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Computing Hironaka’s invariants: Ridge and Directrix

Jérémy Berthomieu, Pascal Hivert, and Hussein Mourtada

Abstract. In this note we present Hironaka’s invariants as developped by
Giraud: the ridge and the directrix. We give an effective definition and a
functorial one and show their equivalence. The fruit is an effective algorithm
that computes the additive generators of the ”ridge”, and the generators of its
invariant algebra.

Introduction

The problem of the resolution of singularities has made a tremendous progress
thanks to Hironaka’s contribution. In this article, we want to present some objects
that he introduced to resolve singularities, in particular we compute the subtle
invariant: the ridge (The notion ”ridge” is ”fâıte” in the original (French) litera-
ture). Take an ideal I ⊂ R, for instance R a polynomial ring (or a localization
thereof) over any field. Take x ∈ Spec(R/I). The directrix and the ridge live in
the tangent cone at x. The directrix is a vector space, the ridge an additive group.
These two objects are given only by the class of isomorphisms of R/I. Even more,
these invariants “commute with smooth morphisms” [5]. In particular, for any
isomorphism:

φ : R/I −→ S/J,

both R/I and S/J have isomorphic tangent cone, directrix and ridge at x and φ(x).
Giraud shows in [5] that the ridge is the tangent cone of a “maximal contact

variety” (see [9]). The ridge as we will see is generated by additive polynomials. In
characteristic 0, this means that the ridge is a linear space, therefore a “maximal
contact variety” is smooth. In characteristic p > 0, additive polynomials may not be
linear, therefore the ridge may not be linear and a “maximal contact variety” may
not be smooth. This is the crucial fact why Hironaka’s proof is not generalized for
free to positive characteristic. This generates a major difficulty, still not overcome in
the desingularization problem. An another difficulty is that if you blow up a singular
variety X along a singular point x ∈ X, the points “near” to x are on the Proj of the
ridge of the tangent cone. In [8], Hironaka shows that, in characteristic p > 0 there
are examples of points “near” to x which are not on the Proj of the directrix of the
tangent cone. In the 70’s a large literature about “Hironaka’s groups” appeared:
people has tried to classify the cases where “near” points are not on the Proj of
the Directrix of the tangent cone. The Ridge and “Hironaka’s groups” are closely
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2 JÉRÉMY BERTHOMIEU, PASCAL HIVERT, AND HUSSEIN MOURTADA

related, but we do not want to say more about this classification problem which is
known to be quite difficult. Nowadays, the ridge seems to be forgotten though it is
a very interesting object.

The contribution of this paper is the computation of a basis of the ideal of the
ridge whose elements are additive polynomials. Indeed, in [4, 5], Giraud shows how
to compute a set of generators of this ideal, but they are not additive polynomials
in general: see Example 3.7. We also hope that we clarified Giraud’s proofs.

Acknowledgement. V. Cossart1 gave a talk on this topic in Geocrypt2 and
he initiated us in a working group about desingularization in positive characteristic.
He is at the origin of this work, we would like to thank him for his helpful remarks.
The authors are very grateful to both the referees for their constructive comments
about this paper.

1. Notation and prerequisites, naive definitions of Ridge and Directrix

Until the end of this article, k denotes a field of any characteristic. We give in
this section an overview about cones, ridges and directrices.

A linear space of dimension n is A
n := SpecR, where R := k[X1, . . . , Xn]. A

cone C embedded in A
n is given as Spec k[X1, . . . , Xn]/I where I ⊂ k[X1, . . . , Xn]

is a homogeneous ideal.

Definition 1.1 (Directrix). The directrix of C is the linear space of equations
in Y1, . . . , Yτ , the smallest set of linear forms such that

(1.1) I = (I ∩ k[Y1, . . . , Yτ ])k[X1, . . . , Xn].

In a few words, the smallest list of variables to define I. Geometrically, there
are linear subspaces W ⊂ A

n such that C + W = C (take W = 0 for instance),
and if W1 and W2 are such, then so is W1 +W2. The directrix corresponds to the
biggest linear subspace W of A

n such that C +W = C.

