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24 rue Lhomond, 75231 Paris, France

E-mail: sylvain.nascimbene@lkb.ens.fr

Abstract. We describe a powerful method for determining the equation of state of

an ultracold gas from in situ images. The method provides a measurement of the

local pressure of an harmonically trapped gas and we give several applications to Bose

and Fermi gases. We obtain the grand-canonical equation of state of a spin-balanced

Fermi gas with resonant interactions as a function of temperature [1]. We compare our

equation of state with an equation of state measured by the Tokyo group in [2], that

reveals a significant difference in the high-temperature regime. The normal phase, at

low temperature, is well described by a Landau Fermi liquid model, and we observe a

clear thermodynamic signature of the superfluid transition. In a second part we apply

the same procedure to Bose gases. From a single image of a quasi ideal Bose gas we

determine the equation of state from the classical to the condensed regime. Finally the

method is applied to a Bose gas in a 3D optical lattice in the Mott insulator regime.

Our equation of state directly reveals the Mott insulator behavior and is suited to

investigate finite-temperature effects.
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1. Introduction

Ultracold gases are a privileged tool for the simulation in the laboratory of model

Hamiltonians relevant in the fields of condensed matter, astrophysics or nuclear physics

[3]. As an example, thanks to the short-range character of interactions, ultracold Fermi

mixtures prepared around a Feshbach resonance mimic the behavior of neutron matter in

the outer crust of neutron stars [4, 5]. For cold atoms, the density inhomogeneity induced

by the trapping potential has long made the connection between the Hamiltonian of a

homogeneous system and an ultracold gas indirect. Early experimental thermodynamic

studies have provided global quantities averaged over the whole trapped gas, such as

total energy and entropy [6, 7], collective mode frequencies [8], or radii of the different

phases that may be observed in an imbalanced Fermi gas [9, 10, 11]. Reconstructing

the equation of state of the homogeneous gas then requires to deconvolve the effect of

the trapping potential, a delicate procedure that has not been done so far. However,

the gas can often be considered as locally homogeneous (local density approximation

(LDA)), and careful analysis of in situ density profiles can directly provide the equation

of state of a homogeneous gas [12, 13, 1, 14]. In the case of two-dimensional gases,

in situ images taken along the direction of tight confinement obviously give access to

the surface density [15, 16, 17, 18] and thus to the equation of state [19]. For three-

dimensional gases, imaging leads to an unavoidable integration along the line of sight. As

a consequence, inferring local quantities is not straightforward. Local density profiles can

be computed from a cloud image using an inverse Abel transform for radially symmetric

traps [20]. A more powerful method was suggested in [13] and implemented in [1, 14]: as

explained below, for a harmonically trapped gas the local pressure is simply proportional

to the integrated in situ absorption profile. Using this method, the low-temperature

superfluid equation of state for balanced and imbalanced Fermi gases have been studied

as a function of interaction strength [1, 14]. In this paper we describe in more detail the

procedure used to determine the equation of state of a spin-unpolarized Fermi gas in the

unitary limit [1]. We compare our data with recent results from the Tokyo group [2],

and reveal a significant discrepancy in the high-temperature regime. In a second part

we apply the method to ultracold Bose gases. From an in situ image of 7Li, we obtain

the equation of state of a weakly-interacting Bose gas. Finally, analyzing experimental

profiles of a Bose gas in a deep optical lattice [21], we observe clear thermodynamic

signatures of the Mott insulator phases.

2. Measurement of the local pressure inside a trapped gas

In the grand-canonical ensemble, all thermodynamic quantities of a macroscopic system

can be derived from the equation of state P = f(µ, T ) relating the pressure P to the

chemical potential µ and temperature T . P can be straigthforwardly deduced from

integrated in situ images.

Consider first a single-species ultracold gas, held in a cylindrically symmetric
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harmonic trap whose frequencies are labeled ωx = ωy ≡ ωr in the transverse direction,

and ωz in the axial direction. Provided that the local density approximation is satisfied,

the gas pressure along the z axis is given by [13]:

P (µz, T ) =
mω2

r

2π
n(z), (1)

where n(z) =
∫

dx dy n(x, y, z) is the doubly-integrated density profile, µz = µ0 −
1
2
mω2

zz
2 is the local chemical potential on the z axis, µ0 is the global chemical potential.

n(z) is obtained from an in situ image taken along y, by integrating the optical

density along x (see Fig.1). As described below, if one independently determines the

temperature T and chemical potential µ0, then each pixel row of the absorption image

at a given position z, provides an experimental data point for the grand-canonical

equation of state P (µz, T ) of the homogeneous gas. The large amount of data obtained

from several images allows one to perform an efficient averaging, leading to a low-noise

equation of state.

