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Abstract— A Tabu Move Merge Split (TMMS) algorithm is 

proposed for the polygonal approximation problem. TMMS 

incorporates a tabu principle to avoid premature convergence 

into local minima. TMMS is compared to optimal, near to 

optimal top down Multi-Resolution (TDMR) and classical split 

and merge heuristics solutions. Experiments show that potential 

improvements for crudest approximations can be obtained. The 

evaluation is carried out on 2D geographic maps according to 

effectiveness and efficiency measures. 
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I.  INTRODUCTION 

Polygonal curve approximation has been widely studied in 
the past to scale up time consuming applications such as 
graphic display, contour detection or time series data mining. If 
we apprehend a discrete curve as a multidimensional vector, 
polygonal approximation can be seen as a dimension reduction 
technique that relates also to multidimensional scaling.  
 
Following polygonal approximation is an optimization problem 
that can be tackled along two angles: 

• Min-ε  problem: Given a polygonal curve Sc having N 
segments, find an approximation Ac having K 
segments such that the maximal approximation error ε 
is minimized. 

• Min-# problem: Given a polygonal curve Sc having N 
segments, find an approximation Ac with the minimum 
number of segments K so that the maximal 
approximation error does not exceed a given tolerance 
ε.   

 
Most of the proposed algorithms developed to solve these 
problems belongs either to graph-theoretic approaches 
[1,6,8,10,11,12], dynamic programming [5,7]  or to heuristic 
approaches [2,4,12,13,15]. Optimal solutions based on dynamic 
programming principle exist, nevertheless, there complexities 
are proved to be O(K.N

2
) leaving space for much faster but sub-

optimal solutions.  

Finding fast algorithms as near-to-optimality as possible for 
long input curves is still an open challenge leading to fruitful 
applications. In  [10] for instance, author proposed a fast and 

dirty filtering approach dedicated to time series retrieval whose 
efficiency is highly correlated with the quality of polygonal 
approximations. 

Recently, we have proposed a top town multiresolution 
algorithm (TDMR) [9] that solves the problem of polygonal 
curve approximation in linear time complexity O(N). This 
algorithm ensures near to optimal solutions between each two 
successive levels of resolution, but, as we descend the 
resolution levels, the approximations depart further from 
optimality. The only other known algorithm showing a linear 
complexity is the Douglas-Peucker algorithm [2,4]. It is faster 
than TDMR but provides approximations that are much farther 
to optimality than the ones provided by TDMR. In this paper, 
we explore heuristic strategies based on three elementary 
operations (merge, split and move) associated to a Tabu search 
principle and try to evaluate how these strategies could boost 
suboptimal solutions such as TDMR, Merge-L2 [12] or 
Douglas Peucker [2] heuristics.  

The second section of the paper states the problem definitions 
and introduces the three elementary operations at the basis of 
the heuristics we will detail into the third section of the paper. 
The fourth section presents and comments the experiments we 
have carried out on a set of 2D geographic maps; we conclude 
the paper and suggest some perspectives in the final section of 
the paper.   

II. PROBLEM DEFINITIONS AND THE THREE ELEMENTARY 

OPERATIONS 

We attempt to correct an approximation curve Ac of k points 
approaching a (source) curve Sc of n points (k << n) by the 
mean of elementary transformation operators: move, merge 
and split. To simplify the search space, and following the 

common definitions of the Min-ε  and Min-# problems, we 
take approximation points among the points of the target 
curve: Ac is therefore a sorted list of references (index) of 
points in Sc. 

 
Let Sc[i] be the ith point of the curve Sc. 

 
Let Ac[] be the reference to a point in Sc – the ith element of Ac 

is the Ac[i]
th point of Sc, i.e. the point Sc[Ac[i]] (Fig. 1). 
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Figure 1.  The reference curve Sc and an approximation Ac 

Let Sc[a,b] be the sub curve between the ath point and the bth 
point of the curve Sc.  
Let Ac[a,b] be the sub curve between the ath point and the bth 
point of the curve Ac.  

 

A. move operator 

With the aim of minimizing the Min-ε   criterion, the move 
operator slides a potentially misplaced point thru the set of 
curve’s indexes according to least surface error gradient 
direction. The error is computed as follows: 
 
For the approximation point ia (coding the ia

th element of the 
curve Ac), an evaluation of the surface between the sub curve 
Sc[Ac[ia-1], Ac[ia]] and the sub curve of Ac[ia-1, ia] is computed 
as Eleft(Sc, ia) summing the Euclidian distances between the 
points of Sc and the approximation line provided by Ac[ia-1, ia] 
(Figure 2).  
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deucl(D,P) stands for the Euclidian distance between a point P 

and a line D. 
 
 

 
Figure 2.  Gradient of the errors for the move operation 

 
Likewise,  
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Let Eleft/right(i) be the surface error balance supported by the ith 
point:  

 
Eleft/right (ia) = | Eleft(ia)- Eright(ia) |. 

