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Abstract

In this paper, we extend the Hijazi inequality, involving the Energy-Momentum ten-
sor, for the eigenvalues of the Dirac operator on complete Riemannian Spinc man-
ifolds of finite volume and without boundary. Under some additional assumptions
and using the refined Kato inequality, we prove the Hijazi inequality for elements of
the essential spectrum. The limiting cases are also studied.

Key words: Spinc structures, Dirac operator, eigenvalues, Energy-Momentum ten-
sor, perturbed Yamabe operator, conformal geometry, refined Kato inequality.

1 Introduction

On a compact Riemannian Spinc manifold (Mn, g) of dimension n > 2, any eigenvalue
λ of the Dirac operator satisfies a Friedrich type inequality [14]

λ2
> λ2

1 :=
n

4(n− 1)
inf
M

(S − cn|Ω|), (1)

where S denotes the scalar curvature of M , cn = 2[n2 ]
1
2 and iΩ is the curvature

form of the connection on the line bundle given by the Spinc structure. Equality is
achieved if and only if the eigenspinor ψ associated with the first eigenvalue λ1 is a
Killing Spinc spinor and Ω · ψ = i cn2 |Ω|ψ, i.e., for every X ∈ Γ(TM) the eigenspinor
ψ satisfies

{

∇Xψ = −λ1
n
X · ψ,

Ω · ψ = i cn2 |Ω|ψ.
(2)
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Here X · ψ denotes the Clifford multiplication and ∇ the spinorial Levi-Civita con-
nection [12]. In [15], it is shown that on a compact Riemannian Spinc manifold any
eigenvalue λ of the Dirac operator to which is attached an eigenspinor ψ satisfies

λ2
> inf

M
(
1

4
S −

cn

4
|Ω|+ |ℓψ|2), (3)

where ℓψ is the field of symmetric endomorphisms associated with the field of quadratic
forms denoted by Tψ and called the Energy-Momentum tensor. It is defined on the
complement set of zeroes of the eigenspinor ψ, for any vector field X by

Tψ(X) = Re < X · ∇Xψ,
ψ

|ψ|2
> .

The limiting case of (3) is characterized by the existence of a spinor field ψ satisfying
for all X ∈ Γ(TM),

{

∇Xψ = −ℓψ(X) · ψ,
Ω · ψ = i cn2 |Ω|ψ.

(4)

The trace of ℓψ being equal to λ, Inequality (3) improves Inequality (1) since by

the Cauchy-Schwarz inequality, |ℓψ|2 >
(tr(ℓψ))2

n
, where tr denotes the trace of ℓψ. It

is also shown that the sphere equipped with a special Spinc structure is a limiting
manifold for (3) but equality in (1) cannot occur.

In the same spirit as in [10], A. Moroianu and M. Herzlich (see [14]) generalized
the result in [10] to the case of compact Spinc manifolds of dimension n > 3, by
proving that any eigenvalue of the Dirac operator satisfies

λ2
> λ2

1 :=
n

4(n− 1)
µ1, (5)

where µ1 is the first eigenvalue of the perturbed Yamabe operator defined by

LΩ = 4
n− 1

n− 2
△+S − cn|Ω|g.

The limiting case of (5) is equivalent to the limiting case in (1). In terms of the
Energy-Momentum tensor the author [15] proved that any eigenvalue of the Dirac
operator to which is attached an eigenspinor ψ satisfies

λ2
>

1

4
µ1 + inf

M
|ℓψ|2. (6)

In this paper we examine these lower bounds on open manifolds, and especially on
complete Riemannian Spinc manifolds. We prove the following:
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Theorem 1.1. Let (Mn, g) be a complete Riemannian Spinc manifold of finite vol-
ume. Let λ be an eigenvalue of the Dirac operator to which is attached an eigenspinor
ψ, then

λ2
> inf

M
(
1

4
S −

cn

4
|Ω|+ |ℓψ|2). (7)

Equality in (7) holds if and only if the eigenspinor associated with the first eigenvalue
λ1 satisfies Equation (4).

A Friedrich type inequality is derived:

Corollary 1.2. Under the same conditions as Theorem 1.1, any eigenvalue of the
Dirac operator satisfies

λ2
>

n

4(n− 1)
inf
M

(S − cn|Ω|). (8)

Equality in (8) holds if and only if the eigenspinor associated with the first eigenvalue
λ1 satisfies Equation (2).