This formula is also valid in the case of a two-component Fermi gas with equal spin

populations if n(z) is the total integrated density. The method can be generalized to

multicomponent Bose and Fermi gases, as first demonstrated on spin-imbalanced Fermi

gases in [1, 14].

3. Thermodynamics of a Fermi gas with resonant interactions

In this section we describe the procedure used in [1] to determine the grand-canonical

equation of state of a homogeneous and unpolarized Fermi gas with resonant interactions

(a = ∞). We also compare our data with recent measurements from the Tokyo group

[1, 2]. We then study the physical content of the equation of state at low temperature.

3.1. Grand-canonical equation of state

In the grand-canonical ensemble, the equation of state of a spin-unpolarized Fermi gas

in the unitary limit, can be written as

P (µ, T ) = P (0)(µ, T )hT (ζ), (2)

where P (0)(µ, T ) is the pressure of a non-interacting two-component Fermi gas and

ζ = exp(µ/kBT ) is the inverse fugacity. Since P (0)(µ, T ) is known, the function hT (ζ)

completely determines the equation of state P (µ, T ). Let us now describe the procedure

used to measure it. The pressure profile of the trapped gas along the z axis is directly

obtained from its in situ image using equation (1). One still has to know the value of the

temperature T and global chemical potential µ0 in order to infer hT (ζ). We use a small

amount of 7Li atoms, at thermal equilibrium with the 6Li component, as a thermometer.

We then extract µ0 from the pressure profile, by comparison in the cloud’s wings with

a reference equation of state. For high-temperature clouds (kBT > µ0), we choose µ0 so
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Figure 1. Scheme of the local pressure measurement: the absorption of a probe beam

propagating along the y direction provides a 2D image on the CCD camera. Integration

of this image along x provides the doubly-integrated density profile n(z) and, using

equation (1), the pressure profile along the z axis.

that the wings of the pressure profile match the second-order virial expansion [22] (see

Fig.2a):

P (µ, T ) =
2kBT

λ3
dB(T )

(

eµ/kBT +
4

3
√
2
e2µ/kBT + . . .

)

. (3)

For colder clouds, the signal-to-noise ratio is not good enough, in the region where (3) is

valid, to extract µ0 using the same procedure. We thus rather use the equation of state

determined from all images previously treated as a reference, since it is accurate on a

wider parameter range than (3) (see Fig.2b). We then iterate this procedure at lower

and lower temperatures, eventually below the superfluid transition. By gathering the

data from all images and statistical averaging, we obtain a low-noise equation of state

in the range 0.02 < ζ < 5 (see Fig.3a).

3.2. Canonical equation of state

In [2] a canonical equation of state E(n, T ) expressing the energy E as a function of

density and temperature was measured using fits of absorption images taken after a
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Figure 2. Determination of µ0: we plot the data from an in situ image as P/2kBTλ
−3

dB

versus −µ/kBT = V (z)/kBT − µ0/kBT (black points). A wrong choice of µ0

corresponds in this representation to a translation of the data in abscissa. We adjust

µ0 so that the wings of the pressure profile match a reference equation of state (in red).

(a) For high-temperature clouds, we use the second-order virial expansion (3) (b) For a

lower temperature pressure profile, we minimize its distance with the averaged equation

of state deduced from higher temperature images (in red) in the overlap region.

short time-of-flight. In situ density profiles were deduced by assuming a hydrodynamic

expansion. The temperature was extracted from the cloud’s total potential energy at

unitarity, using the experimental calibration made in [7]. In Fig.3b the data from [2]

is plotted as E(n, T )/E(0)(n, T ) as a function of θ = T/TF , where n is the total atom

density, TF is the Fermi temperature, and E(0)(n, T ) is the energy of a non-interacting

Fermi mixture.
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Figure 3. (a) Grand-canonical equation of state of a two-component Fermi gas with

resonant interactions from [1] (black dots). (b) Canonical equation of state from the

Tokyo group [2] (open circles) and from the ENS group (black dots). The dashed black

line is the ideal gas equation of state, the dot-dashed (solid) black line is the second-