Definition 1.2 (Naive definition of the ridge). The ridge [8] of C is the
additive space of equations in P1, . . . , Pe, the smallest set of additive polynomials
such that

(1.2) I = (I ∩ k[P1, . . . , Pe])k[X1, . . . , Xn].

This definition looks inconsistent, existence is not clear. Consistance is given
in Section 2.2. Obviously, they coincide in characteristic 0, but in characteristic
p > 0, they are in general different. In this paper, following Giraud [4, 5], we show
that it is easy to compute the ridge (easier than the directrix). Let us note that
the ridge has good properties (commutes to base changes, for example) that the
directrix has not. For instance, suppose that k has characteristic p > 0 and that
λ ∈ k is not a p-power, take I = (Xp +λY p)k[X,Y ], then the directrix is V(X,Y ),
the ridge is V(I), where V(I) stands for the variety defined by ideal I. Change k

in k̂ its algebraic closure, then the directrix is V(X + p
√
λY ), the ridge is still V(I).

1Université de Versailles–St-Quentin-en-Yvelines, CNRS LMV, UMR 8100
2GEOCRYPT2009
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2. The Ridge: formal definition, main properties.

2.1. Ridge as a functor. Let A
n
k be the n-dimensional affine space over k.

As above let C be the cone defined in A
n
k by the homogeneous ideal I, and let G be

the quotient R/I. The natural k-algebra homomorphism

∆ : k[X1, . . . , Xn] −→ k[X1, . . . , Xn]⊗ k[Y1, . . . , Yn]
Xi 7→ Xi + Yi

gives A
n
k the natural structure of a group scheme. We will call + the law that it

defines. If we see A
n
k as its functor of points, then we can define the sub-functor of

the category of Schemes over k to the category of Sets as follows: for a k-Scheme
S, F (S) is the subset of of the S-points v in A

n
k such that v + c ∈ C(S) for every

S-point c of C(S).
Now, we give some consequences of the definition. Let S be a k-Scheme, firstly,

0 is a S-point which lies in C(S), so for all v in F (S), 0 + v is an element of C(S),
that is to say F (S) ⊂ C(S). Therefore, seen as functors F is a subset of C. Secondly,
F (S) is a group scheme. The S-point 0 lies trivially in F (S). Let two S-points v
and w in F (S), the definition ensures that translations by v and w send the cone
C(S) to itself, so the composition, which is just the translation by v + w has the
same property. This forces (v + w) to be in F (S). Moreover, the inverse of the
translation by v, which is the translation by −v, preserves C(S), that is to say
−v ∈ F (S).

Proposition-Definition 2.1. The functor F is representable by a scheme F .
We call this scheme the ridge of C.

The remarks below say that F , the ridge of C is a group scheme, subscheme of
C, so the ridge of F (seen as a subscheme of C) is the ridge F .

Proof. 1. Let N be the maximum degree of a set of generators f1, . . . , fm of
I. Let Gℓ be the homogeneous component of degree ℓ of G (G is a graded algebra
because I is homogeneous). Let H :=

⊕

ℓ≤N Gℓ the k-vector space which is of
finite dimension, we can find a k-basis of H formed by monomials ei, i ∈ Λ. It
is easy to compute it, fi = XAi +

∑

B∈Nn,B<Ai
λBX

B . So H is spanned by XB ,

with |B| ≤ N and B /∈ ⋃

1≤i≤mAi + N
n. This family is a basis of H. Note that H

generates G as a k-algebra.
2. Let s be the composed morphism

s : R −→ R⊗k R −→ R⊗k G,

where the first morphism is ∆ and the second morphism is the canonical one.
For every d ∈ N, d ≤ N and f ∈ Id, s(f) is homogeneous of degree d, therefore
s(f) ∈ R⊗H and it can be uniquely written

s(f) =
∑

ℓ∈Λ

sℓ(f)⊗ eℓ, with sℓ(f) ∈ Rd−deg(eℓ).

This follows from the fact that R⊗kH is a free R-module generated by the 1⊗eℓ’s.
Now, f1, . . . , fm span I, so we define J the ideal generated by sℓ(fi), ℓ ∈ Λ, 1 ≤ i ≤
m.

