Stability properties of steady-states for a network of ferromagnetic nanowires - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Equations Année : 2012

Stability properties of steady-states for a network of ferromagnetic nanowires

Résumé

We investigate the problem of describing the possible stationary configurations of the magnetic moment in a network of ferromagnetic nanowires with length $L$ connected by semiconductor devices, or equivalently, of its possible $L$-periodic stationary configurations in an infinite nanowire. The dynamical model that we use is based on the one-dimensional Landau-Lifshitz equation of micromagnetism. We compute all $L$-periodic steady-states of that system, define an associated energy functional, and these steady-states share a quantification property in the sense that their energy can only take some precise discrete values. Then, based on a precise spectral study of the linearized system, we investigate the stability properties of the steady-states.
Fichier principal
Vignette du fichier
nanowire.pdf (279.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00492758 , version 1 (16-06-2010)
hal-00492758 , version 2 (02-06-2012)

Identifiants

Citer

Stéphane Labbé, Yannick Privat, Emmanuel Trélat. Stability properties of steady-states for a network of ferromagnetic nanowires. Journal of Differential Equations, 2012, 253 (6), pp.1709-1728. ⟨10.1016/j.jde.2012.06.005⟩. ⟨hal-00492758v2⟩
393 Consultations
199 Téléchargements

Altmetric

Partager

More