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This paper explores mechanical systems undergoing unilateral frictionless contact conditions in the framework of nonlinear modal analysis. The nonlinear eigenproblem is formulated in the frequency domain through the minimization of a Rayleigh quotient subject to non-penetration inequality constraints. An additional equality constraint is introduced for normalization purposes. The resulting constrained minimization problem is then solved using an augmented Lagrangian strategy. Two applications are proposed: a thin longitudinal rod in unilateral contact with a rigid obstacle and a turbomachinery compressor blade in contact with a rigid casing. The first application illustrates the complexity of the nonlinear modal characterization of a system experiencing unilateral contact conditions while the second demonstrates the applicability of the proposed approach to large-scale mechanical systems involving non-smooth nonlinear terms.

Introduction

The concept of nonlinear mode is now commonly accepted as a reliable and well-suited approach for the analysis of nonlinear dynamical systems [START_REF] Vakakis | Normal Modes and Localization in Nonlinear Systems[END_REF] since it offers the capability to extract the essential signature of nonlinear dynamical systems. While various analytical methods developed during the past decades have contributed to strengthen the relevant theoretical background, new challenges arise for large-scale mechanical systems [START_REF] Kerschen | Nonlinear normal modes, Part I: A useful framework for the structural dynamicist[END_REF]. As evidenced in the literature, promising techniques such as invariant manifold approaches [START_REF] Pesheck | A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds[END_REF], asymptotic-numerical methods [START_REF] Arquier | Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes[END_REF], shooting techniques [START_REF] Peeters | Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques[END_REF] or Fourier strategies [START_REF] Laxalde | Complex non-linear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces[END_REF] provide an appealing framework for the development of dedicated numerical tools which should bridge the gap between academic research and industrial applications.

Non smooth nonlinearities such as contact yield other difficult challenges both on numerical and phenomenological sides that are not well tackled yet. Since unilateral contact is defined by a multi-valued evolution law which takes the form of inequality constraints, solution methods often fall in the theoretical field of optimization [7,8] where the subsequent Lagrange multipliers play the role of the contact pressure field. Among other, augmented Lagrangian functionals stand as sophisticated and robust approaches to numerically approximate the latter, by transforming it into a smooth saddle point problem, and have been fruitfully applied in mechanical engineering [START_REF] Carpenter | Lagrange constraints for transient finite element surface contact[END_REF][START_REF] Laursen | A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems[END_REF][START_REF] Pietrzak | Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment[END_REF].

Numerical methods for contact dynamics analysis are mostly based on time integration and alternatives are unfortunately rarely explored [START_REF] Woo | Application of the harmonic balance method to ground moling machines operating in periodic regimes[END_REF][START_REF] Leib | Experimental and Numerical Analysis of Two Vibro-Impacting Beams[END_REF]. Accordingly, it seems challenging to regard this class of systems in the light of nonlinear modal analysis. In the present paper, the target application concerns rotating components in turbomachinery undergoing intermittent contacts (or impacts) with surrounding stationary structures. As a matter of fact, current design trends (more flexible and thinner structures) together with operating clearance reductions for aerodynamic efficiency purposes lead to complex and poorly known phenomena [START_REF] Azeez | Numerical and experimental analysis of a continuous overhung rotor undergoing vibro-impacts[END_REF][START_REF] Lesaffre | Stability analysis of rotating beams rubbing on an elastic circular structure[END_REF][START_REF] Legrand | Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction[END_REF]. This, in particular, motivates the use of such modern techniques to extend existing design methodologies which currently mostly rely on linear analyses or time-stepping approaches.

The proposed approach is first described in the usual formalism of continuum mechanics. Eigensolutions are sought in the form of Fourier series which results in a mixed frequency/time boundary value problem. Then, introducing a variational formulation, the eigenvalue problem reduces to finding critical values of a generalized Rayleigh quotient functional in the admissible domain defined by the contact boundary conditions. This constrained minimization problem is then completed by an additional equality constraints which normalizes eigensolutions with reference with an energy. Finally, the resulting problem is solved in the framework of an augmented Lagrangian approach. Numerical approximations and algorithms are also detailed.

