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Abstract

Molecular circadian clocks, that are found in all nucleated cells of mam-
mals, are known to dictate rhythms of approximately 24 hours (circa diem)
to many physiological processes. This includes metabolism (e.g., tempera-
ture, hormonal blood levels) and cell proliferation. It has been observed in
tumor-bearing laboratory rodents that a severe disruption of these physio-
logical rhythms results in accelerated tumor growth.

The question of accurately representing the control exerted by circadian
clocks on healthy and tumour tissue proliferation to explain this phenomenon
has given rise to mathematical developments, which we review. The main
goal of these previous works was to examine the influence of a periodic con-
trol on the cell division cycle in physiologically structured cell populations,
comparing the effects of periodic control with no control, and of different
periodic controls between them. We state here a general convexity result
that may give a theoretical justification to the concept of cancer chronother-
apeutics. Our result also leads us to hypothesize that the above mentioned
effect of disruption of circadian rhythms on tumor growth enhancement is
indirect, that, is this enhancement is likely to result from the weakening of
healthy tissue that are at work fighting tumor growth.
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1 Introduction: a challenging question from

biology

The existence of circadian rhythms in humans has been known for cen-
turies [Lem09], but only recently, in the last thirty years, has their molec-
ular nature been located and understood in cell physiological mechanisms
[RW02, HRM03]. Circadian clocks (from the latin circa diem, about one day)
have been shown to be present in all nucleated cells, and to be conducted by
a central circadian clock. This clock consists in about 20000 coupled neurons
located in the suprachiasmatic nuclei of the mammalian hypothalamus, and
is itself reset by external light through the retinohypothalamic tract. Cir-
cadian clocks influence by nervous or hormonal messengers cell metabolism
and tissue proliferation [RW02, BJS99, BJ02, FL03, LS07].

In a series of papers [FKL+02, FDK+04, FIW+05] reporting results from
biological experiments on laboratory rodents, Filipski et al. have shown
that a severe disruption, obtained either by surgery or by light entrainment
perturbations, of the central hypothalamic circadian clock in tumor-bearing
mice leads to an acceleration of tumor growth. These experiments were
conducted to give experimental confirmation of the fact, known in the clinic
of cancer, that patients with maintained circadian rhythms, i.e., significant
amplitude of 24h-periodic signals of rest-activity rhythm, temperature, and
blood cortisol level, have a much better prognosis than those whose circadian
rhythms are damped or ablated [LS07].

From a mathematical point of view, this question is related to the control
of growth processes. As far as linear models (or locally linearized models
of more complex ones) are concerned, the natural output of such growth
processes to be controlled is a dominant eigenvalue. Tissue proliferation
observed at the macroscopic level, e.g., of tumor growth, relies at the micro-
scopic level on cell division in populations of cells. For this reason,the first
author, and others, in 2003 initiated a series of studies [CLMP03, CMP06,
CMP07, CGP07, BCP08, BCRP08, Dou07, CGL09]. In these studies, they
designed physiologically based models of the cell division cycle in proliferat-
ing cell populations, and of their external control. In large cell populations, it
is natural to choose for these models systems of partial differential equations
including parameters that will become targets for an external control. Such
control may be physiological, i.e., hormonal or circadian, or else pharmaco-
logical, by drugs acting on the cell division cycle, as is the case in the clinic of
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cancer (cytotoxic drugs). It is noteworthy that chronotherapeutics of cancer
precisely uses with clinical success periodic pharmacological control of the
cell division cycle [LS07, L0́1]. But even without considering pharmacologi-
cal control, and only physiological control by circadian inputs, we have been
led to examine the effects of a periodic control on the cell division cycle in
proliferating cell populations.

Underlying biological questions on which mathematical modelling can
shed some light are: What is the exact effect of a periodic control on cell
proliferation measured by a dominant eigenvalue of the process? In what
sense do circadian rhythms act on cell and tissue proliferation? Enhance-
ment or lowering? Is the aforementioned biological phenomenon observed
in tumor-bearing mice the result of an effect on tumor cells, or on healthy
cells hampered in their fight against cancer? Can an enhancement of circa-
dian (hormonal, photic) rhythms by artificial external delivery be used as an
adjuvant treatment against cancer? Mathematical models can certainly not
answer all these questions, but they may give guidelines to help solve them,
and this has been for us an incentive to undertake studies on periodic control
of the cell division cycle.