This was proven by N. Grosse in [7] and [9] for complete spin manifolds of finite
volume. Using the conformal covariance of the Dirac operator we prove

Theorem 1.3. Let (Mn, g) be a complete Riemannian Spinc manifold of finite vol-
ume and dimension n > 2. Moreover, let λ be an eigenvalue of the Dirac operator
D associated with an eigenspinor ψ. Then the following inequality holds:

λ2 ≥
1

4
µ1 + inf

M
|ℓψ|2, (9)

where µ1 is the infimum of the spectrum of the perturbed Yamabe operator.

Equality in (9) holds ⇐⇒

{

∇Xϕ = −ℓϕ(X) · ϕ,
Ω · ψ = i cn2 |Ω|gψ,

(10)

for every X ∈ Γ(TM), where ϕ = e−
n−1

2
uψ and ψ is the image of ψ under the

isometry between the spinor bundles of (Mn, g) and (Mn, g = e2ug).

From this Theorem, a Hijazi type inequality can be derived:

Corollary 1.4. Under the same conditions as Theorem 1.3, any eigenvalue of the
Dirac operator satisfies

λ2 ≥
n

4(n− 1)
µ1. (11)

Equality in (11) holds if and only if the eigenspinor associated with the first eigenvalue
λ1 satisfies Equation (2).
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This was also proven by N. Grosse in [7] and [9] for complete spin manifolds.
On complete manifolds, the Dirac operator is essentially self-adjoint and, in general,
its spectrum consists of eigenvalues and the essential spectrum. For elements of
the essential spectrum, we also extend to Spinc manifolds a Hijazi-type inequality
obtained by N. Grosse in [9] on spin manifolds:

Theorem 1.5. Let (Mn, g) be a complete Riemannian Spinc manifold of dimension
n ≥ 5 with finite volume. Furthermore, let S − cn|Ω| be bounded from below. If λ is
in the essential spectrum of the Dirac operator σess(D), then

λ2 ≥
n

4(n− 1)
µ1,

where µ1 is the infimum of the spectrum of the perturbed Yamabe operator.

For the 2-dimensional case, N. Grosse proved in [7] that for any Riemannian spin
surface of finite area, homeomorphic to R2 we have

λ+ ≥
4π

Area(M2, g)
, (12)

Where λ+ = infϕ∈C∞
c (M)

(D2ϕ,ϕ)
(ϕ,ϕ) (in the compact case, λ+ coincides with the first

eigenvalue of the square of the Dirac operator). Recently, in [2] C. Bär showed the
same inequality for any connected 2-dimensional Riemannian manifold of genus 0,
with finite area and equipped with a spin structure which is bounding at infinity. A
spin structure on M is said to be bounding at infinity if M can be embedded into S2

in such a way that the spin structure extends to the unique spin structure of S2. On
Spinc manifolds, this question will be considered on a forthcoming work.

Even though the number infM |ℓ
ψ|2 is not easily computable, it appears naturally in

many situations. For example, on hypersurfaces of certain limiting Spinc manifolds
it is easy to see, with the help of the Spinc Gauss formula, that it is precisely the
second fundamental form. Also, when deforming the Riemannian metric in the di-
rection of the Energy-Momentum tensor, the eigenvalues of the Dirac operator on a
Spinc manifold are then critical (see [16]). The author would like to thank Oussama
Hijazi for his support and encouragements.

2 Preliminaries

In this section we briefly introduce basic notions concerning Spinc manifolds, the
Dirac operator and its conformal covariance. Then we recall the refined Kato in-
equality which is crucial for the proof.

The Dirac operator on Spinc manifolds

Let (Mn, g) be a connected and oriented Riemannian manifold of dimension n > 2
without boundary. Furthermore, let SOM be the SOn-principal bundle over M of
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positively oriented orthonormal frames. A Spinc structure of M is a Spincn-principal
bundle (SpincM,π,M) and an S1-principal bundle (S1M,π,M) together with a dou-
ble covering given by θ : SpincM −→ SOM ×M S1M such that

θ(ua) = θ(u)ξ(a),

for every u ∈ SpincM and a ∈ Spincn, where ξ is the 2-fold covering of Spincn over
SOn×S1. A Riemannian manifold that admits a Spinc structure is called a Rieman-
nian Spinc manifold.