Two illustrative examples are investigated. The first considers a thin rod in unilateral contact with a rigid foundation and the second deals with a turbomachinery compressor blade in intermittent contact at its tip edge with a rigid casing. Consequences of unilateral contact on modal quantities are investigated.

Boundary value nonlinear eigenproblem

This section concerns the derivation of the strong nonlinear eigenvalue formulation of a flexible structure possibly in contact with a rigid foundation. Nonlinear modes [START_REF] Vakakis | Normal Modes and Localization in Nonlinear Systems[END_REF] are defined as non-trivial periodic solutions of an autonomous dynamical system. Furthermore, linear damping as well as friction are not considered so that the system is conservative. In the framework of infinitesimal deformations, the geometry of the current and reference configurations can not be distinguished. The displacement field of a material point x at time t is u(x, t). The linearized strain tensor is expressed as ε = 1 2 ∇u + ∇ T u and the linearized stress tensor as σ = A : ε, in which A denotes the fourth-order elasticity tensor associated with the constitutive Hooke's law, allowing for the formulation of a differentiable stored strain energy. For any material point x belonging to contact boundary Γ C , we uniquely define, for each x ∈ Γ C , a gap function

Constitutive equations of the continuum

u (x) Ω Γ D Γ C n
g(u) = u(x, t) • n -g 0 (x) (1) 
affine with respect to the displacement field u, in which g 0 (x) is the initial positive gap. The contact traction vector τ is decomposed into normal τ N and tangential τ T components according to the outward normal vector n (independent of the displacement field in an infinitesimal deformations framework) as

τ = τ N n + τ T (2) 
Accordingly, the boundary value problem describing the motion of the continuum structure parameterized in space and time, may be written as

ρü -div σ(u) = 0 on Ω × R + * (3a) u = 0 on Γ D × R + * (3b) g (u) ≤ 0, τ N ≥ 0, τ T = 0, g (u) • τ N = 0 on Γ C × R + * (3c)
Eq. (3a) describes the local dynamic equilibrium, Eq. (3b) is the Dirichlet boundary condition and Eq. (3c) defines the Signorini boundary conditions, that is: impenetrability, compression and complementary conditions [17]. Any possible inter penetration between the mechanical bodies in presence is precluded by these constraints. We adopt the convention that the "gap" is negative for admissible (i.e. non-penetrated) deformations. Also note that the usual initial conditions are omitted here since they are not relevant for the particular class of periodic solutions of interest.

In the sequel, the derivation of the nonlinear eigenvalue problem is introduced. As eigensolutions are sought in the form of Fourier series, problem (3) will be transformed into a so-called mixed frequency/time eigenvalue problem.

Mixed frequency/time eigenvalue problem

Since we are interested in non-trivial periodic solutions to problem (3), it seems natural to expand the displacement field in the frequency domain using Fourier series:

u(t) = n∈Z ûn e inωt with ûn = 1 T T u(t)e -inωt dt (4) 
in which ω = 2π/T is the fundamental nonlinear eigenfrequency of the motion to be determined.

The eigenvalue problem consists in finding {ω, û}, with û = {û n , n ∈ Z} such as,

-div σ(û n ) = (nω) 2 ρû n on Ω × Z (5a) ûn = 0 on Γ D × Z (5b) g (û) ≤ 0, τ N ≥ 0, τ T = 0, g (û) • τ N = 0 on Γ C × [0, T ] (5c) 
in which the gap function is now expressed using Eq. (4) as:

g (û) = n∈Z ûn • n e inωt -g 0 (6) 
Note that while Eqs. (5a) and (5b) are formulated in the frequency domain, Eq. (5c) requires the use of time, by definition. Accordingly, ( 5) is called a mixed frequency/time domains boundary value problem.