In this paper, we review our results, including a new unifying convexity
inequality for the Floquet eigenvalue (Theorem 1). The latter inequality
implies that, assuming the therapeutic control only influences the death rates
of cells, the stationary control can always be replaced by a periodic control
with the same average, in such a way that the growth rate is increased.
This property accounts for the importance of circadian effects on toxicity
for healthy tissue. The fact that the growth rate is generically increased by
a periodic control should be compared with the experimental observation of
Filipski et al. ([FDK+04, FIW+05]) that tumor proliferation is decreased by a
periodic control. In this perspective, our results support the hypothesis that
the effect of circadian control on tumor proliferation is likely to be indirect,
not resulting as firstly envisioned from a direct action on tumor cells, but
more probably from the weakening of healthy tissues that are at work fighting
tumor growth.

This paper is organized as follows : in section 2 we detail the foundations
of our type of models. In section 3, we review our results on the dominant
eigenvalue, state our main new convexity result and explain how these results
are supporting cancer chronotherapeutics and lead us to change our point of
view on the initial observation of Filipski et al. on tumor growth enhancement
by circadian disruption as explained in the last paragraph.
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2 Physiological and pharmacological control

on cell proliferation

The cell division cycle can be modelled in proliferating cell populations by
age-structured partial differential equations. Note that in this perspective,
space is not necessarily a relevant variable. One can reasonably assume
that tissue vascularization, both in healthy tissues and in evolved tumors,
as one can observe under a microscope, is extended enough so as to allow
us to hypothesize a homogeneous distribution of drugs and hormones from
the central blood compartment into a common cell population, healthy or
tumoral. We emphasize here that the models we use claim not to reflect
the position of a plain observer of solid tumor growth, tuning biophysical
parameters, but rather the (supposedly more active) role of a pharmacologist
acting by known molecular inputs - drugs or hormones, or other control
mechanisms - on physiological targets in a reduced model of cell proliferation,
with the aim to limit cancer proliferation. It is having this “physician rather
than physicist” caveat in mind that we have designed such physiologically
based models where age in cell cycle phases, not space, is the main structure
variable.

The cell division cycle is classically divided in four phases, namely G1,
S (for DNA synthesis), G2 and M (for mitosis, i.e., effective cell separation
into two daughter cells). In each of these phases, that may be considered
as subpopulations of the total considered cell population, cells proceed uni-
directionally toward the next phase, with cell doubling at mitosis, along an
age axis. This physiological variable age in fact represents different biological
processes such as DNA synthesis for S phase, and proteic synthesis for the
growth phases G1 and G2 during which cells prepare the biological material
necessary for DNA duplication (in S phase) or microtubule synthesis and
assembling (in M phase). In each of these phases, progression speed (i.e.,
age versus sideral time), death rate within the phase and rate of transition
to the next phase are physiological control targets. Progression speed may
be enhanced by external growth factors that bind to membrane receptors.
Death rate is controlled by pro- and antiapoptotic factors (apoptosis being
programmed cell death, necessary to maintain physiological equilibria incell
populations). And transition rates are controlled by proteic complexes of
cyclins and cyclin dependent kinases that show stiff dynamics and may be
thought of as gates, allowing or not passage from one phase to the next.
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If one does not take in the present studies growth factors into account, we
can simplify these physiological settings by setting progression speed in the
cell division cycle to a constant. The controlled parameters of the population
dynamics partial differential equation (PDE) model described below are then
death rates, hereafter di(t, x), and transition rates, hereafter Ki→i+1(t, x), in
phase i, (1 ≤ i ≤ I). In a first study on the dependency of the first eigen-
value of the growth process as a function of periodic control on death rates
or on transition rates [CMP06, CMP07], had been shown a result that was
rather a surprise to the authors. Biological evidence was indeed suggesting
the exact opposite of what was then obtained: time-periodic death rates, as
opposed to non controlled, i.e., constant death rates, with the same arith-
metic means, yield higher first eigenvalues, and thus enhanced proliferation of
the population (detailed below). Assuming that periodic control represents
the normal circadian rhythm regularly reset by dark-light alternance, and
no control (i.e., constant death rates) a disrupted circadian clock, we were
expecting from the aforementioned experiments on laboratory rodents the
converse, i.e., higher first eigenvalues in the case of a disrupted clock. This
apparent discrepancy was the motivation for us to understand more precisely
the dependency of eigenvalues on a periodic control on cell division processes.
We briefly review below the previously obtained results, and generalize them
by giving a new result relying on a convexity argument.