Let ΣM := SpincM ×ρn Σn be the associated spinor bundle where Σn = C2[n2 ]

and ρn : Spincn −→ End(Σn) the complex spinor representation. A section of ΣM
will be called a spinor and the set of all spinors will be denoted by Γ(ΣM) and
those of compactly supported smooth spinors by Γc(ΣM). The spinor bundle ΣM is
equipped with a natural Hermitian scalar product, denoted by < ., . > and satisfies

< X · ψ,ϕ >= − < ψ,X · ϕ > for every X ∈ Γ(TM) and ψ,ϕ ∈ Γ(ΣM),

where X · ψ denotes the Clifford multiplication of X and ψ. With this Hermitian
scalar product we define an L2-scalar product

(ψ,ϕ) =

∫

M

< ψ,ϕ > vg,

for any spinors ψ and ϕ in Γc(ΣM). Additionally, given a connection 1-form A

on S1M , A : T (S1M) −→ iR and the connection 1-form ωM on SOM for the Levi-
Civita connection ∇M , we consider the associated connection on the principal bundle
SOM ×M S1M , and hence a covariant derivative ∇ on Γ(ΣM) [6].
The curvature of A is an imaginary valued 2-form denoted by FA = dA, i.e., FA = iΩ,
where Ω is a real valued 2-form on S1M . We know that Ω can be viewed as a real
valued 2-form on M [6]. In this case iΩ is the curvature form of the associated line
bundle L. It is the complex line bundle associated with the S1-principal bundle via
the standard representation of the unit circle. For any spinor ψ and any real 2-form
Ω we have [14]

< iΩ · ψ,ψ > > −
cn

2
|Ω|g|ψ|

2, (13)

where |Ω|g is the norm of Ω with respect to g. Moreover, if equality holds in (13),
then

Ω · ψ = i
cn

2
|Ω|gψ. (14)

For every spinor ψ, the Dirac operator is locally defined by

Dψ =

n
∑

i=1

ei · ∇eiψ.
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It is an elliptic and formally self-adjoint operator with respect to the L2-scalar prod-
uct, i.e., for all spinors ψ, ϕ at least one of which is compactly supported on M we
have (Dψ,ϕ) = (ψ,Dϕ). An important tool when examining the Dirac operator is
the Schrödinger-Lichnerowicz formula

D2 = ∇∗∇+
1

4
S Id Γ(ΣM) +

i

2
Ω·, (15)

where S is the scalar curvature, ∇∗ is the adjoint of ∇ and Ω· is the extension of the
Clifford multiplication to differential forms given by (e∗i ∧ e

∗
j ) ·ψ = ei · ej ·ψ. For the

Friedrich connection ∇fXψ = ∇Xψ+ f
n
X ·ψ where f is real valued function one gets

a Schrödinger-Lichnerowicz type formula similar to the one obtained by Friedrich in
[5]:

(D − f)2ψ = △fψ + (
S

4
+
n− 1

n
f2)ψ +

i

2
Ω · ψ −

n− 1

n
(2fDψ +∇f · ψ), (16)

where △f is the spinorial Laplacian associated with the connection ∇f .

A complex number λ is an eigenvalue of D if there exists a nonzero eigenspinor
ψ ∈ Γ(ΣM) ∩ L2(ΣM) with Dψ = λψ. The set of all eigenvalues is denoted by
σp(D), the point spectrum. We know that if M is closed, the Dirac operator has
a pure point spectrum but on open manifolds, the spectrum might have a contin-
uous part. In general the spectrum of the Dirac operator σ(D) is composed of the
point, the continous and the residual spectrum. For complete manifolds, the residual
spectrum is empty and σ(D) ⊂ R. Thus, for complete manifolds, the spectrum can
be divided into point and continous spectrum. But often another decomposition of
the spectrum is used: the one into discrete spectrum σd(D) and essential spectrum
σess(D).
A complex number λ lies in the essential spectrum of D if there exists a sequence of
smooth compactly supported spinors ψi which are orthonormal with respect to the
L2−product and

‖(D − λ)ψi‖L2 −→ 0.

The essential spectrum contains all eigenvalues of infinite multiplicity. In contrast,
the discrete spectrum σd(D) := σp(D)�σess(D) consists of all eigenvalues of finite
multiplicity. The proof of the next property can be found in [7]:
On a Spinc complete Riemannian manifold, 0 is in the essential spectrum of D − λ
if and only if 0 is in the essential spectrum of (D − λ)2 and in this case, there is
a normalized sequence ψi ∈ Γc(ΣM) such that ψi converges L2-weakly to 0 with
‖(D − λ)ψi‖L2 −→ 0 and ‖(D − λ)2ψi‖L2 −→ 0.