Even though the introduced strong formulation is not of much help for the characterization of a possible solution, it brings light to the intrinsic complexity of the inherent hybrid time-frequency properties of the system due to the direct relationships between the contact tractions subject to spatial geometric constraints themselves dependent on the unknown deformation mappings.

Variational formulation

Strong formulations such as the one detailed above suffer too restrictive assumptions on the class of functions which the solution is sought into. Most of the classical and intuitive conditions of smoothness are not suitable for proving the existence and uniqueness of a solution. Instead, an integral counterpart of system (5) can be derived within the proper mathematical framework of variational formulations.

Constrained minimization of Rayleigh quotient

In this section, the variational formulation associated with the nonlinear eigenproblem defined by Eqs. ( 5) is derived using the concept of Rayleigh quotient minimization. As a preamble, let us define the following set of admissible displacements

V g = {u ∈ V, g (u) ≤ 0 on Γ C } (7)
which accounts for Signorini boundary conditions and is a closed convex subset of the Sobolev space

V = {u : Ω → R d such as u ∈ (H 1 (Ω)) d and u| ΓD = 0} (8) 
equipped with the classical scalar product •, • and norm • . Let us also define the usual bilinear and symmetric kinetic and potential energy functionals on V×V to characterize the modal displacements of the system:

m (u, v) = Ω ρuv dx (9a) k (u, v) = Ω σ (u) : ǫ (v) dx (9b) 
The following generalized Rayleigh quotient can then be built:

r (û) = k (û, û) m (û, û) (10) 
in which the two frequency-domain energy functionals follow from Eqs. [START_REF] Carpenter | Lagrange constraints for transient finite element surface contact[END_REF] as

k (û, û) = n∈Z k (û n , ûn ) (11a) m (û, û) = n∈Z n 2 m (û n , ûn ) (11b) 
Nonlinear eigenvectors û are defined as critical points of this Rayleigh quotient and the associated eigenvalues are such that ω 2 = r (û). Due to Signorini conditions, which confine the set of admissible displacements to (7), this minimization problem is constrained. Furthermore, eigensolutions should be normalized. This is even more important in a nonlinear framework due to the energy dependency of the modal parameters. A possible approach is to normalize eigenvectors with respect to the kinetic energy (this is similar to the usual mass normalization, see [START_REF] Bellizzi | A new formulation for the existence and calculation of nonlinear normal modes[END_REF] for an example with nonlinear modes). We hence define the following functional

h(û) = 1 2 m (û, û) -γ (12) 
which relates the kinetic energy to the modal coordinate γ.

Accordingly, the eigenproblem of interest becomes

min ûn∈Vg r (û) subject to h(û) = 0 (13)

Lagrangian formulation

Consider now the following Lagrangian

L (û, λ, µ) = r (û) + T λ(t), g(û) dt + µh(û) (14) 
in which λ(t) is a time-dependent and positive Lagrange multiplier field and µ is a (constant) Lagrange multiplier. The initial constrained minimization problem (13) can be converted into a saddle point problem:

min ûn∈V max λ>0,µ L (û, λ, µ) (15) 
This Lagrangian formulation enables the use of unrestricted displacement spaces V by transferring the constraints to the Lagrange multiplier dual variables. As a consequence, optimality conditions associated with problem [START_REF] Lesaffre | Stability analysis of rotating beams rubbing on an elastic circular structure[END_REF] are

∇ ûn r(û) + T λ(t), ∇ ûn g(û) dt + µ∇ ûn h(û) = 0 ∀n ∈ Z (16a) g(û) ≤ 0, λ(t) > 0, λ(t), g(û) = 0 ∀t ∈ [0, T ] (16b) h(û) = 0 (16c)
They can be expanded, yielding the following formulation:

Find {û n ∈ V, n ∈ Z} such as ∀v ∈ V 2 m (û n , ûn ) -1 k (û n , v) -n 2 r (û) m (û n , v) + T λ, v e inωt dt + 2µ m (û n , v) = 0 ∀n ∈ Z (17a) g(û) ≤ 0, λ > 0, λ, g (û) = 0 ∀t ∈ [0, T ] (17b) h(û) = 0 (17c)
Similarly to linear systems, solutions of system ( 17) are critical points of constrained Rayleigh quotient [START_REF] Leib | Experimental and Numerical Analysis of Two Vibro-Impacting Beams[END_REF].

