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Abstract

This paper revisits a homogenization problem studied by L. Tartar related to a tridi-
mensional Stokes equation perturbed by a drift (connected to the Coriolis force). Here, a
scalar equation and a two-dimensional Stokes equation with a L?-bounded oscillating drift
are considered. Under higher integrability conditions the Tartar approach based on the
oscillations test functions method applies and leads to a limit equation with an extra zero-
order term. When the drift is only assumed to be equi-integrable in L?, the same limit
behaviour is obtained. However, the lack of integrability makes difficult the direct use of
the Tartar method. A new method in the context of homogenization theory is proposed.
It is based on a parametrix of the Laplace operator which permits to write the solution of
the equation as a solution of a fixed point problem, and to use truncated functions even
in the vector-valued case. On the other hand, two counter-examples which induce differ-
ent homogenized zero-order terms actually show the optimality of the equi-integrability
assumption.
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1 Introduction

At the end of the Seventies L. Tartar developed his method based on oscillating test functions to
deal with the homogenization of PDE’s. In the particular framework of hydrodynamics [[[3}, [[4]
he studied the Stokes equation in a bounded domain Q of R3, perturbed by an oscillating drift
term, i.e.

— Au, + curl (ve) X ue + Vp. = f in Q

div (us) =0 in (1.1)
u: =0 on
where the oscillations are produced by the sequence of vector-valued functions v, which weakly
converges to some v in L*(Q)?. L. Tartar proved that the limit equation of ([[-]]) is the Brinkman
[A] type equation
—Au+curl(v) X u+Vp+Mu=f inQ
div(u) =0 in (1.2)

u=0 on €,



where M is a positive definite symmetric matrix-valued function. More precisely, M is defined
by the convergences

(Dw})"v. — MX weakly in LZ(Q)?, for any A € R, (1.3)

where w} € W13(02)3 solves the Stokes equation ([[ZT) in which wu, is replaced by A. Then, the
convergence ([.J) combined with the compactness of u. in L3(€2)3, yields the zero-order term
Mu in ([.2). In [[5] L. Tartar revisited this problem using the H-measures tool. On the other
hand, the appearance of such a strange zero-order term in homogenization was also obtained
from finely perforated domains by D. Cioranescu, F. Murat [[J] for the Laplace equation, and
by G. Allaire [J] for the Stokes equation, with zero Dirichlet boundary condition on the holes.

Since curl (v.) X u. is orthogonal to u., the energy associated with ([T]) is reduced to

/ | Du,|? dz, (1.4)
Q

and thus does not depend on the drift v.. Starting from this remark our aim is to study
two drift homogenization problems associated with the same energy ([.4), and to specify the
optimal integrability satisfied by the drift so that the Tartar approach holds. The first problem
is scalar and the second problem is a two-dimensional equivalent of the Stokes problem ([L.1]).
However, we have not succeeded in obtaining an optimal result for the three-dimensional Stokes
equation ([L.1]) since the best integrability assumption for v, is not clear.

In Section [, we consider the following scalar equation in a bounded open set Q of RY,

1.5
u. =0 on 09, (1:5)

{ — Au, + b, - Vu, +div (b.u.) = f in Q

where b. € L*(Q)" is bounded in L?(Q)Y. We obtain three different homogenization results:

In Section P, assuming that the divergence of the drift b. is bounded in W~14(Q), with

q > N, we prove (see Theorem P.1]) that the sequence u. weakly converges in HE(€2) to the
solution u of the equation

1.6
u =0 on 09, (1.6)

{ —Au+b-Vu+div(bu) +puu = f inQ
where g is a nonnegative function. The proof follows the Tartar method using the oscillating
test function

w. = AT (div (b)) € Hy (). (1.7)

Then, in Section .3, assuming only the equi-integrability of the sequence Vw, in L?(Q)N
(this is actually a weaker assumption than the equi-integrability of the whole sequence b.), we

obtain (see Theorem B.1]) the limit problem ([[.§) with
|Vw, — Vw|*> — p weakly in L'(Q2) and pu? € LY(Q). (1.8)

It seems intricate to apply directly the Tartar method with the test function w,, since we cannot
control the terms b, - Vu, w, and b, - Vw, u.. To this end, one should consider truncations of
both w. and Vw,. To overcome this difficulty we propose a new method, up to our knowledge,
in the context of homogenization theory, based on a parametrix of the Laplace operator. It
follows that u. reads as a solution of a fixed point problem, which allows us to estimate the



sequence Vw, - Vu, only using a truncation of Vw.. The equi-integrability of Vw,. then gives
the thesis. Also assuming that b € L9(Q)", with ¢ > N, (which ensures the uniqueness in
([:8)) we prove the following corrector result

u. — (1 +w, —w)u — 0 strongly in W,24(Q2), for any ¢ € [1, N'). (1.9)

Finally, in Section .3, we show the optimality of the equi-integrability condition thanks to
a counter-example in the periodic framework (see Theorem P.G). Making a change of functions
with b, = Vw,, equation ([[.J) is shown to be equivalent to the following equation

— Av, + peve = fo,  with g = |Vw.|? (1.10)

the solution of which has the same limit as u.. G. Dal Maso, A. Garroni [ff] proved that the
class of equations of type ([[.LI0) is stable under homogenization. Here, we do not use this
general result, but we explicit an oscillating sequence w, so that the limit equation of ([.), or
equivalently ([L.10), is

— Au+~vyu=f, (1.11)

with an explicit constant v which turns out to be < p. Therefore, the loss of equi-integrability
for Vw,. violates the result of Section P.3. Note that the vectorial character of the drift term in
equation ([T7) makes difficult the derivation of a closure result similar to the one of [i] which
is strongly based on a comparison principle.

In Section [}, we consider the following two-dimensional equivalent of the perturbed Stokes

problem ([[.1)),
— Au, + curl (v.) Ju. + Vp. = f in Q

div (u:) =0 in Q (1.12)
u. =0 on €,
where J is the rotation matrix of angle 90°, and v. € L>°(2)? is bounded in L*(Q2)?. We follow
the same scheme as in the scalar case:

In Section B, assuming that the sequence v, is bounded in L"(2)? with r > 2, we show
(see Theorem B.1)) that the sequence u. weakly converges in Hj(f2) to the solution u of the
Brinkman equation

—Au+curl(v) Ju+Vp+ Mu=f in
div(u) =0 in Q (1.13)
u=0 on €,

where M is a symmetric positive definite matrix-valued function defined by the convergence
(E3) in L752(Q)*.

In Section B2, assuming only the equi-integrability of the sequence v, in L?*(2)?, we prove
(see Theorem B.3) owing to the Tartar method that the sequence u. weakly converges in H3 ()
to the solution u of the Brinkman equation ([[.I3) with similarly to ([.§),

(Dw))T v, — MA weakly in L'(Q)? and Mu-u € L*(Q). (1.14)

The proof is based on a double parametrix method carrying on both the velocity u. and the
pressure p.. However, the proof of the last estimate of ([LI4) is more delicate than the one
of ([.g), since we cannot use a comparison principle as in the scalar case. We need to introduce
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a test function similar to w? but associated with a truncation of v.. Moreover, if {2 has a regular
boundary, v € L"(2)? with r > 2, and M € L™(Q)**? with m > 1, we get the corrector result

u. —u—Weu — 0 strongly in WH(Q)?,  where W\ :=w?), for A € R (1.15)

Finally, in Section B9, we construct an oscillating sequence v, which is not equi-integrable
in L?(Q)?, which leads to the limit problem ([L.TJ) involving a matrix T which is not symmetric
and satisfies the strict inequality

CA- A< MM, forany A\ #0,

which is inconsistent with the Tartar approach. This shows the optimality of the equi-integrability
condition as in the scalar case. It would be very interesting to find the closure of the family of
problems ([.I2) under the sole condition of L*-boundedness of the sequences v.. This problem
is far from being evident due to the absence of comparison principle for such a vector-valued
equation.