Spinor bundles associated with conformally related metrics

The conformal class of g is the set of metrics g = e2ug, for a real function u on M . At
a given point x of M , we consider a g-orthonormal basis {e1, . . . , en} of TxM . The
corresponding g -orthonormal basis is denoted by {e1 = e−ue1, . . . , en = e−uen} .
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This correspondence extends to the Spinc level to give an isometry between the asso-
ciated spinor bundles. We put a “ ” above every object which is naturally associated
with the metric g. Then, for any spinor fields ψ and ϕ, one has < ψ,ϕ >=< ψ,ϕ > ,

where < ., . > denotes the natural Hermitian scalar products on Γ(ΣM), and on
Γ(ΣM). The corresponding Dirac operators satisfy

D ( e−
n−1

2
u ψ ) = e−

n+1
2
u Dψ. (17)

The norms of any real 2-form Ω with respect to g and g are related by

|Ω|g = e−2u|Ω|g. (18)

O. Hijazi [11] showed that on a spin manifold the Energy-Momentum tensor verifies

|ℓϕ|2g = e−2u |ℓϕ|2g = e−2u |ℓψ|2g, (19)

where ϕ = e−
(n−1)

2
uψ. We extend the result to a Spinc manifold and get the same

relation.

Refined Kato inequalities

The Kato inequality states that for any section ψ of a Riemannian or Hermitian
vector bundle E endowed with a metric connection ∇ on a Riemannian manifold
(M, g) we have, away from the zeros of ψ

|d|ϕ|| ≤ |∇ϕ|. (20)

This could be seen as follows 2|ϕ||d|ϕ|| = |d|ϕ|2| = 2| < ∇ϕ,ϕ > | ≤ 2|ϕ||∇ϕ|. In
[4], refined Kato inequalities were obtained for sections in the kernel of first order
elliptic differential operators P . They are of the form

|d|ϕ|| ≤ kP |∇ϕ|,

where kP is a constant depending on the operator P . Without the assumption that
ϕ ∈ kerP , we get away from the zero set of ϕ

|d|ϕ|| ≤ |Pϕ|+ kP |∇ϕ|. (21)

A proof of (21) can be found in [4], [7], [3] or [9]. In [4] the constant kP is determined
in terms of the conformal weights of the differential operator P . For the Dirac

operator D and for D − λ, where λ ∈ R, we have kD = kD−λ =
√

n−1
n

.

3 Proof of the Hijazi inequalities

First, we follow the main idea of the proof of the original Hijazi inequality in the
compact case ([11], [10]), and its proof on spin noncompact case obtained by N.
Grosse [9]. We choose the conformal factor with the help of an eigenspinor and we
use cut-off functions near its zero-set and near infinity to obtain compactly supported
test functions.
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Proof of Theorem 1.3. Let ψ ∈ C∞(M,S) ∩ L2(M,S) be a normalised eigen-
spinor, i.e., Dψ = λψ and ‖ψ‖ = 1. Its zero-set Υ is closed and contained in a closed
countable union of smooth (n− 2)-dimensional submanifolds which has locally finite
(n−2)-dimensional Hausdorff measure [1]. Fix a point p ∈M . Since M is complete,
there exists a cut-off function ηi : M → [0, 1] which is zero on M \B2i(p) and equal
1 on Bi(p), where Bl(p) is the ball of center p and radius l. In between, the function
is chosen such that |∇ηi| ≤

4
i

and ηi ∈ C
∞
c (M). While ηi cuts off ψ at infinity, we

define another cut-off near the zeros of ψ. For this purpose, we can assume without
loss of generality that Υ is itself a countable union of (n− 2)-submanifolds described
above. Let ρa,ǫ be defined as

ρa,ǫ(x) =

{ 0 for r < aǫ

1− δ ln ǫ
r

for aǫ ≤ r ≤ ǫ
1 for ǫ < r

where r = d(x,Υ) is the distance from x to Υ. The constant 0 < a < 1 is chosen

such that ρa,ǫ(aǫ) = 0, i.e., a = e−
1
δ . Then ρa,ǫ is continuous, constant outside a

compact set and Lipschitz. Hence, for ϕ ∈ Γ(ΣM) the spinor ρa,ǫϕ is an element in
Hr