Under general yet conservative assumptions, one would have to account for the contribution of nonlinear internal forces in the potential energy of the system and then consider the minimization of the subsequently modified Rayleigh quotient. In the present study, since nonlinear forces arise from contact boundary conditions, their work is identically zero; hence the use of an unmodified Rayleigh quotient to define the respective eigenvalues.

Augmented Lagrangian

The saddle point formulation [START_REF] Lesaffre | Stability analysis of rotating beams rubbing on an elastic circular structure[END_REF] and its subsequent derivations, equivalent to the original nonlinear eigenvalue problem [START_REF] Leib | Experimental and Numerical Analysis of Two Vibro-Impacting Beams[END_REF], are formulated in an augmented Lagrangian framework. As a matter of fact, this formulation improves convergence and computationally benefits from the addition of penalty terms on constraints, allowing for the implementation of efficient Uzawa-like solution algorithms that perform descent on the primal displacement variable, through traditional nonlinear solvers, and ascent on the dual Lagrange multipliers (which coincide with contact forces when convergence is reached). Among all the alternatives, the augmented Lagrangian is here defined as [START_REF] Powell | Algorithms for nonlinear constraints that use lagrangian functions[END_REF]:

L κ (û, θ) = r (û) + 1 2 T √ κ i (g (û) + θ i ) 2 + dt + 1 2 κ e (h(û) + θ e ) 2 (18) 
in which κ i θ i and κ e θ e represent Lagrange multipliers for inequality and equality constraints respectively. The diagonal matrix κ i and scalar κ e are respective positive penalty parameters. By first defining the dual parameters θ = {θ i , θ e } and κ = {κ i , κ e }, the principle of such strategies is to generate a sequence of primal iterates û(j) , which minimize the augmented Lagrangian functional [START_REF] Bellizzi | A new formulation for the existence and calculation of nonlinear normal modes[END_REF] for constant multipliers θ (j) , κ (j) which are subsequently updated, in agreement with the constraints. The optimality condition for the minimization of the augmented Lagrangian functional (18) is:

∇ ûn L κ (û, θ) = 0 ∀n ∈ Z (19) 
which, according to Eqs. (17), may be written as:

Find {û n ∈ V, n ∈ Z} such as ∀v ∈ V 2 m (û n , ûn ) -1 k (û n , v) -n 2 ω 2 (û) m (û n , v) + T κ i (g (û) + θ i ) + , v e inωt dt+κ e m (û n , v) (h (û) + θ e ) = 0
(20) where parameter θ is then adjusted as follows:

θ i ← θ i + max x,t (g (û) , -θ i ) (21a 
)

θ e ← θ e + h(û) (21b) 
The penalty coefficients κ may also be updated when conditions [START_REF] Jones | SciPy: Open source scientific tools for Python[END_REF] did not improve the constraints.

Numerical implementation and algorithms

In the framework of the finite-element method, we consider a discretized displacement field U together with consistent mass M and stiffness K structural matrices based on [START_REF] Carpenter | Lagrange constraints for transient finite element surface contact[END_REF]. Furthermore, a uniform time discretization is introduced:

t = {t k = kT /m, k = 1, . . ., m} (22) 
such as Ūk = U (t k ) are discrete time values of U and the Fourier series of Eq. ( 4) is truncated up to order N . Hence, frequency-domain and time-domain variables are now related to each other in a discrete form:

Ûn = 1 T m k=1 Ūk e -i 2πkn m and Ūk = N n=-N Ûn e i 2πkn m (23) 
In practical applications, it is usually required to have N significantly smaller than m. Within these numerical assumptions, the mixed frequency/time augmented Lagrangian eigenvalue problem consists of:

• the discretized Rayleigh quotient used to calculate eigenvalues

r( Û) = N n=-N Û * n K Ûn N n=-N n 2 Û * n M Ûn (24a) 
• the gap function (6) as a linear system of equations for each time-step k:

g( Ūk ) = A Ūk -g 0 , 1 ≤ k ≤ m (24b) 
where rectangular matrix A restricts the displacement vector U to contact degrees-of-freedom;

• the mode normalization [START_REF] Woo | Application of the harmonic balance method to ground moling machines operating in periodic regimes[END_REF]:

h( Û) = 1 2 N n=-N Û * n M Ûn -γ (24c) 
• the eigenvalue equation ( 20) which reduces to 2N + 1 coupled sub-problems:

2M -1 K -(nω) 2 M Ûn + t A m k=1 κ i g( Ūk ) + θ i,k + e i 2πkn m + κ e h( Û) + θ e M Ûn = 0 (24d)
Algorithm 1 Nonlinear modal analysis: simultaneous eigenfrequency/eigenvector resolution 1: Set j = 0, {ω (0,p) , Û (0,p) } 2: for γ (j) in [γ min . . . γ max ] do 3:

Solve the augmented Lagrangian problem (Eqs. (24d) and (24b)-(24c)) and the Rayleigh quotient Eq. (24a) for {ω (j) , Û (j) using Algorithm 3

4:

Predict {ω (j+1,p) , Û (j+1,p) } 5: end for Algorithm 2 Nonlinear modal analysis: sequential eigenfrequency/eigenvector resolution 1: Set j = 0, {ω (0,p) , Û (0,p) } 2: for γ (j) in [γ min . . . γ max ] do 3:

Solve the augmented Lagrangian problem (Eqs. (24d) and (24b)-(24c)) for Û (j) with ω = ω (j,p) using Algorithm 3

4:

Retrieve eigenvalue ω (j) ( Û (j) ) using the Rayleigh quotient, Eq. (24a)

5:

Predict {ω (j+1,p) , Û (j+1,p) } 6: end for Various techniques can be employed to solve the eigenvalue problem defined by Eqs. (24). In particular, we have considered a combined and a sequential approach in which the eigenvalue and eigenvector are found either simultaneously or sequentially as described by Algorithms 1 and 2 respectively. The simultaneous approach is more rigorous yet computationally more expensive (in particular concerning the calculations and updates of Hessians). The sequential approach requires the energy-steps (δh (i) ) to be sufficiently small to ensure that an approximate eigenvalue does not significantly affect the accuracy of the resulting eigenvector. Provided the latter condition is satisfied, the simultaneous and sequential approaches would yield similar results. In both approaches, Eq. ( 24d) is numerically solved using a dedicated augmented Lagrangian algorithm, inspired by the one detailed in [START_REF] Arora | Multiplier methods for engineering optimization[END_REF]. The proposed algorithm 3 offers the following features:

• Convergence is controlled using Powell's measures of convergence:

G i = max dof |max k g Ūk , -θ i,k | (25a) G e = |h( Û)| (25b)
• Updates of multipliers and penalty parameters are determined depending on whether constraints have sufficiently improved, that is to say, for each constraint which does not satisfy:

max g( Ūk ), θ i,k < G i α (26a) h( Û) < G e α ( 26b 
)
The two parameters α and β involved in the augmented Lagrangian algorithm should be chosen with care. Although the only theoretical condition is to choose them larger than 1, numerical experience shows that specific values dependent on the problem of interest are necessary to achieve better performances. In the latter applications, α = 4 and β = 10 demonstrated satisfying stability and performances.

The numerical implementation is performed in Python programming language with the help of NumPy/ SciPy [START_REF] Jones | SciPy: Open source scientific tools for Python[END_REF] scientific libraries.