Notations

2N
e The space dimension is N > 2, and 2" := N9

The conjugate exponent of p > 1 is denoted by p’ := Ll
p J—

For u: RY — RY, Du := (auz) .
1<ij<N

Ox;
o For ¥: RY — RV*N Diy (%) = (i %>
) p Ox; rcien
e H/(Y), with Y := (0,1)", denotes the space of the Y-periodic functions on RY which

belong to H}

loc

(RY).

2 A scalar equation with a drift term

Along this section ) is a bounded regular open set of RY, with N > 2, and f is a distribution
in H1(Q).
2.1 The classical case
Let ¢ € (N, 00). Consider a sequence b, in L>°(Q2)" such that
b. — b weakly in L*(Q)" and  div (b.) is bounded in W~4(Q). (2.1)

Let w. € W,"%(Q) be the solution of the equation (see, e.g., [§] Theorem 2.1)

Aw, =div (b.) in D'(Q). (2.2)
Up to a subsequence w, weakly converges in VVO1 () to the function w solution of

Aw = div (b) in D'(Q). (2.3)

We have the following result:



Theorem 2.1. The solution u. € H} () of the equation
— Au. +b. - Vu, +div (bou.) = f in D'(Q), (2.4)
weakly converges in H} (), up to a subsequence, to a solution uw € HL(Q) of the equation
— Au+b-Vu+div(bu)+pu=f inD'(Q), (2.5)
where 1 1s the function defined by the convergence
IVw. — Vw|? — p weakly in L3 (Q). (2.6)

Remark 2.2. The uniqueness for equation (R.4) is not evident under the sole assumption
b € L*(2)?. Assuming a stronger integrability of b we will obtain in Theorem .4 the uniqueness
for the limit equation.

Proof. The proof is based on the Tartar method of the oscillating test functions (see Appendix
of [[2], and [Id]). The function w,. of (B.2) will play the role of the oscillating test function.
The variational formulation of (P.4) is

/Vu€~V<pd:c+/b€~Vu€<pd:c—/b€~V<pu€dx:<f,<p)H_1(Q)7H5(Q), Vo€ Hy(Q). (2.7)
Q ) Q

Then, by the Lax-Milgram theorem there exists a unique solution u. of (27) in Hj(2). In
particular, for v € W1>(Q), putting ¢ = vu. as test function in (2.7) we obtain the identity

/Q \Vu|*vdr + /Q Vu - Vou.dz — /Qb€ -Vouldr = (fyvue) 10,11 (2.8)

which will be used several times. So, choosing v = 1 in (R.§) the term with b. cancel so that
we easily deduce that u. is bounded in H}(Q) and weakly converges, up to a subsequence, to
a function u in H} (). Therefore, it follows from () the limit variational formulation

/Vu~V<pd:c+/b~Vug0dx+/@du—/b-Vgoud:c:(f,go}H_l(Q),Hé(Q), (2.9)
0 0 0 0

which holds for any ¢ € W, %(Q) (due to the embedding of W,(Q2) into C(Q) for ¢ > N),

where the measure v is defined by the convergence

be - Vu. — b-Vu+rv weakly-x in M(9Q). (2.10)
The limit equation associated with (£.9) is

— Au+b-Vu+v+div(bu)=f in D'(Q). (2.11)

Now, let us determine the measure v of (R.1(). Let ¢ € C°(2). Putting pw. as test
function in (7) and ¢ u. in (£77), and taking the difference of the two equalities we get

/Vug-chwedx—/Vwa-Vgouadx
Q Q

= <f>§0wa>H1(Q),H&(Q)_/be'vueﬁpwedl‘+/ba'vwa§0uadl‘+/be'vspuawadx
Q Q Q

—/b€~Vu€<pdx—/b€-Vg0u€da:.
Q Q
(2.12)



Passing to the limit in (E.I3) by using the strong convergence of u. in LP(Q), for p < 2%, and
the uniform convergence of w. in C'(f2) (¢ > N), we obtain

/Vu-Vgowdx—/Vw~V<pudaz
Q Q

:<fa<Pw>H—1(Q),Hg(Q)—/b~Vug0wd:c—/<pwdu+/a<pudx+/b~V<puwdx
Q Q Q Q

—/b-Vugpdx—/cpdl/—/b-Vgoud:p,
Q Q Q
(2.13)

where the measure v is defined by (B.I() and the function o is defined, up to a subsequence,
by the convergence

be - Vw. — o weakly in Lt (Q). (2.14)
On the other hand, putting ¢ w € Wy %(Q) in (29) and pu € H(Q) in (23) we have
/Vu V(ipw)dr = <f,<pw)H_1(Q),H3(Q) — / b-Vupwdr — / o wdv
0 Q 0
(2.15)
+/b~ng0udx+/b~Vg0uwd:c,
0 Q

/Vw-V(gou)dx:/b-Vugoder/b-V(pudx. (2.16)
0 0 0
Equating the difference between (.15) and (2.1d) to the right-hand side of (R.13), it follows
that

/ ogpudr — / b-Vwpudr — / pdv =0, forany ¢ € CF(Q), (2.17)

0 0 0
which implies that
v=ocu—>b-Vwu in D'(Q). (2.18)

It thus remains to determine the limit equation (B.F). To this end, we pass to the limit by using
@ w, as test function in (R.9) and the definition (R.6) of i, and we put pw in (R.3), which yields

/ (1 + |Vw|2)g0dx+/ Vw~Vg0wd:c:/ag0dx+/b~Vg0wd:c, (2.19)
Q Q 0 Q
/ \Vw\ngdx+/ Vw - -Vowdr = / b- ngodx+/ b-Vowdr. (2.20)
Equating 32 and (B.20), we S(zieduce that ’ )
p=oc—>b-Vw inD'(Q), (2.21)
which combined with (2.1§) implies that
v=upu in D(Q). (2.22)

Finally, the limit equation (R.I1]) and the relation (.23) give the desired homogenized equa-

tion (2:3). O

Remark 2.3. It can be shown that
pw) = [ nlwdoe-e. (2.23)
SNfl

where p denotes the matrix-valued H-measure (or micro-local defect measure) of the sequence
b (see [ and []), and S¥~! the unit sphere of RY.

Assumption (B.1) is actually not sharp. In the next section we replace it by the boundedness
of b, and the equi-integrability of Vw, in L*(Q2).
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2.2 The case under an equi-integrability assumption

In this section © is a bounded open set of RY. Consider a sequence b, in L>(2)" the Hodge
decomposition of which is

b. = Vw, +&, with w, € HY(Q), & € LA(Q)Y and div (&) =0, (2.24)
such that
b. — b weakly in L*(Q)V. (2.25)

Note that for a fixed ¢ > 0, w. € WP(Q) and & € LP(Q)Y for any p € [2,00). But the essential
point is the asymptotic behaviour of the sequences b., Vw,, &. Our main assumption is the
equi-integrability of the sequence Vw, in L*(2)Y. By virtue of the Vitali-Saks theorem this is
equivalent to the following convergence, up to an extraction of a subsequence,

|Vw. — Vw|*> — p weakly in L'(Q), (2.26)

(Compare to (B-6) with ¢ > N).
We have the following result:

Theorem 2.4.

i) Under the equi-integrability assumption (B.24) the solution u. of (2.4) weakly converges in
H} () to a solution u of the equation

— Au+b-Vu+div(bu)+pu=f 1inD'(Q), (2.27)

with
/,uu2d:1: < (f,u}Hfl(Q)vHé(Q) —/ |Vul|® dx. (2.28)
Q Q

i) Also assume that b € LY(Q)N, where ¢ > 2 if N =2 and ¢ = N if N > 2. Then, we have

/Q\Vu|2da:—i—/ﬂuu2d:c:<f,u)H_1(Q)7H5(Q). (2.29)

and there exists a unique solution u € H}(Q) of equation (B27), with pu* € L*(Q).
Moreover, for any p € [1,2) if N =2 and p= N’ if N > 2, we have the corrector result
Vu, — Vu — (Vw, — Vw)u — 0 strongly in L} ()Y, (2.30)

loc

and for any r € [1,p),
ue — (1 +w. —w)u — 0 strongly in W57 (Q). (2.31)

Remark 2.5. No equi-integrability is required for the divergence free sequence &.. Actually, we
can prove that the equi-integrability of the sequence b, in L2(2)" implies the equi-integrability
of its two components Vw,, & in L _(Q)". Therefore, condition (B:20) is really weaker than
the equi-integrability of b..