(third-) order virial expansion, the solid green line is the Fermi liquid equation (4)

and the solid blue line is the fit function (5) in the superfluid phase. The superfluid

transition occurs at ζ = 0.05.
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The comparison between the two equations of state requires to express our data in

the canonical ensemble. The density n = ∂P/∂µ|T is calculated by taking a discrete

derivative, and we obtain the black points in Fig.3b. While the two sets of data are in

satisfactory agreement in the low-temperature regime T/TF < 0.4, they clearly differ in

the high-temperature regime. The disagreement of the data from [2] with the second-

and third-order virial expansions calculated in [22, 23] indicates a systematic error in this

regime. This is possibly due to a breakdown of hydrodynamics during the time-of-flight

as expected at high temperature.

3.3. Fermi liquid behavior in the normal phase

Above the superfluid transition and in the low-temperature regime 0.05 < ζ < 0.5, our

data is well modelled by a Fermi liquid equation of state

P FL(µ, T ) =
2

15π2

(

2m

~2

)3/2

µ5/2

(

ξ−3/2
n +

5π2

8
ξ−1/2
n

m∗

m

(

kBT

µ

)2
)

, (4)

where ξn = 0.51(1) and m∗ = 1.12(3)m respectively characterize the compressibility of

the normal phase extrapolated to zero temperature and the effective mass of the low-

lying excitations. The agreement with (4) is better than 5% in a large parameter range

0.33µ < kBT < 2µ. Our value of ξn is in agreement with the variational Fixed-

Node Monte-Carlo calculations ξn = 0.54 in [24], ξn = 0.56 in [25], and with the

Quantum Monte-Carlo calculation ξn = 0.52 in [26]. It is surprising that the quasi-

particle mass m∗ is quite close to the free fermion mass, despite the strongly-interacting

regime. Note also that this mass is close to the effective mass m∗ = 1.20m of a single

spin-down atom immersed into a Fermi sea of spin-up particles (the Fermi polaron)

[27, 25, 28, 29, 30, 12, 11, 1].

3.4. Superfluid transition

The deviation of the experimental data from (4) for ζ < 0.05 signals the superfluid phase

transition. This transition belongs to the U(1) universality class, and the critical region

is expected to be wide [31] in the unitary limit. Assuming that our low-temperature

data belongs to the critical region, we fit our data with a function

P (µ, T ) = P FL(µ, T ) + A(ζc − ζ)2−αH(ζc − ζ), (5)

where H is the Heaviside function and α ≃ −0.013 is the specific heat critical exponent,

measured with a very good accuracy on liquid 4He [32]. We obtain the position of

the superfluid transition ζc = 0.05, or kBTc/µ = 0.33, in agreement with the value

kBTc/µ = 0.32(3) extracted in [1] using a simpler fit function. We thus confirm more

rigorously our previous determination of the superfluid transition. In the appendix

we discuss the validity of local density approximation around the superfluid transition.

Under our current experimental conditions, the deviation from LDA is very small.
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4. Thermodynamics of a weakly-interacting Bose gas

In this section we apply equation (1) to the case of trapped Bose gases. First we test the

method by determining the equation of state of a weakly-interacting Bose gas [33, 34].

We use an in situ absorption image of a 7Li gas taken from [35] (see Fig.4a). 7Li atoms

are polarized in the internal state |F = 1, mF = −1〉, and held in an Ioffe-Pritchard

magnetic trap with ωr/2π = 4970 Hz and ωz/2π = 83 Hz, in a bias field B0 ≃ 2 G.

Thermometry is provided by a gas of 6Li atoms, prepared in |F = 1
2
, mF = −1

2
〉, and in

thermal equilibrium with the 7Li cloud.