Algorithm 3 Augmented Lagrangian with equality and inequality constraints

1: Set j = 0, j max , G (0) 
i,e = ∞, θ = θ (1) , κ = κ (1) 2: Choose α > 1, β > 1, ǫ > 0 3: while j < j max do 4:

Solve Eq. (24d) for { Ûn } n=-N,...,N with fixed or variable ω (according to Algorithms 1 or 2)

5:

Evaluate constraints {g( Ūk )} k=1,...,m and h( Û) using Eqs. (24b) and (24c) if Ḡi ≥ ǫ then 12:

Set S i = {l : |max g( Ūk ), -θ i,k | ≥ G (j) i /α} 13: if Ḡi ≥ G (j) i then 14:
∀l ∈ S i , κ i,l ←βκ i,l and θ i,l ←θ i,l /β 15: if Ḡe ≥ G 

else 16: θ (j) i ←θ i , κ (j) i ← κ i and G (j) i ← Ḡi 17: θ i ← θ (j) i + max k g( Ū), -θ i 18: if G (j) i ≥ G (j-1) i /α then 19: ∀l ∈ L i , κ i,l ← βκ i,l
θ e ← θ (j) e + h γ ( Û) 29: if G (j) e ≥ G (j-1) e /α then 30: κ e ← βκ e if |h( Û)| ≥ G e /

Applications

This section concerns two applications which illustrate the proposed methodology and algorithms. The first is dedicated to the study a thin rod in contact with a rigid obstacle at one of its boundary and the second focuses on a turbomachinery compressor blade in contact with a rigid contact interface at its tip edge.

Thin rod in contact against a rigid foundation

We first investigate the first nonlinear mode of a simple rod undergoing hybrid force-displacement unilateral constraints, as depicted in Fig. 2. The natural frequency of its linear counterpart with clamped-free boundary The equations of motion can be summarized as:

• local equation: ρ ∂ 2 u ∂t 2 (x, t) -E ∂ 2 u ∂x 2 (x, t) = 0, x ∈ ]0, L [ (27a) 
• boundary condition: u(0, t) = 0 (27b)

• unilateral contact conditions:

u(L, t) -g 0 ≤ 0, σ xx (L, t) = EA ∂u ∂x (L, t) ≥ 0, (u(L, t) -g 0 ) • σ xx (L, t) = 0 (27c) 
The numerical nonlinear modal analysis is conducted with a separate solution u(x, t) = t N(x)h(t) derived through the usual finite element discretization involving n = 20 rod elements and the following respective elementary mass and stiffness matrices:

M e = ρAℓ e 6 
2 1 1 2

and

K e = EA ℓ e 1 -1 -1 1 , ℓ e = L n (28) 
After space-integration over the length of the rod, the unknown modal displacement field is given by Eq. ( 4) and the eigenvalue problem derived from Eqs. ( 27) is solved with Algorithm 2. As mentioned earlier, mode normalization of Eq. (24c) through a prescribed kinetic energy controls the amplitude of the nonlinear mode. Fig. 3 displays the first nonlinear mode eigenfrequency with respect to the modal energy (normalized with reference with the initial gap). Contact occurs as soon as the modal energy reaches unity. Then, the natural frequency increases which denotes a hardening effect. Figs. 4 display a portion of the nonlinear internal distribution of the rod nodal displacements over a motion period, namely the displacements of the first and last nodes versus the displacement and velocity of the middle node of the rod. Again, differences between linear and nonlinear regimes are noticeable. While the former typically features elliptic trajectories in the phase space, the latter is much more complex with velocity singularities and quick changes in displacements. Further details about this complex motion can be extracted from Figs. 5, which depict time-histories of all degrees-of-freedom for two normalized modal energies, respectively 0.7 (without contact) and 1.8 (with contact). When the prescribed kinetic energy is low, the usual first mode of the rod is retrieved as pictured in Fig. 5(a)-(b). In this configuration, the mode is a standing wave for which displacement and velocity fields are algebraically related through a phase-shift and an amplitude ratio, as expected. Maximum displacement and (respectively) velocity nodal amplitudes are simultaneously reached. On the contrary, when the prescribed kinetic energy is such that the tip of the rod hits the rigid foundation (normalized energy = 1.8), contact occurs over a fraction of the period of the respective nonlinear mode which becomes a traveling wave, as displayed in Fig. 5(c)-(d). Displacement and velocity fields are no more algebraically related to each other. As a matter of fact, under proper assumptions, Eq. (27a) generically admits a combination of forward and backward travelling wave solutions: these are highlighted by the velocity map histories in Fig. 5d for which the condition of simultaneous maximum nodal amplitudes does not hold anymore. Furthermore, the expected symmetry in time and space of generic travelling waves is also retrieved by the algorithm as pictured in Fig. 5c while no assumptions were made on the displacement field.