Moreover, we consider in a simple setting the representation of chronother-
apeutics by a periodic effect on death rates and we show that chronotherapeu-
tics is bound to yield generically better results than constant drug delivery.

3 Periodic control on the cell division cycle:

modelling and results

3.1 The linear age-structured model and the dominant

eigenvalue

There are many ways to model the circadian control on the cell cycle. One
of the simplest is to consider equations with time-periodic coefficients. We
have chosen to consider the framework of renewal equations. To study the
effect of periodic forcing, we have studied its effects on linear models. The
typical model, introduced in [CLMP03] is built as follows:
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• the cell cycle is divided into I successive physiological phases (typically
I = 4 and the phases are as usual G1, S, G2,M),

• in each phase i the population number (or density) is represented by a
cell variable ni(t, x) (t is time, x is the age in the phase),

• cells can leave each phase i with a rate Ki→i+1 to the next phase i+1,
which they enter with age 0.

This can be expressed as














∂tni(t, x) + ∂xni(t, x) + [di(t, x) +Ki→i+1(t, x)]ni(t, x) = 0,

ni+1(t, 0) =
∫∞

0
Ki→i+1(t, x)ni(t, x)dx,

n1(t, 0) = 2
∫∞

0
KI→1(t, x)nI(t, x)dx.

(1)

Note that every coefficient is taken as time-dependent. More precisely, we
assume coefficients to be T−periodic with respect to the time variable t.
Such systems are characterized by a dominant eigenvalue λF (F for Floquet,
referring to Floquet theory for the analysis of periodic solutions of differen-
tiable systems, see appendix (A.3) for a precise definition) which governs the
growth behavior of solutions, in the sense that solutions may be expressed as
eλF t times a bounded term. In the simplest case I = 1, without death rates,
already many mathematical effects of time heterogeneity can be observed.
The equation then reads

{

∂tn(t, x) + ∂xn(t, x) +K(t, x)n(t, x) = 0,

n(t, 0) = 2
∫∞

0
K(t, x)n(t, x)dx.

(2)

Note that an asymptotic link with a discrete system can be established and
that in such discrete systems, in some situations, a paradoxical decrease of the
growth rate may be obtained by increasing the division rate K(t, x) [Lep09].
For a more complete description of the dominant eigenvalue and its associated
eigenvectors, we refer to [CMP06, CGP07, CGL09, Lep09, MMP05].

3.2 Averaged coefficients: former results

A primary issue was to explain the results of the biological experiments of
[FKL+02, FDK+04, FIW+05] by comparing the dominant eigenvalues in dif-
ferent settings. The original approach consisted in modelling perturbation
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of circadian rhythms through a loss of time dependency. A natural choice
of relevant time-independent coefficients was the one given by the time av-
erage over a period, that is, obtained by replacing di(t, x), Ki→i+1(t, x) by

〈di(x)〉, 〈Ki→i+1(x)〉 (where we use the notation 〈f〉 = T−1
∫ T

0
f(s)ds for the

time average). The new system possesses also a dominant eigenvalue that
we now denote by λP (P for Perron, referring to the Perron-Frobenius the-
orem for positive linear operators). As the averaged system is supposed to
represent perturbed rhythms, we expected to obtain generically λF ≤ λP
(i.e., perturbed cells grow faster). The first result [CMP06] was almost ex-
actly the opposite: if the transition rates are time-independent, then one
can prove that λF ≥ λP . Biologically, this means that if a circadian control
is exerted only on death rates, then one expects that perturbations of this
control will actually lower the cell population growth instead of enhancing
it! To understand better the next results it is useful to consider even more
general models:

{

∂tni(t, x) + ∂xni(t, x) + di(t, x)ni(t, x) = 0,

ni(t, 0) =
∑

j

∫∞

0
Bj→i(t, x)nj(t, x)dx

(3)

The previous systems of PDEs (1,2) are only particular cases of such a system.
What is important here is that we just separated birth rates Bj→i and death
rates di. It is worth noticing that in models (1,2) transition rates contribute
to both rates! The result of [CMP06] can also be generalized as follows: if the
birth rates are time-independent then λF ≥ λP . This result was improved in
[CGP07] in the following way: consider system (3) where we replace death
rates by their time average and birth rates by their geometrical time average
exp(T−1

∫ T

0
logBj→i(t, x)dt), if we denote λg the dominant eigenvalue of this

system and as before λF is the dominant eigenvalue associated to the time-
dependent system, then, again λF ≥ λg. We let the reader remark that if
we consider this averaged version of the cell cycle system (1), the transition
coefficients will be arithmetically averaged in the PDE but geometrically
averaged in the boundary terms. We summarize the comparison results of
[CMP06, CGP07] in the following table:

We refer the reader to [CGL09] where it is shown that the inequality λg ≤
λP is a straightforward consequence of the arithmetic geometric inequality

exp

(

T−1

∫ T

0

logBj→i(t, x)dt

)

≤ T−1

∫ T

0

Bj→i(t, x)dt.
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Birth rates Death rates Dominant Inequalities
eigenvalue
Floquet

Bj→i(t, x) di(t, x) λF

geometric

exp(T−1
∫ T

0
logBj→i(t, x)dt) T−1

∫ T

0
di(t, x)dt λg λg ≤ λF ([CGP07])

Perron

T−1
∫ T

0
Bj→i(t, x)dt T−1

∫ T

0
di(t, x)dt λP λg ≤ λP ([CGL09])

Table 1: Summary of the previous results on the comparison of eigenvalues.

Note that it has also been theoretically established in [CGL09] that there is
no generic inequality between λF and λP .

3.3 A unifying convexity result

Our main result is the following convexity theorem.

Theorem 1 The dominant eigenvalue associated to System (3) is convex
with respect to the death rates di and geometrically convex with respect to the
birth rates Bj→i.
In other words, consider two sets of time T−periodic coefficients for Sys-
tem (3), namely

(B1
j→i, d

1
i )1≤i,j≤I , (B2

j→i, d
2
i )1≤i,j≤I ,

and denote λ1F , λ
2
F the associated dominant eigenvalues. Then for any θ ∈

[0, 1], if we denote by

dθi = θd1i + (1− θ)d2i , Bθ
j→i = (B1

j→i)
θ(B2

j→i)
1−θ

the death rates and birth rates, respectively, and by λθF the dominant eigen-
value associated to coefficients dθi , B

θ
j→i, then we have

λθF ≤ θλ1F + (1− θ)λ2F . (4)

Notice again that if we want to apply this to the cell cycle model, then
we have to replace Ki→i+1 by θK1

i→i+1 + (1 − θ)K2
i→i+1 in the PDE and by
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Birth rates Death rates Dominant Inequalities
eigenvalue

B1
j→i d1i λ1F

B2
j→i d2i λ2F

(B1
j→i)

θ(B2
j→i)

1−θ θd1i + (1− θ)d2i λθF λθF ≤ θλ1F + (1− θ)λ2F

Table 2: Summary of Theorem 1.

(K1
i→i+1)

θ(K2
i→i+1)

1−θ in the boundary terms. For the convenience of the
reader, we summarize the theorem in Table 2 (see Appendix and [Lep09] for
the proof).