3. Claim The subscheme of A
n
k defined by J represents the functor f . Indeed,

it is sufficient to verify that for a k-algebra B, the functor of points of Spec(R/J)
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applied to B coincides with F (B). The data of a B-point of A
n
k is a equivalent to

the data of a homomorphism v : R −→ B, which gives rise to

R
∆−→ R⊗k R −→ R⊗k G

v⊗1−→ B ⊗G.

If we want the translation by v to map C in C, i.e. that v belongs to F (B), (v⊗1)◦s
must annihilate I. This means that I should be in the kernel of (v ⊗ 1) ◦ s and
therefore the image of the translation by v is included in C. This is equivalent to
(v⊗ 1) ◦ s(f) =

∑

ℓ∈Λ v(sℓ(f))⊗ eℓ = 0 for every f ∈ Id, d ≤ N . But since B ⊗k H
is free of base 1 ⊗ eℓ, ℓ ∈ Λ, this is equivalent to v(sℓ(f)) = 0, therefore v factors
by R/J and it is a an R/J-point. �

Recall that F is an additive group and there is no reason for the si(fj)’s to be
additive polynomials in the general case. The idea of Giraud is to find a condition
on f1, . . . , fm to have this property.

We define by the Taylor formula, derivations of f , homogeneous polynomial
of degree s, DX

A f with A ∈ N
n by f(X + Y ) =

∑

A∈Nn,|A|≤s DX
A f(X)Y A. This

derivations DX
A are known as “Hasse-Schmidt” derivations.

Notations 2.2. From now on, we will only use the graded lexical order (grlex).
Hence “Gröbner basis” will always mean “Gröbner basis with respect to the grlex
order”. The ideal of the Ridge will be denoted by J .

For any P =
∑

A∈Nn λAX
A ∈ k[X], P 6= 0, exp(P ) is the greatest A such that

λA 6= 0.
For any homogeneous ideal I 6= {0} in k[X], the set {exp(P );P ∈ I − {0}} is

denoted exp(I) and is called the exponent of the ideal I.

Corollary 2.3 (Giraud). If f1, . . . , fm, the homogeneous generators of I,
satisfy DX

A fi = 0 with A ∈ exp(I) and |A| < deg(fi), then J is spanned by the
DX

A fi’s with A ∈ N
n, |A| < deg(fi).

Proof. We keep the same notations as in Proposition 2.1 and we identify
R ⊗k R with k[X,Y ]. Let Ȳi be the class of Yi in R ⊗k R/I. Since the Y A

i ’s,

A 6∈ exp(I), represent a k-basis of R/I, the Ȳi
A
’s, A 6∈ exp(I), give a basis of the

free R-module R ⊗k R/I. So with respect to this basis using the Taylor formula,
we have that the sℓ(f)’s, defined as above, are the DX

A fi’s, when the fi’s are as
above. �

Definition 2.4. A basis of I which verifies the statement of Lemma 2.3 will
be called a “Giraud basis” of the cone.

By the definition of the Hasse-Schmidt derivations above and for f ∈ R we
have

(2.1) f(X + Y )− f(X)− f(Y ) =
∑

0<|A|<d

(

DX
A f

)

(X)Y A.

Remark 2.5. We consider

(2.2) U = {f ∈ R | |f(X + Y )− f(Y ) ∈ J ⊗k k[Y ]} .

Clearly this is a subalgebra of R, and it is the invariant algebra of the ridge in A
n
k .
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Indeed, since the diagonal morphism from R to R⊗k R identifies with

k[X]→ k[X,Y ],

f(X) 7→ f(X + Y ),

then U is the algebra of functions on A
n
k such that for every k-scheme S and every

S-point (u, v) of F ×k A
n
k , we have f(u + v) = f(u). Let’s call Π the following

morphism
Π : R → R⊗k R → R/J ⊗k R

f (X) 7→ f (X) 7→ f (X) .

Elements of U are those whose images by ∆ and by Π are the same, hence it is the
kernel of ∆−Π. This means it is the kernel of the double morphisme (∆,Π). Since
R has a graded structure, it inherits also a graded structure and from Formulae
(2.1) and (2.2), for d ∈ N we have

(2.3) Ud =
{

f ∈ Jd′ | DX
A f ∈ J, d ≤ d′, d = d′ − |A|

}

.