1(ΣM) for all 1 ≤ r ≤ ∞.
Now, consider Ψ := ηiρa,ǫψ ∈ H

r
1(ΣM). These spinors are compactly supported on

M \Υ. Furthermore, g = e2ug = h
4

n−2 g with h = |ψ|
n−2
n−1 is a metric on M \Υ. Setting

Φ := e−
n−1

2
uΨ (ϕ = e−

n−1
2
uψ), Equations (13), (18), (19) and the Schrödinger-

Lichnerowicz-type formula [15, (18)] imply

‖∇
ℓΦ

Φ‖2g = ‖D Φ‖2g −
1

4

∫

M−Υ
S|Φ|2vg −

∫

M−Υ
|ℓΦ|2|Φ|2vg

−

∫

M−Υ
<
i

2
Ω · Φ,Φ > vg

6 ‖D Φ‖2g −
1

4

∫

M

S|Ψ|2euvg −

∫

M

|ℓΦ|2|Ψ|2euvg

+
cn

4

∫

M

|Ω|g|Ψ|
2euvg

= ‖D Φ‖2g −
1

4

∫

M

(Se2u − cn|Ω|g)|Ψ|
2e−uvg −

∫

M

|ℓΨ|2|Ψ|2e−uvg

= ‖D Φ‖2g −
1

4

∫

M

(h−1LΩh)|Ψ|2e−uvg −

∫

M

|ℓΨ|2|Ψ|2e−uvg,

where ∇ℓ
ϕ

X ϕ is the spinor field defined in [11] by ∇ℓ
ϕ

X ϕ := ∇Xϕ+ℓϕ(X) ·ϕ and where
we used that |Φ|2vg = eu|Ψ|2vg and Se2u − cn|Ω|g = h−1LΩh (see [15]).
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Using Dϕ = λe−uϕ and < ∇(ηiρa,ǫ)· ϕ,ϕ >∈ C
∞(M, iR), we calculate

‖D Φ‖2g =

∫

M

|D(ηiρa,ǫϕ)|2vg

=

∫

M

|∇(ηiρa,ǫ) · ϕ|
2vg +

∫

M

λ2η2
i ρ

2
a,ǫ e

−2u|ϕ|2vg

= ‖∇(ηiρa,ǫ) · ϕ‖
2
g + λ2

∫

M

η2
i ρ

2
a,ǫ e

−(n+2)u|ϕ|2vg. (22)

Using (22) and ‖∇
ℓΦ

Φ‖2g > 0 in the equation above, we get

‖∇(ηiρa,ǫ) · ϕ‖
2
g ≥

1

4

∫

M

(h−1LΩh)|Ψ|2e−uvg +

∫

M

|ℓΨ|2|Ψ|2e−uvg

− λ2

∫

M

η2
i ρ

2
a,ǫ|ϕ|

2e−(n+2)uvg.

Moreover, we have

‖∇(ηiρa,ǫ)· ϕ‖
2
g =

∫

M

|e−u∇(ηiρa,ǫ) · ϕ|
2vg =

∫

M

|∇(ηiρa,ǫ) · ψ|
2e−uvg.

Thus, with eu = |ψ|
2

n−1 the above inequality reads
∫

M

|∇(ηiρa,ǫ)|
2|ψ|2

n−2
n−1 vg ≥

1

4

∫

M

ηiρa,ǫ|ψ|
n−2
n−1LΩ(ηiρa,ǫ|ψ|

n−2
n−1 )vg

−
n− 1

n− 2

∫

M

|∇(ηiρa,ǫ)|
2|ψ|2

n−2
n−1 vg +

∫

M

|ℓψ|2|ψ|2
n−2
n−1 η2

i ρ
2
a,ǫvg

−λ2

∫

M

η2
i ρ

2
a,ǫ|ψ|

2n−2
n−1 vg.

Hence, we obtain

2n− 3

n− 2

∫

M

|∇(ηiρa,ǫ)|
2|ψ|2

n−2
n−1 vg ≥

(

µ1

4
+ inf

M
|ℓψ|2 − λ2

)
∫

M

η2
i ρ

2
a,ǫ|ψ|

2n−2
n−1 vg,

where µ1 is the infimum of the spectrum of the perturbed conformal Laplacian. With
|ηi∇ρa,ǫ + ρa,ǫ∇ηi|

2 ≤ 2η2
i |∇ρa,ǫ|

2 + 2ρ2
a,ǫ|∇ηi|

2 we have

k

∫

M

(η2
i |∇ρa,ǫ|

2 + ρ2
a,ǫ|∇ηi|

2)|ψ|2
n−2
n−1 vg ≥

(

µ1

4
+ inf

M
|ℓψ|2 − λ2

)

‖ηiρa,ǫ|ψ|
n−2
n−1 ‖2

where k = 22n−3
n−2 . Next, we examine the limits when a goes to zero. Recall that

Υ∩B2i(p) is bounded, closed, (n−2)-C∞-rectifiable and has still locally finite (n−2)-
dimensional Hausdorff measure. For fixed i we estimate

∫

M

|∇ρa,ǫ|
2η2
i |ψ|

2n−2
n−1 vg ≤ sup

B2i(p)
|ψ|2

n−2
n−1

∫

B2i(p)

|∇ρa,ǫ|
2vg.
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Furthermore, we set Bǫ,p := {x ∈ Bǫ | d(x, p) = d(x,Υ)} withBǫ := {x ∈M | d(x,Υ) ≤
ǫ}. For ǫ sufficiently small each Bǫ,p is star shaped. Moreover, there is an inclusion
Bǫ,p →֒ Bǫ(0) ⊂ R2 via the normal exponential map. Then we can calculate