Our convexity result generalizes the previous result of [CGP07] since the
inequality λg ≤ λF can be recovered from Theorem 1, by using Jensen’s
inequality. Considering different means (arithmetic and geometric) in the
infinitesimal and integral term still lacks biological foundation. Especially,
in the cell cycle model (1), since the geometrical mean is smaller than the
arithmetical mean, this introduces in the infinitesimal term an artificial death
term (the difference between the two means). Mathematically, it is easier to
see where those different means come from by rewriting the simplest renewal
equation (5) as a delay equation on n(t, 0) :

n(t, 0) =

∫ ∞

0

B(t, x)e−
∫
x

0
d(t−x+s,s)dsn(t− x, 0)dx.

On this formulation, one can consider that only geometrical averages are
used (on B(t, x)e−

∫
x

0
d(t−x+s,s)ds), the geometrical averaging of e−

∫
x

0
d(t−x+s,s)ds

is then equivalent to the arithmetical averaging of d. This gives at least a
mathematical, if not biological, justification for the introduction of a geo-
metric, rather than arithmetic, average for the birth rate.

3.4 An argument in favor of the indirect influence of

the circadian control on tumour cells

An apparent default of this theoretical construction is that we do not ex-
plain in a direct way (as we would have expected) the results of Filipski’s
experiments on tumor growth enhancement by circadian disruption, but as
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an interesting gain it provides a theoretical justification for the concept of
chronotherapeutics. More precisely:

An obvious limit of this approach is that it finally does not explain the
experimental results of [FKL+02, FDK+04, FIW+05]. Averaging the coeffi-
cients seems not to be the best way to represent perturbations of circadian
rhythms and we propose below alternative tracks to explain them.

However, as far as chronotherapeutics is concerned, these comparisons are
completely in keeping with the idea that the major effect of chronotherapy
consists in minimizing toxicity on healthy tissues. If one considers that tumor
tissues are less sensitive to circadian rhythms (in particular because one
of the hallmarks of cancer cells is that they are insensitive to antigrowth
factors, according to [HW00]; this insensitivity to antigrowth factors is likely
to extend to circadian inputs), we can focus only on circadian effects of
drugs on healthy tissues. The goal of a therapy may then be thought of as
to maximize the growth of healthy tissues that fight against a tumor, that
is, to maximize λF , for healthy tissues only, of course.

A first implication of the convexity inequality can be obtained if we model
a therapy by an effect on death rate. Consider that the death rates di(t, x)
correspond to the periodic delivery of a fixed dose of a given drug at any
time 0, T, 2T, . . .. We assume that a phase-shifted delivery schedule at times
ϕ, T + ϕ, . . . will modify the death rates to di(t + ϕ, x) and we denote the
corresponding dominant eigenvalue by λ(ϕ). A possible approach would
consist in delivering the dose of drug uniformly over a period. It would
lead to death rates T−1

∫ t

0
di(t, x)dt. We denote the corresponding dominant

eigenvalue by λu. Notice that neither the transition rates nor the birth rates
are affected here by the drug (which is of course a strong assumption). The
convexity inequality tells us that

λu ≤ T−1

∫ T

0

λ(ϕ)dϕ.

Hence, the phase may always be chosen in such a way that the periodic
treatment is less toxic than its equivalent constant treatment (i.e., with the
same daily dose).

To illustrate this convexity inequality, we show two extreme cases of the
profiles of λF as a function of the phase shift: low advantage of the periodic
treatment, but for a long range of phases, or else high advantage, but for a
short range. Comparing the phase ranges in these two extreme cases with

10



the equiprobabilistic (of being beneficial or detrimental) measure T/2 in the
choice of the phase, one obtains the two following schematic situations:

- the periodic delivery is for most of the time schedules (indexed by the
phase shift parameter ϕ) more efficient than the constant treatment
(mathematically |{ϕ, λ(ϕ) ≥ λu}| ≥ T/2, i.e., more than half of the
available periodic delivery shifts do better than constant delivery); the
gain is potentially low, but then highly probable even if the phase is
chosen at random

- the advantage obtained when λ(ϕ) ≥ λu is high for some ϕ: the gain
is high, but the therapeutic window is narrow.