By Taylor formula, for all f ∈ Ud and for all multi-indices A, |A| ≤ d, DX
A f ∈

Ud−|A|.

Lemma 2.6. With notations as above, let H be a k-graded subalgebra of k[X],
then the following assertions are equivalent.

(1) For all f ∈ Hd, for all multi-index A, |A| ≤ d, DX
A f ∈ Hd−|A|.

(2) There exist additive homogeneous polynomials θ1, . . . , θs, . . . such that

H = k[θ1, . . . , θs, . . . ].

Furthermore, in positive characteristic p, if the conditions above are fulfilled, up to
a re-indexation of the variables, one can take

θi = Xpαi

i + ti(Xi+1, . . . , Xn), 1 ≤ i ≤ s <∞,(2.4)

αi ≤ αi+1, 1 ≤ i ≤ s− 1 and ti, additive polynomials, in k[Xi+1, . . . , Xn].

Proof. For 1 ⇒ 2, we follow Giraud’s idea [4] pages I-29, 30. Let K be the
subalgebra of H generated by all additive homogeneous polynomials. Let N ∈ N

such that Hd = Kd for all d < N . Let f =
∑

A,|A|=N fAX
A ∈ HN , fA ∈ k, we will

prove that f ∈ KN . Let KN− be the algebra generated by K0, . . . ,KN−1, we will
prove that f is the sum of elements in KN− and of an additive polynomial.

Let A be the greatest multi-index for lex such that XA is not additive. If A is in
exp (KN−), let g be a polynomial in KN− such that its greatest monomial for lex is

XA. Then the greatest monomial of (f − fAg) is a XB with B < A. By induction,
we can find a suitable f such that its greatest non additive monomial for lex is not
in exp (KN−). We may assume that A is not the exponent (see Notations 2.2) of
an element of KN−. A := (a1, . . . , an), ai = pβiqi, qi relatively prime to p. There

exist multi-indices C and D such that A = C + D, DX
CX

A 6= 0 and DX
DX

A 6= 0.
Indeed, either there are two indices 1 ≤ i0 < i1 ≤ n such that ai0ai1 6= 0, take
C = A − (0, . . . , 0, i0, 0, . . . , 0), D = (0, . . . , 0, i0, 0, . . . , 0), either there is only one
index 1 ≤ i0 ≤ n with ai0 6= 0 and qi0 > 1, take C = (0, . . . , 0, pβi0 , 0, . . . , 0) and

D = (0, . . . , 0, pβi0 (qi − 1), 0, . . . , 0). We have DX
CX

ADX
DX

A = aXA, a ∈ k∗. By
hypothesis, DX

C f ∈ HN−|C| = KN−|C| and DX
Df ∈ HN−|D| = KN−|D|, A is the

exponent of DX
CX

ADX
DX

A ∈ KN−. This is a contradiction and A does not exist,
hence f is additive.
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Let us prove the converse. We denote g =
∑

λBθ
B ∈ k[θ1, . . . , θs, . . . ]. We

have

g(X +X ′) =
∑

λBθ(X +X ′)B

=
∑

λB(θ(X) + θ(X ′))B

=
∑

λB

(

B

B′

)

θ(X)B−B′

θ(X ′)B′

g(X +X ′) =
∑

C

PC(θ(X))X ′C ,

with PC ∈ k[θ1, . . . , θs, . . . ].
The next lemma applied to I = H>0 ends the proof. �

Lemma 2.7. Let char k = p > 0, with notations as above, let K be a k-graded
subalgebra of k[X], and I be an ideal generated by a set of additive homogeneous
polynomials φ1, . . . , φm, . . . , then, up to a re-indexation of the variables, we can
take

θi = Xpαi

i + ti(Xi+1, . . . , Xn), 1 ≤ i ≤ s ≤ n <∞,(2.5)

αi ≤ αi+1, 1 ≤ i ≤ s− 1 and ti, additive polynomials, in k[Xi+1, . . . , Xn].