Moreover, the equi-integrability of Vw, in L*(Q)" is essential for deriving the limit equation
with the zero-order term g u. When this condition is not satisfied we can obtain a similar limit
equation but with a different zero-order term (see Section P.3).



Proof of Theorem P.4. The limit u of u. in H}(Q) solves the equation (E:I1]) where v is
defined by
b- - Vu. —b-Vu — v weakly-* in M(2), (2.32)

By the Murat, Tartar div-curl lemma [[J] we have
be - Vu, = (& + Vw) - Vue + (Vw. — Vw) - Vu, — b-Vu+v in D'(Q).
This combined with the equi-integrability of Vw, implies that v is also given by the convergence
(Vw, — Vw) - Vu, — v weakly in L*(Q). (2.33)

The proof of Theorem P-4 is based on a parametrix method which allows us to express u.
as a solution of a fixed point problem. As a consequence, we obtain a strong estimate of Vu,
in L} (€2) for some p > 1 close to 1. However, this estimate cannot provide directly the desired
limit v of (R-33) since p < 2. To overcome this difficulty we consider a truncation n* of Vw,
which is bounded by k& > 0. Then, we can pass to the limit as ¢ tends to zero in the product
n* - Vu, for a fixed k. Hence, thanks to the equi-integrability of Vw,. we deduce the limit v as
k tends to infinity.

The proof is divided into four steps. In the first step we present the parametrix method
which leads to a LP-strong estimate of Vu.. In the second step we determine the limit of the
sequence 1 - Vu, for a fixed k > 0. In the third step we determine the limit v and the limit
equation (2.27) together with (2.2§). The fourth step is devoted to the proof of equality (B.29)
and the corrector results (2:30) and (231)).

First step: The parametrix method.
First, let us define a parametrix for the Laplace operator in €). To this end consider two
sequences of functions ¢,, ¥, in C°(£2), such that

0<¢nvn<1 and ¢, =1insupp(¢,), foranyn >1,

{n > 1 : supp (¢,) N K # @} is finite, for any compact subset K C €,

Y =1 Q.

n>1

(2.34)

Let E be the fundamental solution of the Laplace operator in RY. Then, the operator P defined
in D'(Q2) by
PC:=> 4 Ex(p,(), for(eD(Q), (2.35)

n>1
is a parametrix of the Laplace operator (see [l] Chapter I, for further details) which satisfies

P(AQ)=(— K¢ and A(P¢)=(—K'C, for ¢ € D'(Q), (2.36)

where K, K" are two C*-kernel operators properly supported in 2. Thanks to the Calderon-
Zygmund regularity for the Laplace operator (see, e.g., [f] Theorem 2.1, and the references
therein) we also have for any p > 1, and s € [0,2] such that s + % is not an integer,

P maps continuously D'(Q) to D'(Q2), and W,_**(Q2) to W, *P(Q). (2.37)

loc loc

Then, applying (B.3@) to the solution u. of (£.4) we have
ue = P(Au.) + Ku. = P [div(u (Vw. — Vw) )] + P [div(Vw: (u: — u))]

: (2.38)
+ P[div (uVw) | + P(& - Vue + b, - Vu, — f) + Ku,
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Fix p > 1 close enough to 1 and s € (N/p/,1). Since u. — u strongly converges to 0 in L?(€2)
for any ¢ € (2,2*), the sequence div(Vw, (u. — u)) strongly converges to 0 in W~'7((2), hence

by (-37) we have
P [div(Vuw: (ue —u))] — 0 strongly in W,7(Q).

Moreover, the sequence &, - Vu, +b. - Vu, is bounded in L'(£2), thus in W=57(Q) since s > N/p'.
Therefore, again by (B-37) the sequence VP (&, - Vu. + b - Vu, — f) is bounded in W'=s?(Q)",

and up to a subsequence strongly converges in LV (2)". Hence, since

& -Vu.+b.-Vu. — £-Vu+v+b-Vu in D'(Q),
we deduce from (P:38) the strong estimate
Vu, — VP [div(u (Vw. — Vw) )]
= VP[div(uVw)+ & - Vu+v+b-Vu— f] + VKu + orr @ (1) (2.39)
=VPyv+b-Vu+div(bu) — f] + VKu + orr @~ (1) (since & - Vu = div (uf)),

where o7 ()~ (1) denotes a sequence which strongly converges to 0 in LY (Q)N. On the other

hand, by (P-36) and (.37) we have
VP [div(u (Vwe — Vw) )]

VP [A(u(w: —w) )] = VP [div(Vu (w: — w))]
VP [Au(w: —w))] + orr @~ (1)
V(u(w. —w)) + orr @~ (1)
u(Vw. = Vw) +orr g (1).

Therefore, this combined with (£.39) yields

Vu. —u(Vw. — Vw) = VP[v +b- Vu+div (bu) — f] + VKu + orr @~ (1). (2.40)

Second step: Estimate of the sequence nf - Vu,.

Set n* := Vw, L{|vw.|<k}, for a positive integer k. Let us determine the limit of n* - Vu. in

L2 (). Using a diagonal extraction, there exists to a subsequence of ¢, still denoted by e, such

that n* weakly converges to some n* in L>(Q)" for any k. By the strong convergence (2.40)
combined with the weak convergence of u (Vw. — Vw) to 0 in LP(Q)Y (for p close to 1) we have

o () - (Ve — V)
g VP[V—ir b-Vu+div (bu) — f} +n" - VKu weakly in L _(Q).

Hence, we get that

o =pFu+n VPlv+b-Vu+div(bu) — f] +9" - VKu inQ, (2.41)
where
o = lim [} - Vu,.] weakly in L?(92),
=0 (2.42)

p = lim [(nf — nk) - (Vw, — Vw)] weakly in L?(2).

e—0

Third step: Determination of v and the limit equation (2.27).

9



Starting from the limit equation (E.I1]) we have by (B.30)
u=Plv+b-Vu+div(bu) — f] + Ku in ),

hence

nk-Vu:nk-VP[l/er-Vqudiv(bu) —f} +7*-VKu in Q.
Equating this with (2.41]) we obtain

of =pFu+nF-Vu in Q. (2.43)

Now, let us pass to the limit as k — oco. By virtue of the equi-integrability of Vw, in L*(Q)V
and by definition (2:47) the sequence u* strongly converges in L'(£2) to the function u of (22,
n* strongly converges to Vw in L2(Q)Y, and o* strongly converges to v + Vw - Vu in LY(Q).
Then, up to a subsequence p* converges to i a.e. in Q, and by the Fatou lemma combined

with equality (.43) we get
/ lpulde < liminf/ |pF u| de < liminf/ o —nF - Vu|dr = / lv| dx. (2.44)

We deduce from (R.:44)) and (243) that pu € L'(Q2) and

v=pu in €, (2.45)

which yields the limit equation (2.27).
It remains to prove the inequality of (R.2§). Let v € L*(Q2) and ¢t € R. By (£.2G), (E.33)
and (P.45) we have

/\Vug—vu—(Vwa—vw)tu)\de

Q

:/|Vu5—Vu|2dx+t2/|Vw€—Vw|2v2dx—2t/Vu5-(Vwa—Vw)vdx+o(1)
Q

= (f,u) g1 (),H1 ) — /\Vu|2da:+t2/,uv d:c—2t/,uuvda:+0( ),
(2.46)

hence

t2/;M)de—Qt/uuvd:er(f,u>H_1(Q),H%(Q)—/|Vu|2dx20, VteR.
Q Q Q

This implies that

(/Qﬂuvd:c)2 <<f U) g-1(Q),H(Q) — /|Vu\2d:c)/ﬂuv2d:c. (2.47)

Let Ty, k > 0, be a function in C*(R) such that

T(t) =t if |t] < k

Te(t)] = k+1 if [t] > k +2. (2.48)

0<T{<1 and {

Putting v = T}, (u) as test function in (B-47) and using that Ty (u)? < uTi(u), we get

(/Q/iuTk(U)dx)ZS ((f,u> ~1(Q), HL (@ /|VU\2dfﬂ)/ﬂuuTk(u)daz,
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hence
/,uuTk(u) dr < (f,u) g—1(@),m11(9) —/ |Vul? dz. (2.49)
Q Q
Since u Ty(u) is a nondecreasing nonnegative sequence which converges to u? a.e. in ), the
Beppo-Levi theorem applied to (B.49) thus gives inequality (B.2§).
Fourth step: Proof of equality (B:29) and of the corrector results (2:30), (2:31).

