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ABSTRACT

A new approach for modelling multichannel signals via hidden
states models in the time-frequency space is described. Multichan-
nel signals are expanded using a local cosine basis, and the (time-
frequency labelled) coefficients are modelled as multivariate ran-
dom variables, whose distribution is governed by a (hidden) Markov
chain. Several models are described, together with maximum like-
lihood estimation algorithms.

The model is applied to electroencephalogram data, and it is
shown that variance-covariance matrices labelled by sensor and fre-
quency indices can yield relevant informations on the analyzed sig-
nals. This is examplified by a case study on the characterization of
alpha waves desynchronization in the context of multiple sclerosis
disease.

1. INTRODUCTION

Many signal classes exhibit specific features that are both time and
frequency localized. This motivates the use of time-frequency sig-
nal representations, such as short time Fourier or Gabor transforms
(see [2, 4,?] and references therein), or orthonormal bases such
as MDCT or Wilson bases. Such elementary waveform systems
have more recently been exploited in sparse regression algorithms
(matching pursuit and variants, basis pursuit,...) in various contexts.
However, real signals often exhibit significant correlations between
time-frequency coefficients, which are often poorly accounted for
by classical sparse expansion methods. In the case of multichan-
nel signals, such as EEG, MEG,... signals, correlations also exist
between channels: information may be somewhat localized in the
channel domain, but close channels (sensors) are often significantly
correlated.

Sparse regression approaches are often not very good at de-
scribing time-correlated or frequency-correlated data, contrary to
channel correlations for which dedicated techniques have been de-
veloped (see for example [5, 6, 10] and references). Motivated
by applications to EEG/MEG signal analysis, we discuss here a
stochastic model implementing simultaneously channel and fre-
quency correlated signals, following the lines of [?, 1], with ex-
plicit modelling of non-stationarity. Indeed, standard stochastic
signal models often rely on (at least implicit) stationarity assump-
tions. However localized phenomena in EEG signals such as alpha
or gamma oscillations cannot be accounted for with such assump-
tions.

The approach we propose models the distribution of time-
frequency coefficients (here MDCT coefficients) in terms of latent
variables. The latter control the covariance matrices of Gaussian
vectors of fixed-time vectors of multi-channel, multi-frequency,
MDCT coefficients. In the framework of application to EEG sig-
nals, the latent variables describe some hidden mental state of the
subject. This model may be seen as a way to introduce non-
stationarity in approaches such as that of [?, 1], where covariance
matrices are expanded as linear combinations of tensor products of
frequency and channel matrices. Inference for the proposed model
can be done using fairly classical algorithms, which yield estimates
for the model parameters, together with maximum likelihood esti-
mates for the sequences of latent variables.

We illustrate the model and algorithms with a case study of
EEG signal analysis, namely the detection of alpha waves in rest
EEG for multiple sclerosis patients and control subjects. We show
that the latent variable estimation is precise enough to confirm a
biological hypothesis, namely the existence of inter-hemispherical
alpha wave desynchronization on multiple sclerosis subjects, which
may be a potential target for diagnosis.

2. HARMONIC HIDDEN MARKOV MODEL

We describe in this section a stochastic model for vector-valued (i.e.
multichannel) signals, based on a local Fourier basis expansion with
random coefficients, and discuss the corresponding inference prob-
lem. Throughout this paper, we denote byB = {ut f , (t, f ) ∈ Λ} a
frame of time-frequency atoms, to be used to expand signals. We
shall limit ourselves here to finite-dimensional local Fourier bases
(also called MDCT bases, see e.g. [?] for a summary), of the form

ut f [n] =

√
2
L

w[n− tL]cos

(
π( f +1/2)

n− tL
L

)
, (1)

t = 0, . . .Nt − 1 (resp. f = 0, . . .Nf − 1) denoting the time (resp.
frequency) index. Herew is a window function, subject to compat-
ibility relations that ensure the family to be an orthonormal basis
of the signal spaceH = R

NtNf . Notice that the model is straight-
forwardly extended to Gabor frames (in which case the estimation
algorithms have to be modified though).