Proof. We may assume deg(φi) ≤ deg(φi+1), 1 ≤ i ≤ m − 1. By making
linear combinations among the φi of smallest degree, up to a re-indexation of the
variables, we may assume that

φi = Xpαi

i + ti(Xi+1, . . . , Xn),(2.6)

with µi 6= 0, φi of smallest degree.
Claim. We may assume Formula (2.4) for every φi. Indeed, let i0 be the

smallest index such that we have not this formula for φi0 , then

φi0 =
∑

1≤j≤m

µi0,jX
p

αi0

j ,

where µi0,j ∈ k. Assume for instance that µi,1 6= 0, then we change φi0 in

φi0,1 := φi0 −
µi,1

µ1
φp

αi0
−α1

1 ∈ k[X2, . . . , Xn],

by an easy induction, we change φi0 in φi0,i0−1 ∈ k[Xi0 , . . . , Xn], the reader ends
the claim. �

Corollary 2.8. Let U be k[θ1, . . . , θs], then it is a polynomial algebra of vari-
ables θ1, . . . , θs.

Proof. Left to the reader. �

Corollary 2.9. With notations as above, R is a free module over U of basis

XA, A = (a1, . . . , an), ai < pαi , 1 ≤ i ≤ s.

Indeed, if exp
(

XAθB
)

= exp
(

XA′

θB′

)

with A = (a1, . . . , an), ai < pαi , 1 ≤
i ≤ s, A′ = (a′1, . . . , a

′
n), a′i < pαi , 1 ≤ i ≤ s, B,B′ ∈ N

n, by Formula (2.4),

(A,B) = (A′, B′). So the set of XA is U -free.
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Furthermore,
{

exp
(

XAθB
)

; A = (a1, . . . , an), ai < pαi , 1 ≤ i ≤ s, B ∈ N
n
}

= N
n,

the set of XA generates S over U .

Proposition 2.10. Let (f1, . . . , fm) be a Giraud basis of I. The DX
A fi’s for

|A| < deg fi, i = 1, . . . ,m generate U .

Proof. Let V be the subalgebra of R generated by the DX
A fi’s for |A| < deg fi,

i = 1, . . . ,m. Since U is as in Formula (2.3), V ⊂ U . The polynomials DX
A fi are

homogeneous, so V is a graded subalgebra of U . Denote by U+ and V+ the ideals
⊕

d>0 Ud and
⊕

d>0 Vd. From Corollary 2.3, we have that V+R = J therefore
U+R = V+R = J . On the other hand since R is faithfully flat over U (see Corollary
2.9), we have that V+U = U+. And we deduce by induction on the degree that
V = U . �

2.2. Naive and formal definitions coincide.

Proposition 2.11. Let J ⊂ k[X1, . . . , Xn] be a homogeneous ideal generated
by additive polynomials, then there exists G := {φ1, . . . , φs}, a reduced homogeneous
Gröbner basis of J , such that, up to a re-indexation of the variables,

φi = µiX
pαi

i + ti(Xi+1, . . . , Xn),(2.7)

with µi 6= 0, 1 ≤ i ≤ s, αi ≤ αi+1, 1 ≤ i ≤ s − 1 and ti, additive polynomials, in
k[Xi+1, . . . , Xn].

Furthermore, up to a re-indexation of the variables, Formula (2.7) is true for
all reduced homogeneous Gröbner bases of J .

Proof. The first assertion is a direct consequence of Lemma 2.7: it is clear
that a set of generators verifying Formula (2.4) is a reduced homogeneous Gröbner
basis of J . �

Corollary 2.12. Let I be a homogeneous ideal of k[X1, . . . , Xn], let G :=
{γ1, . . . , γs} be any reduced homogeneous Gröbner basis of J the ideal of the ridge
of V(I), then

I = (I ∩ k[γ1, . . . , γs])k[X1, . . . , Xn],

U = k[γ1, . . . , γs] and if K is a k-algebra generated by additive polynomials such
that

(2.8) I = (I ∩K)k[X1, . . . , Xn],

then U ⊂ K.

Proof. Let (f1, . . . , fm) be a Giraud basis of I, by Lemma 2.3, the DX
A fi’s

generate U , so Proposition 2.10 forces that there exists a reduced Gröbner basis
(θ1, . . . , θs) of J whose the form is

θi = X
pα

i

i + ti(Xi+1, . . . , Xn).