∫

Bǫ∩B2i(p)

|∇ρa,ǫ|
2vg ≤ voln−2(Υ ∩B2i(p)) sup

x∈Υ∩B2i(p)

∫

Bǫ,x\Baǫ,x

|∇ρa,ǫ|
2vg′

≤ cvoln−2(Υ ∩B2i(p))

∫

Bǫ(0)\Baǫ(0)

|∇ρa,ǫ|
2vgE

≤ c′
ǫ

∫

aǫ

δ2

r
dr = −c′δ2 ln a = c′δ → 0 for a→ 0

where voln−2 denotes the (n − 2)-dimensional volume and g′ = g|Bǫ,p . The positive

constants c and c′ arise from voln−2(Υ ∩B2i(p)) and the comparison of vg′ with the
volume element of the Euclidean metric. Furthermore, for any compact set K ⊂M

and any positive function f it holds ρ2
a,ǫf ր f and thus by the monotone convergence

theorem, we obtain when a −→ 0,
∫

K

ρ2
a,ǫfvg −→

∫

K

fvg.

When applied to the functions ρ2
a,ǫ|∇ηi|

2|ψ|2
n−2
n−1 , with K = B2i(p) we get

∫

B2i(p)

ρ2
a,ǫ|∇ηi|

2|ψ|2
n−2
n−1 vg →

∫

B2i(p)

|∇ηi|
2|ψ|2

n−2
n−1 vg

as a→ 0 and thus,

k

∫

M

|∇ηi|
2|ψ|2

n−2
n−1 vg ≥

(

µ1

4
+ inf

M
|ℓψ|2 − λ2

)
∫

M

η2
i |ψ|

2n−2
n−1 vg.

Next we want to study the limit when i → ∞: Since M has finite volume and

‖ψ‖ = 1, the Hölder inequality ensures that
∫

M

|ψ|2
n−2
n−1 vg is bounded. With |∇ηi| ≤

4
i

we get

λ2 ≥
1

4
µ1 + inf

M
|ℓψ|2.

Equality is attained if and only if ‖∇
ℓΦ

Φ‖2g −→ 0 for i → ∞, a → 0 and Ω · ψ =
i cn2 |Ω|gψ. But we have

0←‖∇
ℓΦ

Φ‖2g = ‖ηiρa,ǫ∇
ℓΦ

ϕ+∇(ηiρa,ǫ)· ϕ‖g

≥ ‖ηiρa,ǫ∇
ℓϕ

ϕ‖g − ‖∇(ηiρa,ǫ)· ϕ‖g.

With ‖∇(ηiρa,ǫ) · ϕ‖g → 0, see above, ∇
ℓϕ

ϕ has to vanish on M \Υ.
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Proof of Corollary 1.4. By the Cauchy-Schwarz inequality, we have

|ℓψ|2 >
(tr(ℓψ))2

n
=
λ2

n
, (23)

where tr denotes the trace of ℓψ. Hence the lower bound (11) is satisfied. If equality
is satisfied in (11), it is satisfied also in (9). So, λ2 = n

4(n−1)µ1 = 1
4µ1 + |ℓψ|2 and

equality in (23) is satisfied. Hence it is easy to check that

Tψ(ei, ej) = 0 for i 6= j and Tψ(ei, ei) = ±
λ

n
.

Finally, ℓψ(X) = ±λ
n
X and ℓϕ(X) = e−uℓψ(X) = ±λ

n
e−uX. By (10) we get that ϕ

is a generalized Killing spinor and hence a Killing spinor for n > 4 ([14, Theorem
1.1]). The function e−u is then constant and ψ is a Killing spinor. For n = 3, we
follow the same proof as in [14]. First we suppose that λ1 6= 0, because if λ1 = 0,
the result is trivial. We consider the Killing vector ξ defined by

ig(ξ,X) =< X· ϕ,ϕ >g for every X ∈ Γ(TM).

It is shown in [14] that:

dξ = 2λ1e
−u ∗ ξ,

∇|ξ|2 = 0,

ξ · ϕ = i|ξ|2ϕ.

Since ∗ξ(ξ, .) = 0, the 2-form Ω can be written Ω = F ∗ ξ + ξ ∧ α, where α is a real
1-form and F a function. We have [14]

Ω(ξ, .) = |ξ|2α(.) = −4λ1d(e
−u)(.). (24)

Ω · ϕ = −iFϕ− i|ξ|2α · ϕ (25)

But equality in (11) is achieved so Ω· ϕ = i cn2 |Ω|gϕ, which imply that Ω· ϕ is collinear
to ϕ and hence α· ϕ is collinear to ϕ. But d(e−u)(ξ) = − 1

4λ1
Ω(ξ, ξ) = 0 so α(ξ) = 0.