2.1 The model

Consider a time-frequency basisB = {ut f }, for example a MDCT
basis, andNc signals (representingNc sensors’s observations) of the
form

xc = ∑
t, f

ac
t f ut f (2)

The (vector) synthesis coefficientsac
t f are modeled using hidden

Markov models (see [8] for a review), as dependent Gaussian ran-
dom vectors, whose distribution is governed by a time dependent
latent stateXt ∈ {1, . . .Ns}. More precisely, setAt = {(ac

t f , f =

0, . . .Nf −1),c = 1, . . .Nc}. Then we assume that

• Conditional toX = {xt , t = 0, . . .Nt −1} the vectorsAs are mu-
tually independent zero mean Gaussian vectors, with density

ψAt
(a|Xt = k) = N (a;0,Σk)

• The latent states (which depend on the time index only, and are
common to all channels) form a Markov chain, characterized by
its transition matrixπ.

In addition, for avoiding working with large dimensional problems,
we shall be particularly concerned with models in which the covari-
ance matrix takes the form of a Kronecker product

Σ = Σ(c) ⊗Σ( f ) ,



Σ(c) (resp. Σ( f )) representing channels (resp. frequencies) covari-
ances. More precisely, we shall assume that

E

{
ac

f .a
c′
f ′

}
= Σ(c)

cc′ Σ
( f )
f f ′ ,

where the time index has been dropped for the sake of simplicity.
This is very much in the spirit of [?, 1]. Notice that such a Kro-

necker product form is not unique, i.e. givenΣk, Σ(c)
k andΣ( f )

k are
defined up to a multiplicative factor. This fact has to be taken care
of in the estimation procedure.

2.2 Inference

2.2.1 EM algorithm

Since we are using here an orthonormal basis, the inference prob-
lem can be solved using classical tools, after numerical computation
of the coefficientsac

t f = 〈xc,ut f 〉 using the freely available matlab
toolbox LTFAT [9].

EM is an efficient iterative procedure to compute the Maximum
Likelihood (ML) estimate in the presence of hidden data. In ML
estimation, we wish to estimate the model parameters for which the
observed data are the most likely. For the sake of completeness we
describe here the main points of the algorithm. Each iteration EM
involves two processes: The E-step (Expectation), and the M-step
(Maximization). In the first one, the log-likelihood of the observed
data is estimated given the current estimate of the model parame-
ters, using the forward and backward variables defined here under.
In the M-step, the likelihood function is maximized leading to the
so-called Baum-Welch re-estimation formulas. Convergence is en-
sured since the algorithm is guaranteed to increase the likelihood at
each iteration.

Expectation:For t ∈ 0, ..,Nt −1, we define the following quantities
: the forward variablesαt = (αk

t )k=1,..,Ns
are the normalized distri-

bution of the latent stateXt conditional to the observed coefficients
(Ar)r=0,...t :

αk
t = P(Xt = k/(Ar )r=0,...t)×Lt

where Lt is the likelihood of the observations until timet.
The backward variableβ k

t is the likelihood of the observations
(At+1,At+2, ...,ANt−1) conditional toXt = k for k = 1, . . .Ns and
t = 0, . . .Nt −1.

The forward variables may be obtained recursively fort =
1, . . .Nt −1 while the backward ones may be achieved by recursion
too, operating on decreasing indicest = Nt −1 down to 0. Thanks
to these recursive equations, the complexity of the computation is
linear int.

Given the forward and backward variables, the distribution of
the transition(Xt ,Xt+1) for t = 0, . . .Nt −2 conditional to the obser-
vations up to final timeNt −1 reads

P(Xt =k,Xt+1= l/(At)t=0:Nt−1)=
1

LNt−1
αk

t πk,l ψ(At+1)β l
t+1 (3)

where

LNt−1 =
Ns

∑
k=1

αk
t β k

t

for every timet under consideration.
As a consequence, the distribution of any hidden stateXt , 0≤

t ≤ Nt − 2 conditional to the observations up to final timeNt − 1
satisfies

P(Xt = k/(Ar )r=0:Nt−1) =
1

LNt−1
αk

t β k
t (4)

In order to avoid underflow potentially caused by very small
values of the probabilities, we used normalized versions ofα andβ
defined by Rabiner in [8], to which we refer for more details.

Maximization:the maximum likelihood estimates for the model pa-
rameters read:

ν̂k =
αk

0β k
0

LNt−1
(5)

π̂k,l = πk,l
∑Nt−2

t=0 αk
t ×ψl (At+1)×β l

t+1

∑Nt−2
t=0 αk

t β k
t

(6)

Σ̂k =
∑Nt−1

t=0 αk
t β k

t At
tAt

∑Nt−1
t=0 αk

t β k
t

(7)

2.2.2 Estimation for tensor product covariance matrices.

In order to control the curse of dimensionality when all sensors are
kept (from 32 to 64 sensors are usually used in EEG), we also
consider models in which covariance matrices take the form of
Kröneker products of frequency and channel matrices.