It follows that (θ1, . . . , θs) is a basis of U as a k-algebra. Now, the particular case
A = 0 gives that the fi’s are elements of U , so I = (I ∩K)k [X1, . . . , Xn].

Futhermore, as the ridge of J is J , if G := {µ1, . . . , µs} is any reduced homoge-
neous Gröbner basis of J , Lemma 2.3 and Proposition 2.10 applied to G give that
U = k[µ1, . . . , µs].
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Let K be a k-algebra generated by additive polynomials such that

I = (I ∩K)k [X1, . . . , Xn] .

We can find a basis (g1, . . . , gs) of I, with gi ∈ K, and then by Lemma 2.3, the
DX

A gi’s, with |A| < deg fi, generate U . But Proposition 2.6 ensures that this
derivations are in K. Finally, U ⊂ K. �

Proposition 2.13. There is a one-to-one correspondance between algebras gen-
erated by homogeneous additive polynomials included in k [X] and ideals generated
by homogeneous additive polynomials of k[X] .







algebras generated by
homogeneous additive

polynomials







←→







ideals generated by
homogeneous additive

polynomials







A → A+k [X]

k [X]
V (J) ← J

This correspondance preserves the inclusion.

Example 2.14. Let us explain the correspondance with an example in an
algebraic closed field of characteristic 3. Denote by U the algebra generated by X3

and Y 3 +Z3. It is clear that the ideal J , image of U by the first arrow, is spanned
by these polynomials.

For the reverse, it is enough to find homogeneous additive polynomials in the
algebra (as in the proof of Lemma 2.6). Let such a polynomial P = αX3a

+βY 3a

+
γZ3a

be in this algebra. We have

P (X +X ′)− P (X ′) = αX3a

+ βY 3a

+ γZ3a

.

So the condition P (X + X ′) − P (X ′) ∈ J ⊗ k[X ′] implies β = γ that is to say

P = αX3a

+ β
(

Y 3 + Z3
)a

. This algebra is also equal to U .

Proof. The first arrow is well-defined. The construction of the second arrow
is a consequence of Lemma 2.7 and Corollary 2.8. The bijection is easy to verify. �

Corollary 2.15. Let I1 and I2 be homogeneous ideals of k[X1, . . . , Xn], the
following assertions are equivalent:

(1) the ridge of I2 contains (as a subscheme) the ridge J1 of I1,
(2) I2 = (I ∩ k[θ1, . . . , θs]) k[X1, . . . , Xn], where G := (θ1, . . . , θs) is any re-

duced homogeneous Gröbner basis of J1.

Proof. Left to the reader. �

Now the reader should be convinced that the naive definition 1.2 and the formal
definition 2.1 of the ridge coincide.

3. An algorithm to compute the ridge and the directrix

3.1. An algorithm to compute a “Giraud basis” of the cone. We want
to point out that a “Giraud basis” is far from a “reduced Gröbner basis”. Let us
give an exemple to explain it.

Example 3.1. I = (f1, f2) ⊂ k[X,Y ] where f1 = XY , f2 = X3 + Y 3. Then
(f1, f2) is a “Giraud basis” and not a “reduced Gröbner basis”, (f1, f2, f3 = Y 4) is
a “reduced Gröbner basis”.
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Remark 3.2. A reduced Gröbner basis of the cone truncated to the degree of
the greatest given generator is a “Giraud basis”.

We use this easy remark. Our algorithm to compute a “Giraud basis” is almost
a Gröbner basis algorithm except we trash out any computed S-polynomial whose
degree is greater than the greatest given generator. Actually, since we can know
the degree of a S-polynomial before calculating it (recall all our polynomials are
homogeneous), if the degree doesn’t match our condition, we skip the computing
part. Although they have not been implemented, any known improvement for
computing a Gröbner basis, such as in [10, 1], can be used in this algorithm.

Algorithm 3.3. Giraud basis algorithm.
Input : Homogeneous polynomials f1, . . . , fm, such that deg f1 ≤ · · · ≤ degfm,
generating I.
Ouput : Homogeneous polynomials g1, . . . , gr, such that deg gi ≤ deg fm, generating
I and verifying Giraud’s lemma hypotheses.