It is easy to check that < α· ϕ,ϕ >g= 0 which gives that α· ϕ ⊥ ϕ. Because of
α· ϕ ⊥ ϕ and α· ϕ is collinear to ϕ, we have α· ϕ = 0 and finally α = 0. Using (24),
we obtain d(e−u) = 0, i.e., e−u is constant, hence ϕ is a Killing spinor and finally ψ
is also a Killing spinor.

Proof of Theorem 1.1 and Corollary 1.2. The proof of Theorem 1.1 is similar
to Theorem 1.3. It suffices to take g = g, i.e., eu = 1. Corollary 1.2 is obtained from
Corollary 1.4.

Next, we want to prove Theorem 1.5 using the refined Kato inequality:

11



Proof of Theorem 1.5. We may assume vol(M, g) = 1. If λ is in the essential
spectrum of D, then 0 is in the essential spectrum of D − λ and of (D − λ)2. Thus,
there is a sequence ψi ∈ Γc(ΣM) such that ‖(D − λ)2ψi‖ → 0 and ‖(D − λ)ψi‖ → 0
while ‖ψi‖ = 1. We may assume that |ψi| ∈ C

∞
c (M). That can always be achieved

by a small perturbation. Now let 1
2 ≤ β ≤ 1. Then |ψi|

β ∈ H2
1 (M). First, we will

show that the sequence ‖d|ψi|
β‖ is bounded: By the Hölder inequality we have

0← ‖ψi‖
2β−1‖(D − λ)2ψi‖ ≥ ‖|ψi|

2β−1‖{|ψi|6=0}‖(D − λ)2ψi‖

≥
∣

∣

∣

∫

|ψi|6=0

|ψi|
2β−2 < (D − λ)2ψi, ψi > vg

∣

∣

∣
.

Using (13) and the Schrödinger-Lichnerowicz type formula (16), we obtain

‖(D − λ)2ψi‖ ≥
∣

∣

∣

∫

|ψi|6=0

|ψi|
2β−2 < ∆λψi, ψi > vg +

∫
(

S

4
−
cn

4
|Ω|g −

n− 1

n
λ2

)

|ψi|
2βvg

−2
n− 1

n

∫

|ψi|6=0

|ψi|
2β−2 < (D − λ)ψi, λψi > vg

∣

∣

∣

≥

∫

|ψi|6=0

|ψi|
2β−2|∇λψi|

2vg +2(β − 1)

∫

|ψi|6=0

|ψi|
2β−3< d|ψi|·ψi,∇

λψi>vg

+

∫
(

S

4
−
cn

4
|Ω| −

n− 1

n
λ2

)

|ψi|
2βvg

−2
n− 1

n
λ‖|ψi|

2β−1‖{|ψi|6=0}‖(D − λ)ψi‖.

With the Hölder inequality (recall that β ≤ 1) and the refined Kato inequality (21)
for the connection ∇λ, we have

‖(D − λ)2ψi‖ ≥ (2β − 1)

∫

|ψi|6=0

|ψi|
2β−2|d|ψi|| |∇

λψi|vg

+

∫
(

S

4
−
cn

4
|Ω| −

n− 1

n
λ2

)

|ψi|
2βvg − 2

n− 1

n
λ‖ψi‖

2β−1‖(D − λ)ψi‖

≥ (2β − 1)

∫

|ψi|6=0

|ψi|
2β−2|d|ψi||

2vg +

∫
(

S

4
−
cn

4
|Ω| −

n− 1

n
λ2

)

|ψi|
2βvg

−2
n− 1

n
λ‖(D − λ)ψi‖

≥ (2β − 1)
1

β2

∫

|ψi|6=0

|d|ψi|
β |2vg +

∫
(

S

4
−
cn

4
|Ω| −

n− 1

n
λ2

)

|ψi|
2βvg

−2
n− 1

n
λ‖(D − λ)ψi‖.
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Since S−cn|Ω| is bounded from below,
∫

(S−cn|Ω|)|ψi|
2βvg ≥ inf(S−cn|Ω|) ‖ψi‖

2β
2β ≥

min{inf(S − cn|Ω|), 0} is also bounded. Thus, with ‖(D − λ)ψi‖ → 0 we see that
‖d|ψi|