Σk = Σ(c)
k ⊗Σ( f )

k , k = 1, ..,Ns

This approach can be seen as a refinement of the general decomposi-
tion of the covariance into a sum of Kronecker products introduced
by Bijma and De Munck in [?, 1]. The above approaches can be
modified in order to account for that particular structure.
Expectation:the E-step remains unchanged but the computation of
the density simplifies, owing to the fact that

Σ−1
k = (Σ(c)

k )−1⊗ (Σ( f )
k )−1

det(Σk) = det(Σ(c)
k )Nf ×det(Σ( f )

k )NC

Maximization: the re-estimation of covariance matrices in M-step
is achieved using an alternating minimization procedure : consider
Ac

t = (ac
t, f , f = 0, . . .Nf −1) andAf

t = (ac
t, f ,c= 1, . . .Nc) and iterate

the following steps

• Estimation ofΣ(c) givenΣ( f )
k : let Σ( f )

k = ( tBkBk)
−1 denote a

Cholesky decomposition ofΣ( f )
k

−1, define

Mk
t (c,c′) = 〈BkAc

t ,BkAc′
t 〉

and set

Σ̂(c)
k =

1
Nf

∑Nt−1
t=0 P(Xt = k)Mk

t

∑Nt−1
t=0 P(Xt = k)

(8)

• Normalization: set

Σ̂(c)
k = Σ̂(c)

k /‖Σ̂(c)
k ‖F , (9)

‖ · ‖F denoting the Frobenius norm.

• Estimation ofΣ( f ) givenΣ̂(c)
k : Using the Cholesky decomposi-

tion Σ̂(c)
k = ( tDkDk)

−1, define

Pk
t ( f , f ′) = 〈DkAf

t ,DkAf ′
t 〉

and set

Σ̂( f )
k =

1
Nc

∑Nt−1
t=0 P(Xt = k)Pk

t

∑Nt−1
t=0 P(Xt = k)

(10)

These estimators are obtained by alternate optimization of the log-

likelihood with respect toΣ(c)
k andΣ( f )

k respectively. The normaliza-
tion step described here above enables us to raise an indetermination

sinceΣ( f )
k andΣ( f )

k are defined up to a constant. Strictly speaking,
this corresponds to a GEM algorithm for which the convergence to
local minimum is still ensured by the fact that each step increases
the likelihood of the observations with respect to the model.



Remark 1 As an alternative, the full covariance matrixΣ can
also be estimated classically, the channel and frequency covari-
ances being estimated afterwards by factorization, i.e. by minimiz-

ing a mean square error
∥∥∥Σk−Σ(c)

k ⊗Σ( f )
k

∥∥∥
2

F
under the constraint

∥∥∥Σ(c)
k

∥∥∥
F

= 1.

2.2.3 Estimation of the hidden states sequence

Giving the estimated MAP parameters, we use the Viterbi dynamic
programming algorithm to find the most likely sequence of hidden
states

(XMAP
0 , ...,XMAP

Nt−1) = argmax
l=(l0,..lNt−1)

P(X = l |At , t = 0, ..,Nt −1) (11)

We used the algorithm detailed in [8]. This procedure is also linear
in t but requires numerical evaluation of probability densities, i.e.
inversion of covariance matrices. Therefore, whenNf andNc are
large, using tensor product decompositions yields more stability in
the numerical evaluation.

2.3 Numerical simulations

To validate the algorithms, we simulated signals (Nc = 8 channels
of length 100000 samples each, corresponding to 40 sec of signal)
following the above model.
For the sake of simplicity, and because of the nature of the real EEG
signals we focus on in section 3, we limite ourselves toNs = 2 hid-
den states. MDCT transform was tuned so as to generateNf = 10
frequency bins for each channel.
The frequency covariance matrices were set to the estimated val-
ues for the EEG case study presented below (see Fig. 4 in section
3.2) and artificial channel covariance matrices were generated so
as to exhibit topographically distinct sources for the two states (see
Fig. 1).
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Figure 1: Channel covariance matrices for state ’non-alpha’ (left)
and ’alpha’ (right)

A reference transition probabilityp11 = P(Xt = 1|Xt−1 = 1) =
0.85 was chosen (corresponding to a typical value for alpha waves
duration, i.e. 700ms), simulations were run for various values of
p00 = P(Xt = 0|Xt−1 = 0) in the interval[0.75;0.95] (100 runs per

value ofp00), and relative errors
‖Σ̂−Σ‖F
‖Σ‖F

were computed.