These configurations are represented in Figure 1 and in Figure 2 (these
figures being here only meant as illustrative sketches, and not results of
simulations). Last but not least, this result also implies that if a periodic
delivery may be more toxic (if there exists ϕ such that λ(ϕ) < λu) then it
also necessarily may be less toxic (meaning that there exists ϕ such that
λ(ϕ) > λu).

The therapeutic window may be (in some molecular way that remains to
be elicited) genetically determined for a given individual and a given drug.
This might explain puzzling situations that are found in the clinic, where it
has been observed, for instance, that chronotherapy of colorectal cancer deliv-
ered at a commonly chosen peak phase resulted, by comparison with constant
delivery, in significantly higher survival in males, but in significantly lower
survival in females! ([GBG+06, LIP+09]). Our result does not explain such
observation; it suggests however that there should always be a therapeutic
window that improves survival. Therefore, lower survival in women could
be the result of a presently unadapted chronotherapeutic protocol in females
(so far, to our best knowledge, the same for men and for women). Our re-
sult suggests that, as in males, there should exist a best chronotherapeutic
schedule for females, leading to a significant advantage in survival.
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T

λF (θ)

λ̄

θ

Figure 1: A schematic case |{θ, λ(θ) ≥ λu}| ≥ T/2. Here λ(θ) = λF (θ)
is the Floquet eigenvalue, as a function of phase shift θ, and λu = λ is the
Perron eigenvalue.

T
θ

λF (θ)

λ̄

Figure 2: A schematic case |{θ, λ(θ) ≥ λu}| < T/2, in which a signifi-
cant advantage over constant infusion is obtained by chronotherapy. Same
notations as in Figure 1.
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a1 10/24
a2 10/24
a3 2/24

ψ1 10 ∗ (1 + 0.8 cos(2πt))
ψ2 10 ∗ (1− 0.8 cos(2πt))
ψ3 10

d1 0
d2 cos6(πt)
d3 0

Table 3: Coefficients in the numerical illustration of Figure 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

Figure 3: Possible advantages of chronotherapy: simulation for the coef-
ficients given in Table 3 and comparison between first eigenvalues λ(ϕ)
(sinewave-like) as a function of phase shift ϕ in abscissae and λu (constant
line), for healthy tissue growth.

We provide also a numerical illustration for this result. We consider a
three-phase cell cycle model having the following structure:















∂tni(t, x) + ∂xni(t, x) +
[

di(t) + ψi(t)χ[ai,∞[(x)
]

ni(t, x) = 0, 1 ≤ i ≤ 3,

ni+1(t, 0) = ψi(t)
∫∞

ai
ni(t, x)dx, i ≤ 2,

n1(t, 0) = 2ψ3(t)
∫∞

a3
n3(t, x)dx.

That is, we take system 1 with I = 3, di(t, x) = di(t) and Ki→i+1(t, x) =
ψi(t)χ[ai,∞[(x), where χI stands for the indicator (characteristic) function of
interval I. In a numerical experiment presented in Figure 3, the period being
1, we have chosen a set of coefficients that is summarized in Table 3.
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4 Possible alternative explanations for the ini-

tial observation

We have already mentioned that a possible explanation of the results of
[FKL+02, FDK+04, FIW+05] is that the main effect of a circadian control
is exerted on healthy cells rather that on cancer cells, that are supposed to
be less responsive to regulation factors, and from a chronotherapeutic point
of view, that less unwanted toxicity on healthy cells results from a periodic,
rather than constant, drug delivery schedule.