Assume that b € LI(Q)Y, where ¢ > 2if N =2 and ¢ = N if N > 2. Let ¢, be a sequence in
C} (R) which strongly converges to u in H}(2) and a.e. in 2, and such that |V, | is dominated
by a fixed function in L*(Q2). Putting the truncation function Ty (¢, ) (2:49) in the limit equation

(B27) we have
/Vu~VTk(<pn)da:+/b-VuTk(gon)dx—/b~VTk(<pn)udx+/uuTk(wn)dx
Q 0 Q

= (. T(n >H Q),HY ()"

Since b- Vu, pu € L*(Q) and bu € L*(N)Y (as a consequence of b € LI(Q)N), we can pass
to the limit as n — oo in the previous equality owing to the Lebesgue dominated convergence
theorem, which yields

/ Vu-VTi(u)de + / b-VuTy(u)dr — / b-VTi(u)udr + / puTy(u)de

Q Q Q Q (2.50)
= (/. Tk(“)>H—1(Q),Hg(Q)'

Then, using that |Tj(u)| < |u|, 0 < Tj(u) < 1, Ti(u) strongly converges to u in H} (), and

that bu € L*(Q)Y, pu? € LY(Q), and passing to the limit as k — oo owing to the Lebesgue
dominated convergence theorem we get

/Q|Vu|2d:p+/ﬂb-Vuud:p—/gb-Vuuder/QMUde:<f,u)H1(9)7%(9),

which is (R.29). Moreover, the proof of equality (B.29) with f = 0 shows that there exists a
unique solution u € Hg () of equation (2:27), with pu? € L'(Q).

It remains to prove the corrector results. By the estimate (R.46) with v = Tj,(u) and t = 1,
combined with equality (2:29) we have

lim lim (/ }Vu6 — Vu — (Vw. — Vw) T (u } d:c)
)

k—oo e—0

= lim (/Qu(u—Tk(u))Qd:p) = 0.

On the other hand, let p € [1,2) if N = 2 and p = N’ if N > 2, and consider an open set
w € (). By the Holder inequality we have

(2.51)

/ |Vue — Vu — (Vw, — V) u|” dz

<2p1</}vug Vu — (V. — V) Ty(u /lea Vol” ju—Ti(u m)

P

2 2p 1-
+c (/ |u — T (u)| > d;z:)

p

2 » 1-
+c (/ |u|227p d:c)
{Ju|>k}Nw

11

(2.52)

[SIiS]

<e (/ﬂ V. - Vu — (V. — V) Tk<u>\2)

<c </Q |Vu. — Vu — (Vw. — V) Tk(u)f)



2p

Since u € L?>7(w) by the Sobolev embedding, passing successively to the limits ¢ — 0 and
k — oo in (£.59) owing to convergence (R.51]) we obtain the strong convergence (B.30).

Let r € [1,p). Since w. —w strongly converges to 0 in L7 (w), by the Holder inequality the
sequence (w. — w) Vu strongly converges to 0 in L"(w)". Finally, this combined with (2:30)
implies the corrector result (231)).

2.3 A counter-example

In this section 2 is a regular bounded open set of R?, and Y := (—3, 3)?. For fixed R € (0, 3)
and p > 0, let 7. € (0, R) be defined by the equality

2T

—_— = . 2.53
g2 |Inr| H ( )

Let W, be the Y-periodic function and w. be the ¢Y-periodic function defined by

Inr—1
=% fri=|yl€ (r, R)
InR—1Inr, x ,
We.(y) = 0 sir<r yeY, w(x):=W, (g) , xeR* (2.54)
1 sir> R,
Note that by (R.53) we have
1 27
— W.ldy = —" . 92.55
82/}/‘v ‘ Y 521H<R/T€) J]) H ( )
We then consider the drift b. defined by
1 x 9
b-(z) = Vw.(x) = . VIV, (g) , forx e R (2.56)
Taking into account (R.53) it is easy to check that
w, — 1 weakly in H'(Q2) and weakly-* in L>(Q). (2.57)

Let f be a non-zero function in L?*(£2). We study the asymptotic behavior of the equation
(B.4) with the drift b, of (R.56), i.e.

— Au. + Vuw, - Vu, + div (Vw. u.) = f in D'(Q). (2.58)
We have the following result:

Theorem 2.6. The solution u. of ([2.58) weakly converges in HZ(S)) to the solution u of the
equation
3(e?—1)

—Au+yu=f mD(Q), where fy::m

p< p. (2.59)
Remark 2.7. Using the periodicity we can check that the sequence |b.|*> = |Vw.|? converges
in the weak-x sense of measures on €2 — but not weakly in L'(2) — to the constant u defined by
(B-53). Theorem P-g can thus be regarded as a counter-example to the statement of Theorem P-4
without the equi-integrability assumption on the drift b, in L?()2. Indeed, the conclusion of
Theorem P.4 would give a limit equation (.59), with v = p.

12



Proof of Theorem P.6. The proof is divided into two steps. In the first step we construct an
oscillating test function z. which solves equation (.64) below. In the second step we determine
the limit equation (P-59).

First step: Construction of an oscillating test function.

Denote by @, the disk of radius r centered at the origin. Consider the unique solution Z. in
HY(QR) of the equation

1 1 1
S AZ A+ = VW2, =2
82 + 82 | ‘ ‘QR‘ m QR

=0 on 0Qg.

2.60
0Z. ( )

on

The function Z. is radial and can be computed explicitly. Using the Laplace operator in polar
coordinates and |[VW_|? = o2 r—2 Lo\, , We get

82

— g e ifre (0
Zr) = ™ 2 where a, :=
Ag T'af + bs Tﬁas + T2 lf re (T57 R]’

e 260

TR? (a2 —3)
The constants a., b., c¢. are determined owing to the boundary condition on 0@ and to the
transmission conditions on 0Q),_, i.e.

ZI(R)=0 and Z.(rl)=2Z.(r0), Z.r})=2Z.(r0). (2.62)

We extend Z. by the constant value Z.(R) in Y \ Qg, and by Y-periodicity in the whole
space R%2. The Y-periodic extension is still denoted by Z.. An explicit computation combined

with (E53) yields

~ 4+ 1) 1 R
Z€ — 7 = m ; Strongly m Hﬁ (Y) (263)
As a consequence of (.60), (2.61)) the rescaled function z.(x) := Z.(%) is solution of the equation
— A+ Vw2 =X, <§> in D'(R?), (2.64)
Lo

where XﬁQR is the Y-periodic function agreeing with in the period cell Y. Moreover, the

following convergences hold

QR

2. — Z weakly in H'(Q) and XﬁQR (g) — 1 weakly-* in L>(2), (2.65)

where the constant Z is defined by (2:69).

Second step: Determination of the limit equation (R.59).

Define the function v, := e!~"¢ u.. Then, equation (2-5§) is equivalent to
— Av, + |[VwPo. =7 f in D'(Q). (2.66)

G. Dal Maso, A. Garroni [[f] proved that this class of equations is stable under homogenization.
In the present case, the use of the oscillating test function z. will allow us to obtain the limit

equation (R.59).
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On the one hand, choosing v = w, in (B.§) we get

/|Vw€\2u§d:c—/Vwe-Vugueda::/|Vu€|2w€daz—/fw€u€dx§c, (2.67)
Q Q Q Q

since u. is bounded in H}(Q2) and 0 < w. < 1. Then, by the Cauchy-Schwarz inequality we

have . .
2 2
/ |Vw5|2ug dr <c+ec </ |Vu5|2dx) (/ |Vw€|2u§ dx)
Q Q Q

<c+d (/ |Vw€|2u§dx) :
Q

hence u.Vw, is bounded in L?(2)?. This combined with convergence (P-57) implies that v,
weakly converges to u in Hj ().