 
The main idea here is to slide the ia

th point (in the Sc indexes 
space) to balance the left and right errors. If Eright(ia)> Eleft(ia)  
then the ia

th point is moved by one position right in the Sc 
indexes space (respectively left if Eright(ia)< Eleft(ia) ). The 
displacement is constrained by the segment boundary points ia-
1 and ia+1 (Alg. 1). 
 

Algorithm 1 

 
 
One execution of the operator move slides only one point - the 
point of Ac having the worse Eleft/right (i) (thus being the most 
unbalanced point on the Ac curve regarding the local surface 
error). 
 

B. split operator 

The split operator (Alg. 2) finds one of the point ic in Sc that 
maximises deucl (Ac, Sc[i]) and inserts a new point in Ac to 
correct this error – thus decreasing (eventually not strictly) the 

Min-ε   value. 
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Sc [0] 

Sc [1] 
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Sc[Ac[2]] 

Ac[ia-1] 

Ac[ia] 

Ac[ia+1] 

Eright Eleft 

Sc[j] 

Sc 

Ac 

OPERATOR move 
BEGIN 
 foreach point i in Ac 
  compute Eleft/right (i) 
 end foreach 
 select the point imax having the maximum Eleft/right (i) 
 if Eleft(imax) < Eright(imax)  

then  
if (Ac[imax-1]<Ac[imax] -1) 
then  

Ac[imax] := Ac[imax]  -1  
 // slides i to the left  

end if 
else  

if Eleft(imax) > Eright(imax)  
then  

if (Ac[imax+1] > Ac[imax] +1)  
then  
 Ac[imax] = Ac[imax]  +1  
 // slides i to the right  
end if 

end if 
 end if 

END 
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Algorithm 2 

C.  merge operator 

The  merge operator removes an element from Ac, thus 
merging the two adjacent approximating segments. Since the 
ratio k/error is important, the point to remove should be the 
point contributing the least to the global error – ie, it is 
important to discard first the points which removal increases 
the least the global error. 
 

 
Figure 3.  Application of the merge operation on element ia. 

 
The removal priority Rp for an element ia is computed as 

follows : The error criterion Error (Min-ε   for instance) is 
computed on the segments [Ac[ia-1], Ac[ia]],  [Ac[ia], Ac[ia+1]] 
(Figure 3) and if the element Ac[ia]  were to be discarded, on 
the segment [Ac[ia-1], Ac[ia+1]], the two segments [Ac[ia-1], 
Ac[ia]] and [Ac[ia], Ac[ia+1]] are merged.  
 

For instance, if the Min-ε   error is used:  
 

Rp(ia) = Max(Error min-e[ia-1, ia], Error min-e[ia, ia+1])  
/ Error min-e[ia-1, ia+1] 

 
Alg. 3 describes the process :  

 
 

Algorithm 3 

D. Refining the curve 

As introduced above, we attempt to correct an existing 
approximation curve Ac of k points approaching a (source) 
curve Sc of n points by the mean of elementary transformation 
operators move, merge and split :  

 
Algorithm 4 

 

Unfortunately, a sequence of move, split and merge does not 
ensure that the error criterion will strictly decrease. In fact, the 
experiments (see Fig. 4) show a sequence of global error 
changes similar to those existing in incremental learning (such 
as Back Propagation Networks, or to a least amount in Genetic 
Algorithm) – ie in stabilizations and step breaks:  this suggests 
that the optimization of the locations of the points is not a 
gradient process but rather a complex organizing mechanism 
necessary to explore the parameters space.  
 
It is then necessary to keep aside the best solution found and to 
expect the next iterations to eventually improve this solution. 
In the simple algorithm described above (Alg. 4), we decided 
to perform a number of loops proportional to the k elements of 
the approximation since we think that, in the ideal 
configuration, each element of the approximation should 
undergo – a least once -  a move/merge/split operator. 
 
Experimentally, we observe that k loops is a minimum limit to 
achieve the best expectable error: experimentally, more than 
2*k loops doesn’t increases the performances so far. 
 
 
 
 

Sc 

Ac 

Ac[ia-1] 

Ac[ia] 

Ac[ia+1] 

Ac[ia-1] 

Ac[ia+1] 

OPERATOR merge 
BEGIN 
 foreach element ia in Ac 
  compute Rp(ia) 
 end foreach 

select the element ia having the higher removal 
 priority Rp 

remove it 

END 

OPERATOR split 
BEGIN 
 foreach point ic in Sc 
  compute deucl(Ac, Sc[i]) 
 end foreach 
 select the point icmax with the maximum distance 
 insert a new point inew in Ac  

 that minimizes 
   deucl(Ac[inew-1, inew+1], Sc[icmax]) 

END 

FUNCTION Refine (Ac, Sc)   
// Refines the approximation Ac (of k elements) of the 
curve Sc (n points) 
BEGIN 
 repeat 2*k loops of 
  move(); 
  merge(); 
  split(); 
 end repeat 
END 
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During its exploration of the parameter’s space (as a vector of 
k indexes in the Sc curves), this algorithm seems to fall in 
gradient wells: Fig. 4 exhibits oscillating behaviours that 
prevents the search to go on: it seems that the sequence of 
move/merge/split can lead to configurations that occur 
sequentially after t loops. 
 