èè
èèèè
èè
è
èè
èè
è

èè
èè
è

è
è
è
è
èè
è
è
è
èèèè
è
è
è
èèèèè
è
è
è
è

èèèèè
èèèèè
èèèè
è
è
èèèèè
è
è
è
è

èèèè
è
è
èè

è
è
èèèè

è
è

èè
èè
è
è
èèèèè
èèèè
èè
è
è

è

è

è
è
è

è

è

è
è

è
è

è
è

è

è

è
è

è

è

è
èè
è

è
è
èè
è
è
èè
èè
èè
è
è
èè
èèè
è
èè

è
èè
èèè

èè
è
èèè
è
è
è
èè
è
è
è
èèèèèè
èèè
è
èèè
è
è
è
è
è
è
è
è

èè
è
èèèèèèèèè
èè
èè
èé

ééééééé
é
é
é
é

éé

éé
é

ééé

é

é
é

é
éé
éé
é
éééé
éé
éé
éé
é
é
é
ééééé
ééé
é
éé
é

ééé
éé
éé
ééé

é
é
é

é
éé
é
ééé
é
é
é
é
éé
éé
éé

éé
éé
éé

éé
éé
é
ééé
ééé

é
é
é
éé
é

éé
é
ééééé

é

é
éé
éé
ééé
éé
ééé

é
éééé
é
é
é
é
éé
é
éé

é

é
é
éé
é

é
é
é

ééé
é
ééé
é

éé
éé
ééé
éé
ééééééé
é

é
ééééé

é
é
é

éé
éé
é
é

-0.4 -0.2 0.0 0.2 0.4

0

1

2

3

z HmmL

nH
zL
H1

08
m

-
1
L

HaL

è
è
è
è
è
èè
è
è
è
è
è
è
è
èèè

è
èèèèè
èè
èèè èèèèèèèèè

èèèèèè
èè
èèèèèèèè
èèèèè
è
èè
èèèè
è
è
è
è
è èèèèèèè è

è
èè è

è è

BEC threshold

1.0 5.02.0 3.01.5

0

1

2

3

4

Ζ

P
Λ

dB3
�k

B
T

=
gH

Ζ
L

HbL

Figure 4. (a) Integrated density profiles n(z) for the 7Li component (blacks dots) and

the 6Li component (open circles). The solid line is a fit of the 6Li component with a

finite-temperature Thomas-Fermi profile, yielding T = 1.6(1) µK. (b) Thermodynamic

function g(ζ) determined from the 7Li profile. The solid line is a fit of the data with

a Bose function in the non-condensed region and a mean-field equation of state in the

condensed region (see text). The dashed line is the equation of state of a classical

gas g(ζ) = ζ−1. The difference between the dashed and solid lines around ζ = 1 is a

consequence of Bose statistics.

4.1. Determination of the equation of state

The equation of state of a weakly-interacting Bose gas can be expressed, in the grand-

canonical ensemble, as:

P (µ, T ) =
kBT

λ3
dB(T )

g(ζ),

where ζ = e−µ/kBT is the inverse fugacity and λdB(T ) =
√

2π~2/mkBT is the thermal

de Broglie wavelength. The pressure profile is calculated using (1). We aim here at

measuring g(ζ). We obtain the global chemical potential value µ0 = 0.10 kBT by fitting

the 7Li profile in the non-condensed region |z| > 50 µm with a Bose function:

P (µz, T ) =
kBT

λ3
dB(T )

g5/2(ζz), ζz = e−µ0/kBT exp

(

mω2
zz

2

2kBT

)

, g5/2(z) =
∞
∑

k=1

z−k

k5/2
.
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Combining the measurement of the pressure profile, of the cloud’s temperature T and

global chemical potential µ0, we obtain the thermodynamic function g(ζ) plotted in

Fig.4b.

4.2. Analysis of the equation of state

In the region ζ > 1 the data agrees with the Bose function g(ζ) = g5/2(ζ) expected for

a weakly-interacting Bose gas. The departure from the thermodynamic function of a

classical gas g(ζ) = ζ−1, and especially the fact that g(ζ) > 1 above the condensation

threshold, is a thermodynamic signature of a bosonic bunching effect, as observed in

[36, 37, 38]. The sudden and fast increase of our data for ζ . 1 indicates the Bose-

Einstein condensation threshold. In the local density approximation framework, the

chemical potential of a weakly-interacting Bose-Einstein condensate reads:

µ =
4π~2a77

m7

n,

where m7 is the 7Li atom mass and a77 is the scattering length describing s-wave

interactions between 7Li atoms. We neglect here thermal excitations in the condensed

region. Integrating Gibbs-Duhem relation at fixed temperature dP = ndµ between the

condensation threshold ζc and ζ < ζc, and imposing the continuity at ζ = ζc, we obtain

the equation of state in the condensed phase:

g(ζ) = g5/2(ζc) +
λdB(T )

4 a77
(log2 ζ − log2 ζc). (6)

Fitting our data with the function g(ζ) given by (6) for ζ < ζc and with g5/2(ζ) for ζ > ζc,

we obtain ζc = 1.0(1) and a77 = 8(4)a0 = 0.4(2) nm. The uncertainties take into account

the fit uncertainty and the uncertainty related to the temperature determination. The

condensation threshold is in agreement with the value ζc = 1 expected for an ideal Bose

gas, the mean-field correction being on the order of 1% [39, 40]. Our measurement of

the scattering length is in agreement with the most recent calculations a77 = 7(1) a0
[41].