(1) for i from 1 to m, fi ← fi/ lc (fi);
(2) compute a Gröbner basis of I by trashing the polynomials with higer

degrees than deg fm;
(3) minimalize and reduce this basis;
(4) return the truncated reduced Gröbner basis.

It should be noted that this kind of algorithm has already been implemented
in computer algebra softwares such as Singular.

Example 3.4. Let I = (f1, f2) ⊂ k[X,Y ], where f1 = X, f2 = Xp + Y p and

p = char k. As f2 is additive, D
(X,Y )
A (f2) = 0, for all A, |A| < p, A ∈ exp(I).

Then (f1, f2) is a “Giraud basis” and not a truncated “reduced Gröbner basis” as
in Example 3.1. Let us note that the monomial Xp which occurs in the expansion
of f2 is in exp(f1), so our algorithm will make an unnecessary computation and
give (f1, Y

p) in output.

3.2. From the “Giraud basis” to the ridge. Following Giraud’s Corollary
2.3, once we computed a Giraud basis (f1, . . . , fm) of the ideal of the tangent cone,
we compute the set E :=

{

DX
A fi, 1 ≤ i ≤ m, |A| < n(i)

}

of generators of the ideal
of the ridge. There are two very different cases:

(1) char k = 0;
(2) char k = p > 0.

In case 1, where char k = 0, to compute the ridge (which is also the directrix by
Section 1), we propose the following algorithm. Let us note that, in this case, where
char k = 0, up to multiplication by invertibles, the DX

A ’s are the usual differential
operators, hence in step 2, our algorithm may be apparently improved when we
have a good implementation of the DX

A ’s.

Algorithm 3.5. Ridge generators in characteristic 0 algorithm.
Input : f1, . . . , fm homogeneous polynomials verifying Giraud’s lemma hypotheses.
Output : DX

A fi’s of degree 1 for all i, 1 ≤ i ≤ m.

(1) L← ∅;
(2) for i from 1 to m

(a) gi ← fi

(

X +X ′
)

;

(b) for each monomial X ′A in gi
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(i) h← coeff
(

gi, X
′A

)

;
(ii) if deg h = 1, then L← L ∪ {h}.

(3) return L.

The case 2 is the most interesting and the most difficult. By Giraud’s Corollary
2.3, up to a change of indices on the variables, there is a basis

AF :=< φ1, · · · , φτ >,

where φi = Xpqi

i +
∑

i+1≤j≤n λjX
pqi

j , with λj ∈ k, 1 ≤ i ≤ τ , q1 ≤ q2 ≤ · · · ≤ qτ .
There is no hope that AF ⊂ E , see the example below.

Lemma 3.6. With hypotheses and notations as above, let us denote

Ep := {ψ ∈ E ,deg(ψ) is a p-power}.
Then Ep generates the ideal of the ridge.

Let us note that this generalizes the case 1.

Proof. We start with an example and a remark.

Example 3.7. I = (f), f = Xp + Y p−1X + Zp ∈ k[X,Y ]. Then

E = {Xp + Y p−1X + Zp, Y jX,Y i, 1 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1},
Ep = {X,Y,Xp + Y p−1X + Zp},
AF = {X,Y, Zp}.

Remark 3.8. With hypotheses and notations as above, elements of minimal
degree of J are additive polynomials.

Indeed, elements of minimal degree of J are linear combinations with coeffi-
cients in k of elements of minimal degree of a set of generators. As J is generated
by additive polynomials (by a general argument or by Proposition 3.9 below), these
elements are linear combinations of additive polynomials, hence they are additive.

Let us go back to the proof of Lemma 3.6. Take any ψ0 ∈ E of minimal degree
such that deg(ψ0) is not a p-power, let d := deg(ψ0). Then the ideals of R, the first
generated by ψ ∈ AF , with degψ < d, and the second generated by φ1, · · · , φi,
n(i) < d, n(i) maximal, are equal.