β‖ is also bounded. Next we fix α = n−2
n−1 and obtain

µ1

4
−
n− 1

n
λ2 ≤

(

µ1

4
−
n− 1

n
λ2

)

‖|ψi|
α‖2

≤
1

4

∫

|ψi|
αLΩ|ψi|

αvg −
n− 1

n
λ2‖|ψi|

α‖2

=

∫

|ψi|
2n−2
n−1

−2
[

(
n

n− 1
|d|ψi||

2 +
1

2
d∗d|ψi|

2

+

(

s

4
−
cn

4
|Ω| −

n− 1

n
λ2

)

|ψi|
2
]

vg,

where we used the definition of µ1 as infimum of the spectrum of LΩ and the following

|ψi|
αd∗d|ψi|

α =
α

2
|ψi|

2α−2d∗d|ψi|
2 − α(α− 2)|ψi|

2α−2|d|ψi||
2.

Next, using

1

2
d∗d < ψi, ψi > = < ∇∗∇ψi, ψi > −|∇ψi|

2

= < D2ψi, ψi > −
S

4
|ψi|

2 −
i

2
< Ω · ψi, ψi > −|∇ψi|

2

6 < D2ψi, ψi > −
1

4
(S − cn|Ω|)|ψi|

2 − |∇ψi|
2,

and

|∇λψi|
2 = |∇ψi|

2 − 2Re
λ

n
< (D − λ)ψi, ψi > −

λ2

n
|ψi|

2.,

we have

µ1

4
−
n− 1

n
λ2 ≤

∫

|ψi|
2n−2
n−1

−2

(

n

n− 1
|d|ψi||

2 − |∇λψi|
2

)

vg

+

∫

|ψi|
2n−2
n−1

−2
< (D2 − λ2)ψi, ψi > vg

−

∫

2|ψi|
2n−2
n−1

−2Re
λ

n
< (D − λ)ψi, ψi > vg

≤

∫

|ψi|
2n−2
n−1

−2

(

n

n− 1
|d|ψi||

2 − |∇λψi|
2

)

vg

+

∫

|ψi|
2n−2
n−1

−2
< (D − λ)2ψi, ψi > vg

+

∫

2

(

1−
1

n

)

λ|ψi|
2n−2
n−1

−2Re < (D − λ)ψi, ψi > vg.
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The last two summands vanish in the limit since
∣

∣

∣

∣

∫

|ψi|
2n−2
n−1

−2
< (D − λ)2ψi, ψi > vg

∣

∣

∣

∣

≤ ‖(D − λ)2ψi‖ ‖ |ψi|
n−3
n−1 ‖ → 0,

∣

∣

∣

∫

|ψi|
2n−2
n−1

−2Re < (D − λ)ψi, ψi > vg

∣

∣

∣
≤ ‖(D − λ)ψi‖ ‖ |ψi|

n−3
n−1 ‖ → 0.

For the other summand we use the Kato-type inequality (21)

|d|ψ|| ≤ |(D − λ)ψ|+ k|∇λψ|,

which holds outside the zero set of ψ and where k =
√

n−1
n

. Thus, for n ≥ 5 we can

estimate
∫

|ψi|
2n−2
n−1

−2

(

n

n− 1
|d|ψi||

2 − |∇λψi|
2

)

vg

=

∫

|ψi|
2n−2
n−1

−2(k−1|d|ψi|| − |∇
λψi|)(k

−1|d|ψi||+ |∇
λψi|)vg

≤ k−1

∫

{|d|ψi||≥k|∇λψi|}

|ψi|
2n−2
n−1

−2|(D − λ)ψi|(k
−1|d|ψi||+ |∇

λψi|)vg

≤ 2k−2

∫

{|d|ψi||≥k|∇λψi|}

|ψi|
2n−2
n−1

−2|(D − λ)ψi||d|ψi||vg

≤ 2k−2

∫
(

2
n− 2

n− 1
− 1

)−1

|(D − λ)ψi||d|ψi|
2n−2
n−1

−1|vg

≤ 2k−2n− 1

n− 3
‖(D − λ)ψi‖ ‖d|ψi|

n−3
n−1 ‖.

For n ≥ 5 we have 1 ≥ n−3
n−1 ≥

1
2 and, thus, ‖d|ψi|

n−3
n−1 ‖ is bounded. Together with

‖(D − λ)ψi‖ → 0 we obtain the following: For all ǫ > 0 there is an i0 such that for
all i ≥ i0 we have

∫

|ψi|
2n−2
n−1

−2

(

n

n− 1
|d|ψi||

2 − |∇λψi|
2

)

vg ≤ ǫ.

Hence, we have µ1

4 ≤
n−1
n
λ2.
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