Extending this type of measurement to larger interaction strengths on Bose gases

prepared close to a Feshbach resonance would reveal more complex beyond-mean-field

phenomena, provided thermal equilibrium is reached for strong enough interactions.

5. Mott-insulator behavior of a Bose gas in a deep optical lattice

Here we extend our grand-canonical analysis to the case of a 87Rb gas in an optical

lattice in the Mott insulator regime. By comparing experimental data with advanced

Monte Carlo techniques, it has been shown that in many circumstances the local density

approximation is satisfied in such a system [42]. We analyze the integrated density

profiles of the Munich group, Fig. 2 of [21].
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5.1. Realization of the Bose-Hubbard model with ultracold gases

Atoms are held a trap consisting of the sum of a harmonic potential Vh(x, y, z) and a

periodic potential

V0

(

sin2(kx) + sin2(ky) + sin2(kz)
)

,

created by three orthogonal standing waves of red-detuned laser light at the wavelength

λ = 2π/k = 843 nm. The atoms occupy the lowest Bloch band and realize the Bose-

Hubbard model [43]:

Ĥ = −J
∑

〈i,j〉

â†i âj +
U

2

∑

i

(â†i âi − 1)â†i âi, (7)

with a local chemical potential µ(r) = µ0 − Vh(r). The index i refers to a potential

well at position ri, J is the tunneling amplitude between nearest neighbors, and U is

the on-site interaction, U and J being a function of the lattice depth [3]. The slow

variation of Vh(r) compared with the lattice period λ/2 justifies the use of local density

approximation.

We consider here the case of a large lattice depth V0 = 22Er, for which J ≃
0.003U ∼ 0, and assume that the temperature is much smaller than U . In this regime

the gas is expected to form a Mott insulator: in the interval µ ∈ [(p− 1)U, pU ], where p

is an integer, the atom number per site remains equal to p, and the density is equal to

n = p(2/λ)3. Integrating Gibbs-Duhem relation between 0 and µ, we obtain that the

pressure P is a piecewise linear function of µ:

P (µ, T = 0) =

(

2

λ

)3(

µ− p− 1

2
U

)

p where (p− 1)U < µ < pU.

5.2. Determination of the equation of state

We use a series of three images from [21], labeled a, b and c, with different atom numbers

Na = 1.0× 105, Nb = 2.0× 105 and Nc = 3.5× 105 (see Fig.5a). The integrated profiles

n(z) are not obtained using in situ absorption imaging but rather using a tomographic

technique, providing a ∼ 1 µm resolution. The pressure profile is then obtained using

equation (1).

Each image i = a, b, c plotted as P as a function of −1
2
mω2

zz
2 provides the equation

of state P (µ) translated by the unknown global chemical potential µ0
i . By imposing that

all images correspond to the same equation of state (in the overlapping µ/U region), we

deduce the chemical potential differences between the different images µ0
b −µ0

a = 0.56U

and µ0
c − µ0

b = 0.61U (see Fig.5b). Gathering the data from all images, we thus obtain

a single equation of state, translated by µ0
a which is still unknown. We fit this data with

a function translated by µ0
a from the following function, capturing the Mott insulator

physics:

P

U(λ/2)−3
= 0 for µ < 0
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Figure 5. (a) Integrated density profiles n(z) corresponding to image a (open squares)

b (black dots) and c (crosses), from [21]. (b) Determination of the global chemical

potential difference µ0

c
−µ0

b
by superposing the equations of states given by each image.