Let i1 = max {i, n(i) < d}, thanks to the fact that degφi > d for i > i1,
one must have ψ0 ∈ (φ1, . . . , φi1). Then replace AF by AF − {ψ0} and make an
induction on the cardinality of the set of generators. �

Proposition 3.9. Let G := (θ1, . . . , θs) be a reduced homogeneous Gröbner
basis of J the ideal of the ridge of V(I), I be a homogeneous ideal of k[X1, . . . , Xn],
with deg(θi) ≤ deg(θi+1), 1 ≤ i ≤ s − 1. Then θi is an additive polynomial for all
i, 1 ≤ i ≤ s.

Proof. By contradiction. Let θi0 ∈ G with i0 minimal such that θi0 is not an
additive polynomial, let d = deg(θi0). Then

θi0 =
∑

B∈N
n,|B|=d

B 6=(0,...,pα,0,...,0)

µBX
B +

∑

C∈N
n,|C|=d

C=(0,...,pα,0,...,0)

µCX
C ,
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where µB ∈ k and µC ∈ k

θi0 =: θ̃i0 + θ̄i0 ,

with θ̃i0 6= 0, θ̄i0 additive.

Let B0 := exp(θ̃i0) =: (b1, . . . , bn).
Claim. There exists B′ coordinate wise strictly smaller than B0 such that

ψ0 := DX
B′(θ̃i0) = DX

B′(θi0) 6= 0.

Indeed, either there exists j, such that bj 6= 0 and bj < |B0|. Then we can take

B′ = (b1, . . . , bi−1, 0, bi+1, . . . , bn)

and we have DX
B′(X

B0) = X
bj

j and

ψ0 = µB0
X

bj

j +
∑

B 6=B0

(B−B′)∈N
n

µ′
BX

B−B′

,

either B0 = (0, . . . , 0, pαq, 0, . . . , 0) with q relatively prime to p and q is positive.
We take

B′ = (0, . . . , 0, pα(q − 1), 0, . . . , 0),

DX
B′

(

XB0

)

= (q − 1)Xj and

ψ0 = (q − 1)µB0
Xj +

∑

B 6=B0

(B−B′)∈N
n

µ′
BX

B−B′

.

As the ridge of the ridge is the ridge,

0 6= ψ0 ∈ J.
As deg(ψ0) < deg(θi0), θi0 is not an element of minimal degree of J : i0 ≥ 2. By
Lemma 2.3, ψ0 ∈ J , so exp(ψ0) = B0 − B′ ∈ exp(θ1, . . . , θi0−1), so B0 − B′ ∈
exp(θ1, . . . , θi0−1), which contradicts the reducedness of G. �

Algorithm 3.10. Computation of θi’s.
Input : f1, . . . , fm homogeneous polynomials verifying Giraud’s lemma hypotheses.
Output : DX

A fi’s of degree a p-power for all i, 1 ≤ i ≤ m.

(1) L← ∅;
(2) for i from 1 to m

(a) gi ← fi (X +X ′);

(b) for each monomial X ′A in gi

(i) h← coeff
(

gi, X
′A

)

;

(ii) if deg h = pr, then L← L ∪ {h}.
(3) return a reduced Gröbner basis of L.

This last algorithm gives us a sequence of θi’s.

Remark 3.11. Calling a Gröbner basis algorithm means that all the compu-
tation will be done in S instead of in k[θ1, . . . , θs]. Using the techniques of Remark
2.6 and Lemma 2.7, we can find an algorithm with computations in k[θ1, . . . , θs].
We do not think we can save a good amount of time nor memory with such an
algorithm that would compute the polynomial algebra k[θ1, . . . , θs] hidden in k [X].
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Remark 3.12 (Computation of the directrix). In the case where k is perfect,
by Definitions 1.1 and 1.2, the directrix is the reduction of the ridge. Furthermore,
the θi’s, 1 ≤ i ≤ s are pαi-powers, then the ideal of the directrix is

( pα1
√

θ1, . . . ,
pαs

√

θs).

We do not know any direct method to compute it. Indeed Fröhlich and Shepherdson
have even shown that testing if an element is a p-th power is not decidable in
general [2, Section 7] (see also the example in [3, Remark 5.10]).
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de Saclay, 91128 Palaiseau Cedex, France

E-mail address: berthomieu@lix.polytechnique.fr
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