A turbomachinery blade in contact at its tip edge

The second application concerns a turbomachinery compressor blade in contact with a rigid contact interface at its tip edge. This situation is representative of rotating compressor components experiencing unilateral contacts with surrounding rigid casings. The finite element model of this blade is shown in Fig. 6 where the red nodes define the contact interface. This model is reduced by means of a Craig-Bampton procedure composed of 72 constraints modes associated with the physical displacements of 24 retained interface nodes belonging to the contact surface Γ C complemented by 40 component normal modes. Contact occurs in the radial direction only and a uniform initial gap is assumed. All displacements and velocities are normalized with respect to this initial gap and nonlinear frequencies are normalized with respect to the first linear frequency of the blade. Fig. 7 depicts the eigenfrequency of the first mode (nonlinear extension of the first bending mode of the blade) with respect to the modal energy. When the normalized energy is greater that one, intermittent contacts occur at the leading and trailing edges of the contact interface. This results in an increase of the natural frequency of the blade.

Figs. 8 display the mode shapes for three values of the modal energy. Sensitivity of mode shapes to contacts is noticeable. In particular, torsion effects tends to appear as modal energy increases and contact becomes more prominent.

This example illustrates a potential application of nonlinear modal analysis in an engineering perspective. Indeed, modal characteristics provide a straightforward on assessment of the effects of contacts on blades' dynamics (change of frequencies, stress concentrations, etc.) One can then image the development of design tools based on nonlinear modal analysis such as nonlinear Campbell diagrams.

Conclusions

A methodology for the modal analysis of elastic structures with contact interfaces is proposed. Based on the definition of nonlinear modes as non-trivial periodic solutions of the autonomous dynamical system, the eigenvalue problem is defined in a continuum framework and involves Signorini boundary conditions. A generalized Rayleigh quotient functional is introduced, which minimization under constraints is formulated using Lagrange multipliers, and solved using an augmented Lagrangian technique. Numerical approximations in space, time and frequency are then proposed for the sake of numerical treatments.

The approach is first illustrated on the example of thin rob in contact at one of its end. Interesting travelling wave motions for a conservative nonlinear system are obtained. Then, a turbomachinery compressor blade in contact with a rigid casing is considered. The first nonlinear mode is studied using the developed numerical tool and the sensitivity of the modal quantities to the contact constraints is explored. Stability and bifurcations analyses of motions of interest may be provided in future research works. Friction effects as well as wear along the contact interfaces can also be implemented.

Nonlinear modal analysis may have long-term applications in the characterization of time-stepping techniques by measuring their capabilities to remain on the respective nonlinear manifolds. 
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 2 Figure 2: Thin rod in contact against a rigid foundation
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 3 Figure 3: Frequency-energy plot of the first nonlinear mode
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 4 Figure 4: Periodic motions of the first nonlinear mode represented in a three-dimensional projection of the phase space; Displacements of the (a) last and (a) first nodes versus displacement and velocity of the middle node.

Figure 5 :Figure 6 :

 56 Figure 5: Time-histories of rod's displacement and velocity degrees-of-freedom for normalized energy 0.7 ((a) and (b)) and 1.8 ((c) and (d))

Figure 7 :

 7 Figure 7: Frequency / energy plot of the first nonlinear mode of the blade
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