= n1
µ

U
for 0 < µ < δµ1

= n1
δµ1

U
+ n2

µ− δµ1

U
for δµ1 < µ < δµ1 + δµ2

= n1
δµ1

U
+ n2

δµ2

U
+ n3

µ− δµ1 − δµ2

U
for δµ1 + δµ2 < µ,

with µ0
a, δµ1, δµ2, n1, n2 and n3 as free parameters. The value µ0

a = 1.51U yielded by

the fit thus corresponds to the condition P → 0 when µ → 0. Once it is determined, we

obtain the equation of state of the Bose-Hubbard model in the Mott regime, plotted in

Fig.6.
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Figure 6. Equation of state of a Bose gas in an optical lattice, in the Mott insulator

regime. The solid line is a fit with a piecewise linear function capturing the Mott

insulator behavior. The slope dP/dµ provides the density in each of the Mott zone,

n1 = 0.9(1), n2 = 2.0(1), n3 = 3.1(1).
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5.3. Observation of a Mott-insulator behavior

After fitting the value of µ0
a, the other parameters resulting from the fit exhibit the

characteristic features of incompressible Mott phases. The occupation number in the

first Mott region is n1 = 0.9(1) atom per site and the size is δµ1 = 0.9(1)U . The second

Mott region occupation number is n2 = 2.0(1) and its size is δµ2 = 1.1(1)U . Finally,

the third Mott region occupation number is n3 = 3.1(1). These values agree with the

theoretical values ni = i and δµi = U , in the T = 0 and J = 0 limits.

5.4. Estimation of finite temperature effects

The equation of state deduced from the experimental data is also suited for investigating

finite-temperature effects. Since sites are decoupled in the regime J ≪ U, kBT

considered in this study, the finite-temperature equation of state is easily calculated

from the thermodynamics of a single site [44, 45]:

P (µ, T ) =
kBT

(λ/2)3
log

(

∞
∑

p=0

exp

(

−Up(p− 1)/2− µp

kBT

)

)

. (8)

Fitting now the experimental data with (8) and T and µ0
a as free parameters, we deduce:

kBT = 0.09+0.04
−0.09 U.

This value is in agreement with a direct fit of the density profiles and number statistics

measurements [46]. This temperature is significantly smaller than the temperature

kBT
∗ ≃ 0.2U at which the Mott insulator is expected to melt [44]. Second, this

temperature should be considered as an upper limit because of its uncertainty on the low-

temperature side. Indeed, the finite resolution of the images tends to smear out the sharp

structure associated with Mott insulator boundaries, leading to an overestimation of the

actual temperature. To overcome this limit, the spin-gradient thermometry proposed

in [47] could be employed.

Summary and concluding remarks

To summarize, we have shown on various examples of Fermi and Bose gas systems

how in situ absorption images can provide the grand-canonical equation of state of the

homogeneous gas. This equation of state is obtained up to a global shift in chemical

potential and we have given several examples for its determination. The method relies

on the local density approximation, which is satisfied in many situations, but notable

exceptions exist such as the case of the ideal Bose gas. The equation of state given by this

procedure allows direct comparison with many-body theories. While we have illustrated

here this method on a single-component Bose gas and a spin-balanced Fermi gas, it can

easily be generalized to multi-component gases. For instance the phase diagram and

the superfluid equation of state of spin-imbalanced Fermi gases have been obtained in

[1, 14]. We expect this method to be very useful in the investigation of Bose-Bose,
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Bose-Fermi and Fermi-Fermi mixtures. Finally the equation of state of a Bose gas close

to a Feshbach resonance may reveal thermodynamic signatures of beyond-mean-field

behavior in Bose-Einstein condensates [48].
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Appendix: validity of local density approximation

Let us now discuss the validity of local density approximation around the superfluid

transition in our experiment. Along the z axis, the correlation length ξ diverges around

the transition point z = zc according to ξ ∼ k−1
F |(z − zc)/zc|−ν , where ν = 0.67 is the

correlation length critical exponent, directly measured in [49], and in agreement with

ν = (2 − α)/3. Local density approximation is expected to become inaccurate in the

region zc − δz < z < zc + δz where δz is given by [31, 50]:

δz ∼ ξ(zc + δz), i.e. δz ∼ zc(kF zc)
−1/(1+ν).

zc is on the order of the cloud size along z, and is much larger that k−1
F which is

on the order of the inter-particle distance. Given the parameters of our experiments,

(kFzc)
−1/(1+ν) ∼ 1% and the size δz where local density approximation is invalid

is very small. Given the noise of our data (a few %), the deviation from local

density approximation is thus negligible. Investigating the critical behavior at the

superfluid transition, such as measuring the critical exponent α, would be an interesting

development for this method, as proposed in [50].
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