On the other hand, for p € C2°(Q2), putting the functions ¢ z. in (:66) and ¢ v. in (.64),
taking the difference of the two equalities, and passing to the limit owing to convergences (B.63)
we obtain the equality

(2.68)

/Vu-Vgode+/<pudx:/fcpZd:p, for any ¢ € C°(Q). (2.69)
Q Q Q

which is the variational formulation of equation (E-59), with v = Z~1. O

3 A Stokes equation with a drift term

3.1 The classical case

In [[3, [4 L. Tartar noted that the nonlinear term of the three-dimensional Navier-Stokes
equation for the divergence free velocity u reads as

(u-V)u=Div(u®u) =curl (u) x u+V (3 [uf’). (3.1)
This led him to study the perturbed Stokes equation
— Au+curl (v) x u+ Vp = f, (3.2)

where a given vector-valued function v replaced the velocity u of the Navier-Stokes equation.
The equivalent of transformation (B.I]) in two-dimension is

Div (u ® u) = curl (v) Ju+ V (5 [u]?),

0 —1) | (3.3)

where curl (u) := Ojug — dhuy and J := (1 0

More generally equality (B.3) extends for any divergence free functions u, v to the following one
curl (v) Ju = Div (v @ u) + (Du)" v — V (v - u). (3.4)
Similarly to (B.2) this leads us to the two-dimensional perturbed Stokes equation

— Au+ curl (v) Ju+ Vp = f. (3.5)

14



Let Q be a bounded domain of R?. Let v, be a sequence in L>(§2)? and let f be a distribution
in H~1(Q)?. Consider the perturbed Stokes equation
— Au. + curl (v.) Ju. + Vp. =f inQ
div(us) =0 in Q (3.6)
u. =0 on 0€.
In the three-dimensional case where curl (v.) X u. replaces curl (v.) Ju., L. Tartar [[4] derived
a Stokes equation with a Brinkman law under the assumption that v. is bounded in L3(£2)3

(see Introduction). Mimicking the Tartar approach in dimension two we can derive a similar

homogenized equation using the test function w?, for A € R?, solution of the Stokes equation

— Aw? + Div((ve —v) ® ) + V¢ =0 inQ

div (w}) =0 inQ (3.7)
w) =0 on 0.

15
Then, we have the following result:

Theorem 3.1. Assume that v. is bounded in L"(Q)?, with r > 2. Then, the solution u. of
[B-8) weakly converges in Hg () to the solution u of the Brinkman equation

—Au+curl(v) Ju+Vp+Mu =f inQ
div(u) =0 inQ (3.8)
u =0 on 09,

where M s the positive definite symmetric matriz-valued function defined by

(DwM)Tv. — MA weakly in L22TTT(Q)2 and in LEC(Q)2

(),

. for \,p € R% (3.9)
Dw? - Dw! — M- pu  weakly-+ in M(2)? and in L?

loc

Moreover, the zero-order term of (B.8) is given by the convergences

(Du.)T(v. —v) — Mu weakly in L7+ ()2
o (3.10)
Du, : Dw} — Mu -\ weakly-* in M(2) and in L7 (Q)>.

loc

Proof. By the representation formula (B.4) we have
curl (v.) Jue = (Dug)" v + Div (v @ ue) — V (v2 - u) . (3.11)

Hence, the variational formulation of (B.)) reads as

/ Du. : Dodx + /(Dua)TU6 ~pdr — /(vs ®ue) 1 Dpdr = (f, ue) g1 (qp,m1@)?2 »
Q Q Q (3.12)
for any p € H}(Q)?, div(p) = 0.

By the Lax-Milgram theorem there exists a unique divergence free function u. € H}(€)? solu-
tion of (B.I3). Then, putting the velocity u. as test function in (B:I13) it follows that

/ |DU5|2 dr = <f, ’UJ5>H71(Q)2’H%(Q)2 s (313)
Q
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which implies that u. is bounded in H}(Q)?. Let w be a regular domain of Q. Applying (B-12)
to divergence free functions in H{(w)?, there exists a unique p. in L?(w)/R such that equation
(B-8) holds in D’'(w)?. Moreover, by (BI1]) and the boundedness of v, in L"(2)? the sequence
Vp. is bounded in H~!(w)?. Hence, due to the regularity of w the sequence p. is bounded in
L?*(w). Then, considering an exhaustive sequence of regular domains the union of which is Q, we
can construct in Q a pressure p. which is bounded in L% _(£2). Therefore, up to a subsequence
the following convergences hold

{ ue — u weakly in Hj(Q)? (3.14)

p. — p weakly in L2 (Q)/R,
Now, in view of (BIJ]) it is enough to determine the limit of the term (Du.)" v.. By the
regularity results for the Stokes equation (see, e.g., [d] Theorem 2, p. 67) the sequences w? and
)\ .
q2 satisty

loc

¢ — 0 weakly in L*(Q)/R and in L], (Q)/R.

loc

w) — 0 weakly in H'(Q)? and in W27 (Q)?
(3.15)

which imply convergence (B.9). Let ¢ € C°(Q). Following the Tartar method we put ¢ w? in
equation (B.6]) and ¢ u. in equation (B.4). Then, from the representation (B.11l), the conver-
gences (B.14), (B.14) and the boundedness of v, in L"(€2) we deduce that

/ Du, : Dw} ¢ dv — /(v€ ®u.) : Dw? dr = o(1)

“ “ for any ¢ € C°(92),

/Dw;‘ : Du. pdx —/ ((v: = v) @A) : Du. pdx = o(1),
Q Q

hence

Du, : Dw? — (Dw))Tv. - u. — 0 D) (3.16)
in ) )
(Du)T(v. —v) - A = (DwM) v, -u. — 0

By virtue of the strong convergence of u. in any L*(£2)? space for s € (1, 00), convergences (B.10)

and (B.9) imply (B.1I(). This combined with (B.I1) yields finally the limit problem (B.§). O

Remark 3.2. It can be shown that
M) = [ [ (0.d6) (o)) € 6 (317)

where p is the matrix-valued H-measure of the sequence v, (see [[3, [0]).

The case where v, is only bounded in L?*(2)? is much more delicate. On the one hand,
under additional assumptions we will extend the Tartar result when v, is bounded and equi-
integrable in L?*(2)2. On the other hand, we will give an example of a sequence v, for which
the homogenized Brinkman equation is not the one obtained by the Tartar procedure.

3.2 The case under an equi-integrability condition

In this section we make the following weaker assumption on the drift,

2

v, — v weakly in L?(Q)® and v, is equi-integrable in L*(Q)?. (3.18)

Then, we have the following extension of Theorem B.1:

16



Theorem 3.3.

i) Under the equi-integrability assumption (B.18) the solution u. of (2.4) weakly converges in
H(Q) to the solution u of equation (8.§) with

/ Mu - udx S <f, U>H71(Q)27H6(Q)2 —/ |DU|2dl’, (319)
Q Q

where M s the positive definite symmetric matriz-valued function defined by

(Dw) v, — M) weakly in L'(Q)?
\ for X\, € R?. (3.20)
Dw} : Dw" — MX-pu  weakly-+ in M(Q)?,
i1) Also assume that Q has a Lipschitz boundary, v € L™(Q)?, with r > 2, and M € L™(Q)**?,
with m > 1. Then, we have the equality

/|Du|2d:p+/Mu-udx: (fsw)a-102,HL ) (3.21)
Q Q

and there exists a unique solution v € Hy(Q)? of equation ([33), with Mu - u € L'(Q).
Moreover, we have the corrector result

U —u—Weu — 0 strongly in WHH(Q)?, (3.22)
where W, is the matriz-valued function defined by

WA :=w), for\eR> (3.23)

R

Remark 3.4. Contrary to Theorem R.4, in the part i) of Theorem .3 we need to assume a
higher integrability for the matrix-valued M. Indeed, we cannot apply a truncation principle
on Muwu - u. Moreover, the regularity of {2 is necessary to obtain the density of the smooth

divergence free functions in the space of the divergence free functions of H}(Q)?.