Another way to imagine a periodic control on the cell division cycle is to
think (following an idea first developed in [RRGG99]) that it may be exerted
on transition rates in a differentiated way, i.e., for instance with a common
circadian input resulting in phase-opposed gate opening at the G1/S and
G2/M transitions. This idea also tries to follow the biological observation
that circadian gene expression of Bmal1, that controls G2/M gate opening
through Wee1 and Cyclin B-Cdk1, is in antiphase with the expression of an-
other main circadian gene, Per2, that controls G1/S gate opening through
p21 and Cyclin E-Cdk2. In an unpublished simulation study on a 3-phase
model [Sei06], we have obtained that such phase-opposed periodic control
between G1/S and G2/M transitions physiologically results in lower eigen-
values by comparison with constant transition rates, i.e., no control at all.
That is, we always obtained the result λF ≤ λP , contrarily to the main
convexity result exposed above. By ‘physiologically’, we mean here that we
assumed a constant mitosis time, 1/24 of the total cell cycle time, which is
generally admitted by biologists of the cell cycle. In the same simulations,
we tested completely freely varying times for the other two phases, G1 and
S − G2, with total cell cycle duration time maintained constant. Note any-
way that an important difference in this alternative setting with the above
framework is that we used only arithmetic, never geometric averaging, for
the transition coefficients of the uncontrolled system. How can this discrep-
ancy be explained (provided that one admits the validity of these simulation
results, that are not accounted for by any theorem so far)? Independently
of the choice for the averaged system of the arithmetic or of the geometric
mean, for which we lack definitive biological justifications, this alternative
explanation might be related to a physiological, as opposed to pathological,
situation. In this situation, circadian controls on healthy tissues are nor-
mally exerted without being hampered. The experiments of Filipski et al.
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[FKL+02, FDK+04, FIW+05] occur on the contrary in a very pathological
situation describing a fast growing tumor and its surrounding healthy tis-
sue, that may be considerably perturbed, e.g., by tumor-emitted cytokines.
This is only speculation so far, and more biological experiments remain to be
done to confirm or infirm this hypothesis. In particular, the relationships that
may exist between tissue synchronization with respect to cell cycle phases,
in healthy and in tumour tissue, and phases of essential circadian proteins as
Bmal1 and Per2 may be critical and should be investigated to that purpose.

5 Conclusion

We use a general framework of physiologically structured PDEs to describe
the cell division cycle in proliferating cell populations and its control by peri-
odic inputs. Our motivation comes in particular from the knowledge of inputs
from physiological circadian clocks on the cell divisin cycle, but also from ex-
perimental results of cancer chronotherapeutics (periodic drug delivery). We
have also given a possible theoretical justification for the success of cancer
chronotherapeutics. Our mathematical results lead us to propose a simple,
but not immediately patent, explanation to account for the initial challeng-
ing biological observation (enhancement of tumor growth by circadian clock
disruption), provided that we admit that it is not the tumor, but rather
the healthy tissue that fights against it, that is the object of a perturbed
circadian control. Nevertheless, this speculation still needs to be supported
both by further experiments and by more elaborate, physiologically based,
mathematical models.

A Proof of the convexity result

We restrict the proof of the main convexity result to the simple case of a
single renewal equation. This result can be understood as a generalization
of a famous result of Kingman [Kin61] on nonnegative matrices. This result
can be summarized as follows : if we denote ρ the Perron root of nonnegative
matrices, then log ρ is convex with respect to diagonal coefficients and geo-
metrically convex with respect to the offdiagonal coefficients. This explains
the different treatment for birth and death coefficients : death which impact
is local is treated as a diagonal coefficient whereas the birth rate has a non-

15



local impact and therefore is treated as an offdiagonal coefficient. No new
difficulties arise in the generalization to systems. We study the behavior of
the renewal equation, which is of course a particular case of (3):

{

∂tn(t, x) + ∂xn(t, x) + d(t, x)n(t, x) = 0,

n(t, 0) =
∫∞

0
B(t, x)n(t, x)dx.

(5)

where the birth rate B and the death rate d are taken nonnegative and
T−periodic with respect to time t. The growth rate can be defined as the
unique real λF such that there exists two nonnegative associated eigenfunc-
tions (N, φ) satisfying:











































∂tN(t, x) + ∂xN(t, x) + [d(t, x) + λF ]N(t, x) = 0,

N(t, 0) =
∫∞

0
B(t, x)N(t, x)dx,

N(t+ T, x) = N(t, x), N ≥ 0, N 6= 0,

−∂tφ(t, x)− ∂xφ(t, x) + [d(t, x) + λF ]φ(t, x) = B(t, x)φ(t, 0),

φ(t+ T, x) = φ(t, x), φ > 0.

