (1100).
Moreover the sum of the two first entries in V' is <%([0, 2[)) hence it is p([0,1]) = 1.

Computing this eigenvector we obtain the expected value for V. m

As a direct consequence of this lemma we can compute the values of the measure p on

the p-adic intervals:
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LEMMA 3.3. (i) For any wy ... wy € A;",

(18) p Ly w,) =< "EaM0)M(ws) ... M(wg)V if w; = 10
B, M(10) M (0) M (ws) ... M (wy)V if wy = 1100.

(ii) For any ey ..., € {0,1}*,

(19)
p(Liy ) ifer...ep =wy. .. wy
% ([€1...€n> = M ([wl...wkIO) + M (le...wkll(]O) Zf €1...E&p =W1 ... wkl
1% (Iw1...wk1100) Zf E1...Ep =MW1 ... wkll or wy ... wk110

It remains to prove that p has the weak-Gibbs property, although we can’t use n-step

potential of ;1 because its limit is infinite at the point 10.

THEOREM 3.4. u has the weak-Gibbs property with respect to the B-adic intervals.

Proof: By the Kolmogorov consistency theorem there exists a unique measure p’ on [0, 1]

such that — for any wy ... w; € A"

(20) 1 Ty o) = |M(w)) ... M(wp)V|| = UM(w,) . .. M(wy)V.

(L))"
We first prove that lim (%) = 1 uniformly in (¢,)neny € Admg , although
n—00 \ WU \ley..ep

!
I _ P
WAL e0) itself tends to oo in the cases ¢ = 0 and ¢ = 1100. Notice that

11y e)
in all cases this ratio is at least 1, in consequence of Lemma and the inequalities

UM(0) >'Ey, UM(10) >'EyM(0), UM(1100) > *E;,M(10)M(0).
!/
Loy en) . . : :
M it is sufficient to consider only the

f(ley e,)’
integers n such that €;...¢, € A", because y' as well as p satisfies (I9). From now

the ratio

It remains to find some upper bound for

€1...6, € A" and — except in the case ;69 = 10 — we use the greatest prefix 0" or

(1100)" of €1 ..., , with v € N: we have in all cases

(21) £1...6, = 0"aw(n) or 10w(n) or (1100)"bw(n)

— W v if w(n) = ¢, we deduce from (2I]), (20) and (I8)) that

or'V, = —
IV

W (Ly..)  UMOYM()V, UM(10)V,, UM (1100)* M (b)V,,
(L, ) LB MO0 IM(a)V, O tEM(0)W, O tE,M(10)M(0)M(1100) 1M (b)V,

2
By direct computation the entries of UM (0)” are at most 2—5 and the ones of UM (1100)”

1
at most 13—6VV On the other side £, M (0)" ! = F'tE1 and ‘B, M (10)M(0) M (1100)" " =
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1
3 161 -'Es. Finally we obtain
! I€ £ +
(23) M <2lv- m—i
1% (151...En) m,

V
where m: = IIlcfiXtEiVn and m; = min ((tEl + tE’?) VTL ) tE3VTL ) m.in (tEZ ||V||))

Now we use Proposition [0I] in the following way: the column vector V,, is equal to
Py (w,V) for some w € {0,1,2} and n’ € NU {0}. The uniform convergence stated in
this proposition and the form of the limit vector imply that the sequences

mf(w) = max; 'E; P, (w, V)

and m, (w) = min <(tE1 +tE7) P.(w, V), "EsP,(w,V) , mm( H“;H>>

converge uniformly and that their limits are two continued maps from the compact set

+
{0,1,2}" to ]0, oo, hence my () is bounded for any w € {0,1,2} and n € NU{0}. So

my (w)
W lee) )"
([23), with the inequality v < n, imply that lim <&) =1.
n—oo \ p (I c,)
From the definition of the weak Gibbs property, u has this property if 1/ has. Now, i/ has
. . . . . T S
this property if the exponential of its n-step potential, that is, W, converges
€2 .. .En

uniformly in (g,)neny € Admg to a nonnull limit. For the same reason as above it is
sufficient to prove this convergence for the integers n such that ¢; ..., is a concatenation
of words in 4;*. We distinguish the cases ¢; ... g, = 0w'(n) or 10w’(n) or 1100w’(n) with
w'(n) € A" and we obtain

2@y e _ (21 11201)8, (102 0) S,
wlea..oen] (11 111_11)& (2 1 1)5S,
m(2()01 30 2)5,
(2002301)8,
respectively, where S, M The three ratios converge uniformly to some
[ M (w'(n))V]]

nonnull limits because, from Proposition [0.I], their numerators and denominators do. m

COROLLARY 3.5. u satisfies the multifractal formalism.

Proof: In order to apply [6, Theorem A’] we must use some partitions of [0, 1] in intervals

Jon....an defined for any oy, ..., a, in a finite alphabet. Now I., . is not defined if the
(0, 1) -sequence ¢ . ..&,0 is not S-admissible. But, using the intervals

0 ifa;=0
(24)  Jaran = Lwy,wy, forag ..o, €{0,1,2}", withw; = ¢ 10  ifa; =1

1100 if oy = 2,
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as defined
in (I0), implies the same property for p with respect to the intervals J,, . a,, with the
potential defined — for any o € {0,1, 2} - by
d(0e) if e = 0¢’
U(a) =< P(10e') + (0 if e = 10¢’
®(1100€’) + ®(100€’) 4+ P(00£") + P(0’) if € = 1100¢’,

it is clear that the weak Gibbs property of p with respect to the intervals I,

1.---En?

where the sequence ¢ is the infinite concatenation of the words w; defined as in (24]).

|
jﬁ%[

|

We can apply [6l, Theorem A’] to the transformation
Bx if v € Jy =10,
T(x) = B’z — B ifee = %,
Bla— - Hoeh i+

and conclude that p satisfies the multifractal formalism. m

@[

|
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