Proof of Theorem B.3. As in the proof of Theorem B.3 the sequence u. is bounded in HJ ()2,
and thus in any L*(Q)? space. Then, in view of (B:I1]) and (B.f)) together with the boundedness
of u. and v. the sequence Vp. is bounded in L'(Q)? + W~17(Q)? for any r € (1,2). Hence,
thanks to the embedding of Li .(Q2) into W 7"(Q) for any r > 1 and o > 2/r/, the sequence

pe is bounded in Lj (2)/R for any r € (1,2). Therefore, up to a subsequence we have the
convergences

u. — u weakly in H}(Q)?
(3.24)
pe — p weakly in L] (Q)/R, for any r € (1,2).
The problem is to determine the vector-valued distribution v defined by
curl (v.) Ju. — curl (v) Ju — v in D'(Q)*. (3.25)

Taking into account the representation formula (B.11) and the equi-integrability of v, in L*(£2)?,
v is actually in L'(2)2, and is given by

(Du.)"(v. —v) — v weakly in L'(Q)?, (3.26)
so that u is solution of the equation

— Au+v+curl(v) Ju+Vp=f inD(Q). (3.27)
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From now on the proof follows the same scheme as the one of Theorem P.4 using a repre-
sentation of the velocity and the pressure owing to the parametrix P of (R.35). The proof is
divided into fifth steps. The first step deals with a double parametrix method for both u. and
pe, which allows us to derive a strong approximation of Du.. In the second step we compute
the limit o* of the sequence (Du.)?v¥, where vf is a truncation of v. for a fixed k£ > 0. In the
third step we obtain the limit equation (B.§). In the fourth step we prove inequality (B.19).
The fifth step is devoted to the proof of equality (B.19) and the corrector result (B.22).

First step: The double parametrix method.

Consider the parametrix P (R.37) for the Laplace operator. Abusively we denote by A the
vector-valued Laplace operator as well as by P the associated vector-valued parametrix each
component of which is defined by (R.35). Taking the divergence of equation (B.G) we have

Ap. = div (f) — div (curl (v.) Ju.) in Q,

hence by (R.36))
p. = P[div (f) — div (curl (v.) Ju.) | + Kp. in €. (3.28)

Substituting p. by the right-hand side of (B.2§) in (B.Q) it follows that
Au. = curl (v.) Ju. — VP (div (curl (ve) Ju.) ) + VP(div (f) ) — f + VKp. in Q,
hence again by (B.36) we have in
u. = P [curl (v.) Ju. — VP (div(curl (v.) Ju.))] + P[VP(div (f) ) — f] + L(ue, p-), (3.29)

where L is a C'*°-kernel operator acting on the pair (u., p.). Using the representation (B.I1]) of
curl (v.) Ju., and setting

ge = Div((v8 —0)® ue) — V((v8 —) -ue), (3.30)

we get
u. = P [(DUE)TUE +g.— VP (div((DuE)Tvg + gg))} + F(ue, pe), (3.31)

where
F(¢,0):= PDivive()—V(v-¢)— f— VP (div(Div(v® () = V(v-¢) = f))] (3:32)

+ L((,9).
Note that by (B.37) we have

F(ue, p.) — F(u,p) strongly in W,l'(Q), for any r € (1,2).

loc

Moreover, by (B.26) the sequence (Du.)Tv. weakly converges to v + (Du)?v in L'(2)? which is
compactly embedded in I/Vlgcl "(2)? for any r € (1,2). Hence, as in the first step of the proof of
Theorem P.4], from (B.31)) and the two previous convergences we deduce, for any r € (1,2), the
strong convergence

u. — P lg. — VP(div (¢.) )] — P [v+ (Du)Tv — VP (div(v + (Du)™v))] + F(u,p)

strongly in W, (Q)2.
(3.33)

Tvk

Second step: Determination of the limit o* of (Du.)Tv*.

18



Fix r € (1,2) such that (B:33) holds. Set
z.:=Plg. — VP(div(g.))] and g = P(div(g.)). (3.34)
In view of (B.30) the sequence g. weakly converges to 0 in W~1"(Q2)2, hence by (R.37) we have
ze — 0 weakly in W''(Q)? and ¢ — 0 weakly in L}, .(Q)/R. (3.35)
Moreover, by (B.36) we have
Az, =g.—Vq — K'g. and Ag. =div(g.) — K'q. in Q, (3.36)

hence
A(div (z.)) = K'q. — div (K'g.) — 0 strongly in L], (Q)?, say.

This combined with the first convergence of (B:3H) and (B.37) yields

div (2.) — 0 strongly in W27 (Q)2. (3.37)
On the other hand, set v := v, L{jv.|<k}, for a positive integer k. Up to a subsequence of ¢
still denoted by e, v* weakly converges to some function v¥ in L*(Q)? for any k. Consider for
A € R?, the solutions w>" and ¢* of the Stokes problem

— Aw}* + Div ((vF =) @A) + Vg* =0 inQ
div (w2*) =0 inQ (3.38)

£

wM =0 on 0.

which consists in a approximation of equation (B.7). By the regularity results for the Stokes
equation (see, e.g., [A]) we have

loc

Q)R for any s € (1, 00). (3.39)

@* — 0 weakly in L}

loc

{ wM  — 0 weakly in W,25(Q)?

Choose s := 1, and apply the Tartar method (see Appendix of [[7]). Let p € C(2). Putting
o w™* in the first equation of (B3d) and ¢ 2. in equation (B-3§), and using the definition (B.30)
of ge and the convergences (B.39), (B:37), (B-39) we have

(Dz)T(vF —o%) - X — (Dw;"k)T(U€ —v)-u. — 0 weakly in D'(Q)*.
Hence, since Dz. weakly converges to 0 in L"(2)?*2, we deduce that
(Dz)'vF — M*u  weakly in D'(Q)?, (3.40)

where the matrix-valued function M* is defined by

loc

(Dw;"k)Tv5 — M* )\ weakly in L{ _(Q)?, for any s € [1,2). (3.41)
Now, we are able to determine the limit o* of the sequence (Du.)Tv* in L?(Q)2. With the
definition (B.34)) of z. the strong convergence (B.33) implies that

(Du)Tvk — (Dz )Tk — (DP [1/ + (Du)fv — VP (div(l/ + (Du)Tv))] )Tvk + (DF(u,p))Tv’l‘C

weakly in LI (Q)%

loc
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This combined with (B.40) thus yields

o* = M*u+ (DP [v+ (Du)"v — VP (div(v + (Du)TU))])Tv’LC + (DF(u,p))Tvk. (3.42)
Third step: Determination of the limit equation (B.§).
The function u solves the equation (B.27) which by (B.4) and similarly to (B.31]), can read as

u=P v+ (Du)"v— VP (div(v+ (Du)"v))] + F(u,p).
This implies that
(Du)Tv* = (DP [v + (Du)"v — VP (div(v + (Du)To))])" vx + (DF(u, p))" o",
Therefore, equating the previous equation with (B.47) yields
o = (Du)'v* + M*u  in Q. (3.43)

It remains to pass to the limit as k tends to infinity. Due to the equi-integrability of v. in
L*(Q)? and by convergence (B.26) the sequence o* strongly converges to v + (Du)Tv in L}(Q).
On the other hand, putting the function w?* — w? both in equations (B.7) and (B:3§) we get
the equality

/ | Dw2* — Dw;‘}z dr = / (Dw}* — Dwg‘)T(vf — v, — v +0) - Adu,
Q Q
which, again by the equi-integrability of v., yields

lim sup (/ | Dw2* — Dw;‘}z dx) = 0. (3.44)
Q

k—o0 e>0

Estimate (B-44) implies that the sequence M" defined by (B-Z1)) strongly converges in L'(£2)**?
to the matrix-valued function M defined by (B:20). In particular, up to a subsequence M*
converges to M a.e. in . Then, by the Fatou lemma combined with (B.43)) and the strong
convergences of o in L'(Q)? and vy, in L*(Q)2, we get that the function Mu belongs to L*(2)2.
Finally, passing to the limit in (B.43) we obtain the equality

v=Mu in €,
which gives the limit equation (B.§).