(6)

If such eigenelements do not exist (which can happen if the birth coefficient
B(t, x) vanishes for some values oft and x ), then we can define λF as the
infimum of real µ such that there exist a positive dual subeigenfunction φµ

satisfying:

{

−∂tφµ(t, x)− ∂xφµ(t, x) + [d(t, x) + µ]φµ(t, x) ≥ B(t, x)φµ(t, 0),

φµ(t+ T, x) = φµ(t, x), φµ > 0.
(7)

This relaxed definition of the Floquet eigenvalue is inspired by the Collatz-
Wielandt characterization of the dominant root arising in Perron-Frobenius
theory (see [HJ86] for instance). Note that if (µ, φµ) satisfies (7), then we
have,

d

dt

∫ ∞

0

n(t, x)e−µtφµ(t, x)dx ≤ 0,

therefore
∫ ∞

0

n(t, x)φµ(t, x)dx ≤ eµt
∫ ∞

0

n(0, x)φµ(0, x)dx.
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In words, any solution grows slower than eµt in a weighted space. Note that
when eigenelements exist the two notions coincide and the same computation
leads to

∫ ∞

0

n(t, x)φ(t, x)dx = eλF t

∫ ∞

0

n(0, x)φ(0, x)dx.

It justifies the idea that solutions grow like eλF t. The proof of the theorem
is mainly based on the following lemma

Lemma 1.1 Given two sets of T− periodic coefficients B1, B2, d1, d2, if we
can find (µ1, φ

1
µ1
) and (µ2, φ

2
µ2
) satisfying (7) (for d = d1, B = B1 and d =

d2, B = B2 respectively) , then we have for any θ ∈ [0, 1], denoting φθ =
(φ1

µ1
)θ(φ2

µ2
)1−θ, Bθ = (B1)

θ(B2)
1−θ and dθ = θd1 + (1− θ)d2,

{

−∂tφ
θ(t, x)− ∂xφ

θ(t, x) + [θµ1 + (1− θ)µ2 + dθ]φθ(t, x) ≥ Bθ(t, x)φθ(t, 0),

φθ(t+ T, x) = φθ(t, x), φθ > 0.
(8)

Proof. As φi
µi

is positive, we can write the equation on log φi
µi

(we just have
to divide by φi

µi
):

− ∂t log φ
1
µ1
(t, x)− ∂x log φ

1
µ1
(t, x) + (d1(t, x) + µ1) ≥ B1(t, x)

φ1
µ1
(t, 0)

φ1
µ1
(t, x)

, (9)

−∂t log φ
2
µ2
(t, x)− ∂x log φ

2
µ2
(t, x) + (d2(t, x) + µ2) ≥ B2(t, x)

φ2
µ2
(t, 0)

φ2
µ2
(t, x)

(10)

Thanks to the arithmetic geometric inequality, we have

θB1(t, x)
φ1
µ1
(t, 0)

φ1
µ1
(t, x)

+ (1− θ)B2(t, x)
φ2
µ2
(t, 0)

φ2
µ2
(t, x)

≥ Bθ(t, x)
φθ(t, 0)

φθ(t, x)
.

We also know that

θ logφ1
µ1
(t, x)+(1−θ) log φ2

µ2
(t, x) = log φθ(t, x), θd1(t, x)+(1−θ)d2(t, x) = dθ(t, x).

Noticing that, summing θ(9)+(1− θ)(10) gives

−∂t log φ
θ(t, x)−∂x log φ

θ(t, x)+(dθ(t, x)+θµ1+(1−θ)µ2) ≥ Bθ(t, x)
φθ(t, 0)

φθ(t, x)
.

Multiplying by φθ, we get

−∂tφ
θ(t, x)−∂xφ

θ(t, x)+
(

dθ(t, x)+θµ1+(1−θ)µ2

)

φθ(t, x) ≥ Bθ(t, x)φθ(t, 0).
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Corollary 1.1 With the above notations we have

λθF ≤ θλ1F + (1− θ)λ2F .

Proof. A first consequence of the proof of the previous lemma is that

λθF ≤ θµ1 + (1− θ)µ2,

and from the definition we can choose µi → λiF and conclude.
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