 

 
Figure 4.  Curve of n = 49344 points with k = 50 (best solution min-e = 

0.716) – No Tabu involved. 

 
This suggests that the same configuration of elements in Ac 
may be scanned more than once. Keeping the n

th last 
configurations of Ac

n and preventing (temporary) the algorithm 
to re-scan these previous solutions is somehow related to a 
search space strategy called Tabu Search [8]. 
 
In this example, we assumed that the cost to store and compare 
a new solution of Ac (of k points) to the t previous solutions 
would be important. Mostly, it is the recurring choice of the 
points to move, merge and split that leads to an endless 
evaluation of sequences of already-seen configurations. 
 
Therefore, we propose to introduce some Tabu search 
principles through the management a list of ‘recently points 
chosen to perform move/merge/split’ and prevent the operator 
from picking (again) one of the tagged element – at least as 
long as these elements are enqueued in this FIFO list. 
 
Restricting the search by the choice of one index point 
segments the search space in classes of approximation curves 
containing (or not) a specific point: this could be very 
restrictive at a first glance, but this strategy speeds up the 
search by selecting the curve containing the best / worse point 

in regard to the Min-ε  criterion. 
 

 
Figure 5.  Tabu with 5 elements (best solution min-e = 0.412) 

 
For a Tabu list of size tb elements, not only this strategy seems 
to prevent the rapid oscillating behaviour under tb loops, but 
also seems to increase the search speed.  
 

 
Figure 6.  Tabu of size 20 (best solution min-e = 0.409) 

Increasing the size of the Tabu list above 10-15 elements 
decreases the performance of the algorithm without significant 
better results (mostly under 10-4 for the maximum error). 

III. APPROACHES  

A. RSDP: Reduced Search Dynamic Programming 

The reference algorithms for curve approximations for the 

Min-ε  criterion are mostly based on dynamic programming 
 [12]: they usually provide the minimal error at a computational 
cost of O(n

2
). It is possible to reduce this complexity, 

constraining the search when near-optimal solutions are 
acceptable – lowering the computational cost to O(n

2
/k) : in 

the following experiments, RSDP stands for Reduced Search 

Dynamic Programming  [7]. 

B. MR : Multi Resolution 

In [9], we introduced a top-down multi resolution algorithm 
TDMR designed to compute iteratively nested approximations 
with a complexity (at the best case) of O(n): it features 
sequential processing of RSDP-like processing and outputs a 
multiresolution solution to the approximation problem. 
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C. I-TMMS : Refine with equidistant initialization 

This processing involves the refine function (described above) 
starting with a first curve of k points to correct: each ki point is 
initially set at equidistant position on the Sc curve (rounded to 
the nearest index). 2*k loops are performed. 

D. SPLT : Split  

Starting with an initial curve of k0=2 points (the first and last 
point of Sc), this algorithm performs k-2 split operations to 
reach the final k elements for Ac. 

E. MRG : Merge 

Likewise, this algorithm starts with the complete curve Sc – as 
the full collection of indexes for Ac – and decimates iteratively 
the points (by the mean of merge operators) until the number 
of remaining elements reaches k elements in Ac. 
 

F. MR/TMMS 

A multiresolution process (MR) is performed [9], refined by 
the tabu move/merge/split (TMMS) sequence of operators. 

G. SPLT/ TMMS 

The SPLT (split) is performed, followed by the refine (tabu  
move/merge/split) TMMS process. 

H. MRG/TMMS 

The MRG (merge) is performed, followed by the refine (tabu 
move/merge/split) TMMS process. 
 

IV. EXPERIMENTS 

The experiments have been performed on 10 curves Sc 
depicting the costal maps of Western Europe. The 10 curves Sc 
have at least n = 8192 points. 
We measure the fidelity of an approximation using the 
following formula:  
 

Fmethod = ERDSP/Emethod 

 

where E is the Min-ε error. 
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Figure 7.  Fmethod for different values of k (number of points in Ac) 

RSDP, that is near-optimal, is used as reference solution. Fig.7 
shows the Fidelity for all the experimented methods. 
Basically, the TMMS procedure boosts the experimented 
methods for low k values. ISM performs quite well for values 
of k << n: it is only outperformed by MR and MR/TMMS : 
for k>64, ISM gives the worst results. MR/TMMS seems to 
improve marginally the error of MR. The TMMS procedure 
introduces a time cost that is measurable for all experimented 
methods in Fig.8. 
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Figure 8.  Evaluation for all experimented methods of computation time (in 

sec.) for different values of k.  

V. CONCLUSION 

We have introduced the use of move/merge/split operators 
using a Tabu-like selection to refine an existing approximation 
curve. We compared this approach with other sub optimal 
algorithms, namely top down multiresolution, split algorithm 
and merge algorithm. The TMMS procedure offers some 
boosting capability for the crudest approximations and could 
probably be used directly inside a multiresolution approach to 
improve the overall fidelity of the provided approximations a 
low level of resolution. 
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