Fourth step: Proof of inequality (B.19).

Similarly to (B:23) let W* k > 0, be the matrix-valued function defined by WFX := w?*,
where w)* solves (B.3§). We simply denote w’* when A\ = ¢; :== (2 —i,i — 1), for i = 1,2. Let
€ Ccl(Q) , and let ¢t € R. Using (B.13) we have

/}Du€ Du —t D( Wkgo} de = (f,u)y 1(9)2H1(Q2—/\Du\2d:c

¢ (3.45)

—Qt/DuazD(ngo) dertZ/ ’D(ngo)}zdx+0(1).
Q Q

Moreover, similarly to the second convergences of (B.9) and (B.I(), we have for i,j = 1,2,

Du, : Dw?k — Mk - ¢
weakly in L; (), for any s € [1,2), (3.46)

ik ik rk
DwZ® - Dw?®  — MFe; - ¢;,
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where (compare to the definition (B1)) of M*) the matrix-valued M* is defined by

(Dwé’k)Tvk — MFe, weakly in L*(Q)2. (3.47)

£

Then, from convergences (B.39) and (B.46) we deduce that

e—0

2
/ Du. : DOWFp)der = Z/ Du, : Dw'* ; dx + o(1) — / M - dz,
@ i=1 /9 Q

2
/ ‘D(Wf(p)fd:c = Z / Dwi* . Dw* p; p;dx + o(1) v / MFo - pdz,
Q =179 e Q

This combined with (B.45]) implies that

2
/‘Dug—Du—tD(ngo)‘ da:z(f,u}H_l(Q);Hé(Q)z—/\Du\Qd:c
“ “ (3.48)
—Qt/Mku-godx+t2/Mkcp-cpdx+0(1).
Q Q

Therefore, we have for any t € R,

t2/Mkw-wdx—Qt/Mku-goda:+<f,u)H_1(Q)2,H3(Q)2—/|Du|2dx20,
Q ) )

2
( / M’“u-cpdx) < (<f,u>H1<m2,Hg<m2 -/ |Du|2dx) [t pan. a9
Q Q Q

Let ¢ > 0, and let w be an open set such that w € Q. Since by (B.A1)) and (B-47) M* and
MP* belong to L*(w)?*? for s € [1,2), putting in (B:49) strong approximations ¢ of l}r“gru‘ in
L*'(Q)?, we get

Mkry - u 2 Mkuu
——d < _ — Dul?*d —d
<w1+6w¢x) -Oﬁ“””@ﬁﬂmﬁ lﬂ u x)[ﬂl+ﬂmv .

M*u - u
< i — [ |Dul*d s d
< ((f, ) L (©)2, HY ()2 /Q| u x) /Q L+ a2 ™

which by the arbitrariness of w yields the inequality

MFru - 2 Z\}["“u-u
—d < _ — Dul?d —dx. .
(91+5m|x)-0ﬁ“”1mﬂ%mﬁ ﬂﬂ u x)l&1+6mw v (350

Recall that, by virtue of the equi-integrability of v. in L%*(Q)?, the sequences M* and MF
strongly converge to M in L'(2)?*2, thus converge, up to a subsequence of k, a.e. in Q and
in a dominated way. Therefore, passing to the limit as k& — oo owing to the Fatou lemma for

the left-hand side of (B.5(]) and owing to the Lebesgue dominated convergence theorem for the
right-hand side of (B.50), it follows that

< Mda:>2< <(f u) —/\Du\de)/Md:c<oo
ol+dful ) =\ HTERIER o (1+0[ul)? |
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which implies the inequality

Mu - u
de < {f,u)g-1(02 g2 — Dul? dzx. 3.51
[t de < () nopngon = [ 1Dl (351)

Finally, applying the Fatou lemma in (B.51]) as § — 0 we obtain the desired inequality (B.19).

Fifth step: Proof of equality (B-2]]) and of the corrector result (B23).

Assume that  has a Lipschitz boundary, v € L"(Q)V, with r > 2, and M € L™(Q)?*?, with
m > 1. Let ¢ be a divergence free function in C°(Q)?. Putting ¢ as test function in the limit
Stokes equation (B-§) and using the representation formula (B-4) we have

/Du:Dcpder/(Du)Tv-cpd:p—/(v@u):Dgpdx+/Mu-g0dx
) Q Q Q (3.52)

= ([, u) m-1(0)2,H1 (@)

Due to the regularity of €2 the set of divergence free functions is known to be dense in the space
of divergence free functions in H}(Q)? (see, e.g., [[7]). Moreover, by the higher integrability of
v and M the mapping

@l—)/(Du)TU~g0dx—/(v®u):D(pd:L’—i—/Muwpd:c
Q Q Q

is continuous in H}(2)2. Therefore, considering in (B-53) a divergence free strong approximation
¢ of uin H}(Q)? we get

/ | Du|? dz + /(Du)Tv ~udr — /(v ®u) : Dudzr + / Mu - udz = (f,u) g1y H30)2 »

Q Q Q Q

which is (B:21)). This equality clearly implies the uniqueness of a solution u € H}(Q)? of (B-3),
with Mu - u e L'(Q).

It remains to prove the corrector result (B.23). Let ¢ € C°(€2). Applying successively the
triangle inequality and the Cauchy-Schwarz inequality we have

/Q |Du. — Du — D(W. u)| dx
< /Q |Du. — Du — D(W. )| dz + /Q |ID(W. (u—¢))|da
< /Q }Du8 — Du — D(W, cp)’ dx + /Q |DW| |u — | dz + /Q |We| |Du — Dep|dx
< [ 1Duc = Du= DOW.o)| da + Wl sy 1 = el
hence by the boundedness of W, in H}(Q)?,
/Q }Du6 — Du— D(W, u)’ dx < /Q }Du6 — Du— D(W, cp)’ dr +cllu—@llm@2  (3.53)
On the other hand, proceeding as in fourth step owing to the second convergences of (B.20)

and (B-I0) (which hold in the weak-* sense of measures on 2) we get similarly to (B-4g) the
equality

2
/ |Du. — Du — D(W. )| dz = (f, U) {-1(0)2, H1(Q)? —/ | Du|? dz
Q Q

—2/Mu-cpdx+/Mg0-g0dx+0(l).
0 0
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Hence, taking into account equality (B.2]]) and using the Hoélder inequality combined with the
embedding of H}(Q) in any L*(Q) space, it follows that

/}DuE—Du—D(Weap)fdx :/M(u—¢)-(u—g0)dx+o(l)
Q

< | M|l pmgyxe [lu = @Il )2 + o(1).

(3.54)

Therefore, by (B.53) and (B.54)) we obtain the inequality

limsup/ |Du. — Du— D(W.u)|dz < cu— Ollaip2, forany ¢ € C ()%, (3.55)
Q

e—0

which implies the desired convergence (B.29) and concludes the proof of Theorem B.3. a

As in the scalar case we show in the next section that the equi-integrability condition
is crucial to derive the limit Brinkman equation (B.§) with the matrix-valued function M

introduced by L. Tartar [[4, [L6].

3.3 A counter-example

Let © be a regular bounded domain of R%. For ¢ > 0, let w, be the intersection of Q with the
periodic lattice of disks of center 2¢ k, k € Z?2, and of radius € r. such that

4
WZTE' — 7 €(0,00), (3.56)
This geometry was used by Cioranescu, Murat [{] for the Laplace equation and by Allaire [g] for
the Stokes equation, in order to derive a “strange term” of zero-order from the homogenization
of the Dirichlet boundary conditions on the small disks.
In the square Y := (—1,1)% let Q be the disk centered at the origin and of radius 1, and
let @Q,. be the disk of same center and of radius r. with measure |Q,.| = mr2. Then, for
f € H(Q)? we consider the Stokes equation

—Au.+ 2 Ju. +Vp. =f inQ
IQ
div(u;) =0 inQ (3.57)
u. =0 on 0f.