The results, displayed in Fig. 2, clearly show that the Kronecker
product based estimate outperforms the classical one in terms of ac-
curacy (for comparable running time).
As expected, whenp00 grows, the average length of zero-state re-
gions increases, and the accuracy of the estimate ofΣ0 (resp. Σ1)
grows (resp. decays).
The hidden state identification error rates are very comparable for
the two methods and always remain at a very low level (less than
0.5%).

3. APPLICATION TO EEG SIGNALS

The above model, inspired by [7], was motivated by applications to
the modeling of EEG signals, and we describe now a case study,
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Figure 2: Evolution of the estimation relative errors as a function of
the transition probabilityp11

devoted to detection of alpha waves in rest EEG signal1.
Alpha waves are short duration time-localized oscillations (with

frequency around 10 Hz) which appear in EEG signals in some
specific situations, and can naturally be accounted for by time-
frequency representations. They are also topographically localized
in specific sensors situated in posterior regions of head. The alpha
wave occurrence may be considered a non-stationary effect, i.e. a
departure from a stationary background signal. This therefore mo-
tivates the use of hidden Markov models as described above.

3.1 Problem statement and data

We aim at automatic detection of alpha waves, i.e. segmentation of
the signal into time epochs where alpha waves are present/absent.
Such a task could be achieved by band pass filtering of signals,
followed by appropriate thresholding, or time-frequency transform
thresholding. In both cases this would however raise the question
of the determination of the threshold. The HHMM described above
provides a more systematic approach.

The main goal of the current study is to use the model in an
unsupervised manner, in order to test its ability to blindly detect
alpha waves. The case study below provides a positive answer. In
other situations though (i.e. with more complex signals), supervised
training may be necessary in order to obtain accurate detection.

For the problem under consideraton, we use the model with
two instances for the hidden states: alpha (k = 1)/non-alpha (k = 0)
whose parameters are
• the initial hidden state distributionν where

νk = P(X0 = k)

• the stochastic transition matrix of the Markov ChainΠ where

Πk,l = P(Xt+1 = l |Xt = k)

• the covariance matricesΣ( f )
0 ,Σ( f )

1 ,Σ(c)
0 ,Σ(c)

1 .
Once the estimation of these parameters is achieved using the

EM algorithm described here above, we determine the most likely
hidden states sequence. This sequence is the main ingredient in the
case study below since it detects the bursts in the time-frequency
images which corresponds to alpha waves. Indeed, it is clearly seen
in Fig. 3 that values equal to one correspond to regions in the time-
frequency domain with significantly larger MDCT coefficients in
the alpha band.

1Let us stress however that a similar approach can be adapted tomuch
more general situations, in which signals exhibit sufficienttime-frequency
localized components.



Figure 3: MDCT coefficients for a fixed sensor (top) and hidden
states sequence estimated (from all sensors) using Viterbi algorithm
(bottom)

The approach was applied to EEG data originating from the
CODYSEP dataset, designed to study the impact of sclerosis in
inter-hemispherical transfer. The dataset consists in 31 ill subjects
(hereafter termed SEP) and 20 controls (TEM); 17 channels EEG
signals were collected at a 256 Hz sampling rate.

A subset of 14 ill patients and 16 controls was selected, namely
those exhibiting sufficiently similar time-frequency contents, in par-
ticular in the 8-12 Hz range. For the sake of precision in the time
domain, the hop sizeNf was set toNf = 8 (i.e. a time resolution of
125 ms), resulting in a moderate frequency resolution (each MDCT
basis function having a bandwidth of approximately 4Hz).
This choice is certainly questionable, and the selection procedure
should probably turned into a more sustematic one. Our choice was
motivated by the desire of focusing on th same phenomenon (i.e.
wiht the same time-frequency patterns) for all retained subjects.

3.2 Estimation results

A subset of sensors was also selected that correspond to relevant
scalp locations for observing alpha waves. Corresponding MDCT
transforms were computed, and the model parameters (for a two-
state model: alpha and non alpha states) were estimated using the al-
gorithms above. Examples of covariance matrices for the two states
are displayed in Fig. 4 and 5. The frequency covariance matrices
shown in Fig. 4 are almost diagonal, which indicates a decorrela-
tion of the frequency bands. The main difference between the two
matrices appears for the frequency band 8-12Hz (element (3,3)),
which is significantly bigger in ’alpha’ state. This state therefore
succeds to capture alpha waves. The channel covariance matrices
in Fig 5 are also significantly different for some channels: in par-
ticular, channels O1 and O2 (matrix elements (4,4) and (11,11)) are
overactivated in ’alpha’ state. Again this is coherent, since those
sensors correspond to regions where alpha wave signals are most
visible. This phenomenon is even more obvious on the graphical
representation of topographies (Fig. 6),actually representing the di-
agonals of matrices of Fig 5 on which the relevant sensors O1 and
O2 are clearly more “energetic” in ’alpha’ state.

After completion of parameter estimation, a maximum likeli-
hood estimate for the sequence of latent states is obtained via the
Viterbi algorithm.

3.3 A study of alpha wave desynchronization

Let us start by quoting [3]: “in multiple sclerosis, both axonal dam-
age and demyelination occur. Therefore it can be expected that the
connectivity between the different regions in the brains of MS pa-
tients will be impaired compared to healthy controls.” Losses in

Figure 4: Frequency covariance matrices for state ’non-alpha’ (left)
and ’alpha’ (right)

Figure 5: Channel covariance matrices for state ’non-alpha’ (left)
and ’alpha’ (right)
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Figure 6: Representations of the channels variances for state ’non-
alpha’ (left) and ’alpha’ (right)

synchronization between EEG signals in left and right hemispheres
have been reported in the literature, where coherence is generally
used to detect the phenomenon. The HHMM method described here
is an alternative natural candidate for testing and evaluating it.

To test the desynchronization assumption, hidden states se-
quences were estimated for all subjects in the dataset, separately for
left sensors and rignt sensors. The latter sequences take the form
of sequences of zeros (non-alpha state) and ones (alpha state). For

each subject, the Hamming distance between the left sensorsX(L)
t

and right sensorsX(R)
t sequences was computed

D = ∑
t

∣∣∣X(L)
t −X(R)

t

∣∣∣

and the empirical distributions of the so-obtained distances were
compared using a non parametric test. The figure 7 shows the box-
plots of the two families (SEP and TEM) of distances, and seems to
indicate a significant difference: the SEP data exhibit a larger left-
right assymetry, in accordance with the above mentioned desyn-
chronization hypothesis. To assess statistically the significance of
the result, we performed a Mann-Whitney test. The corresponding



P-value was found to equalP = 0.0384, which confirms quantita-
tively the hypothesis of two distinct distributions.

Figure 7: Boxplots of the Hamming distances between left and right
hidden states for SEP (left) and TEM (right)

4. CONCLUSIONS AND PERSPECTIVES

We have described in this paper a new stochastic signal model,
based on hidden Markov modelling of vectors of MDCT coeffi-
cients of multichannel signals. We have described corresponding
estimation algorithms, and an adaptation to the case where covari-
ance matrices take the form of Kronecker products of smaller matri-
ces. Finally, we have tested the algorithms on a case study involving
EEG signals.

While the algorithms described here are not new, the model it-
self and its adaptation to EEG type data is original. Our numerical
results on simulations show that the estimators are good enough to
handle data with realistic characteristics (length, number of chan-
nels,...).

In addition, the case study clearly shows the relevance of the
model for real data processing, since it yields a biologically relevant
result. Further work will concern the validation of this approach
to different types of EEG detection and characterization problems.
Applications to BCI (brain computer interfaces) problems are cur-
rently under study. Such applications will probably require online
versions of the algorithms.

From a more fundamental point of view, it is to be noted that
MDCT bases are known for having important limitations in terms of
time-frequency resolution. It is therefore desirable to turn to better
quality time-frequency expansions, such as Gabor frames. How-
ever, the loss of orthogonality in the waveform system makes the
estimation more complex, as it will not be possible any more to use
the expansion as an orthogonal transform and develop standard al-
gorithms on the expansion coefficients. Dedicated algorithms have
to be designed, which is work in progress.
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