Note that, in view of the definition of w., we have |w.| & |Q||Q,.|. Moreover, if 2. € H(Q) is
the solution of the Laplace equation

1,
|Q7"s|

Az, = in D'(Q), (3.58)

we have
Lo,

|Q7’5|
Hence, the Stokes problem (B.57) is of the same type as (B.6). On the other hand, using
successively the Cauchy-Schwarz inequality and the estimate (B.67) below combined with (B.50)

we have
%
/Q|Vza|2dx: |Q | |Q | (][ z?dx) < ||V 122

23

= curl (v.) in D'(), where v.:=JVz.. (3.59)




which implies that z. is bounded in H}(2). Therefore, the sequence v. is bounded in L?(£2)2.
Moreover, since by periodicity the sequence converges weakly-* to i in M(92), we get

We

|Qre |

1
v. — v weakly in L*(Q)?, with curl(v) = ) in D'(Q). (3.60)

On the other hand, it is not difficult to check that v. is not equi-integrable in L?(Q)?. In fact,
the following result shows that Theorem does not hold for this particular sequence v,:

Theorem 3.5. The sequence u. weakly converges in Hy(Q)? to the solution u of the Brinkman
equation

1
—Au+ZJu+Vp+Fu =f nQ

div(u) =0 inQ (3.61)
u =0 on 0,
where the extra zero-order term I'u is given by
L, 1 : 2
0 — — 1 Jue — Tu  weakly-+ in M(Q)“, (3.62)
and I' is the constant matrix defined by
1
N=———-¢®wI-J). 3.63

Moreover, the matriz obtained from convergence (B.2Q) according to the Tartar approach is
given by
1
M=—1. (3.64)
47y
Remark 3.6. The matrix I" of the Brinkman equation (B.61]) is not symmetric contrary to the
matrix M arising in the Tartar approach. Moreover, we have

lu-u< Mu-u if u#0.

The gap between the two previous energies (which are the energies dissipated by viscosity
according to [[J]) is due to the loss of equi-integrability of the sequence v. defined by (B-59).
Therefore, the equi-integrability of v. can be regarded as an optimal condition to ensure the
result of Theorem B3

Remark 3.7. Tt is worth to mention that the pathology displayed in Theorem B.§ is not due
to the absence of correctors. Indeed, with the oscillating sequences v!, v? defined by (B.6),
(B:69) below, the following corrector result holds:

Proposition 3.8. Assume that u € WV (Q)? for some r > 2. Then, we have

U —u—vi vl —wvgv: — 0 strongly in H(Q),

1 (3.65)
21 (—ur +yuz, —uz — yur) .

where v = (vy,vy) 1=

Remark 3.9. If the right-hand side f belongs to W~17(Q)? for some r > 2, then using the reg-
ularity results for the Stokes equation (see, e.g., [d]) the solution u of the Stokes equation (B.61])
belongs to W1 (Q)2. This provides a quite general condition under which the strong conver-

gence (B.65) holds.
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11)2

The proof of Theorem B.5 is partially based on the properties of the test functions v;, vZ
defined by (B.6§), (B.69) below, and introduced by Allaire [f]. They were also used in [H] to
derive a homogenized Brinkman type equation but, contrary to (B-g), from a Stokes equation
without zero-order term. More precisely, in [P] the velocity is assumed to be zero in the set w..
In [[] the viscosity is assumed to be very high in cylinders of section w,, which leads to a three-
dimensional nonlocal Brinkman equation. In the perturbed Stokes equation (B.57) a highly

oscillating zero-order term is concentrated on ws..

On the one hand, the sets (),, and w, satisfy the following estimates:

Lemma 3.10. There exists a constant C > 0 such that

YV e HY(Y), '][ de—][ de‘ < O/ 9V g, (3.66)
re Y
Vo e Hy(Q), ][ lv|*de < C (14 €| Inr.|) HVUH%Q(Q)Q. (3.67)

Proof. Estimate (B.6G) can be easily proved using the polar coordinates. Estimate (B.67) is an

immediate consequence of the Lemma 3 of [L1]], and can also be deduced from (B.60). O

On the other hand, consider the eY-periodic functions v’ and p’, for ¢ = 1,2, defined by

vgx);:vg<f), pgx)::—f§<f>, for 2 € R?, (3.68)
3 € £
where V! € Hj(Y) are P! € L*(Y') are the Y-periodic functions defined by
yi— & mQn P'=0inQ, UlY\Q) Pldy =0 (3.69)
S0 my\g T ) =0 '

which solve the Stokes equation
— AVI+ VP =0 inQ,. \Q. (3.70)
Moreover, the sequences V. and P! satisfy the following estimates:

Lemma 3.11. There exists a constant C > 0 such that

A . : C
v DVZ([Faqryece + 1P 72y <
IVellzzoe + IDVElLagyee + 1PNy < T (3.71)

IV eqrz < C,

and for any function V€ HY(Y),

’/DV;:Dde—/Pgdiv(V)dy—yiei-(][ V—][ V)’
Y Y re Y\Q

o (3.72)
S Thr] | DV || 2y y2x2,
where  denotes the average value and
, AT
- . 3.7
% X Ty (3.73)
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Proof. Estimate (B-7]) can be proved using the polar coordinates (see also [f]). Estimate (B.72)
is a straightforward consequence of the Lemma 3.3 of [[] (with a refinement for the right-hand
side of the inequality). O

Proof of Theorem B.5. The proof is divided into two steps. In the first step we determine
the homogenized Brinkman equation (B.61]). The second step is devoted to the computation of
the matrix M defined in the Tartar approach.

First step: Determination of the homogenized equation.

Using u,. as test function we have
/ |Ducl® = (f, ue) -1z, mi 2 < ¢l fla-1@p2 1Duel| 222
Q

which implies that u. is bounded in H}(Q)?. On the other hand, let p € C°(Q) with zero
Q-average. There exists (see, e.g., [f]) a vector-valued function ® € C°()? such that

div(®) =¢ in Q and |[|®]g1qp < cllollzq)

where the constant ¢ is independent of ¢, ®. Using ® as test function in equation (B.57) and
applying successively the Cauchy-Schwarz inequality, estimates (B.67) and (B.58) we get

pe pdx ‘/Du6 D@' ‘/
J ok
2 2 2 2
< c||D®|r2(qy2x2 +c(][ |u5|) <][ |<I>|)

<c HD(I)HLz(Q)QXQ + 682 ‘ lnr€| HDueHLz(Q)zxz HD(I)HLz(Q)QXQ <c ”QOHLQ(Q)

<f (I)> Q)Q Hl Q)Q

s

This combined with the regularity of Q implies that p. is bounded in L?(Q)/R. Therefore, up
to a subsequence the following convergences hold

{ u. — u weakly in H}(Q)?

(3.74)
p. — p weakly in L*(Q2)/R.

Now, we have to determine the limit of the sequence % Ju.. On the one hand, re-scaling
inequality (B.79) we obtain that the functions v} and pi, i = 1,2, of (B.68) and any function
v € H}(Q)? satisfy the inequality

. A ‘ 1
’/Dvé:Dv—/pzdiv(v)—l;e ( / Y\Q f )’
Q Q € |Qr5 | (375)

C
< —||D .
= g P

Moreover, by (B.71]) and (B.56) the following convergences hold

(3.76)

vl — 0 weakly in H'(Q2)?
p. — 0 weakly in L*(Q)/R.

Then, applying inequality (B.79) with v = pu., ¢ € C°(§2), we deduce from (B.73) and (B.56)
that

/QDvi:Duego—(fy—i—o(l))ei~( [ |é§z|g0u€—/ﬂi<pu) — o(1). (3.77)
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On the other hand, putting ¢ v. as test function in (B57), using that v’ = e; in w, and the
convergences (B.76), (B.74), we have

/DuE.Dv go—i—/ \Qs Jue - e;p = o(1). (3.78)

Denote

Ju. weakly-+ in M(Q)?,

"= 0.
where the limit holds up to a subsequence by virtue of the estimate (B.67) combined with the
Cauchy-Schwarz inequality. Then, equating (B.77) and (B.7§) and passing to the limit we get
fori=1,2,

/gpei-yzvfgoeiu]l/+1/<pei-u, for any ¢ € C°(Q),
Q Q 4 Jo
which implies the equality v = v Jv + %u Hence, we deduce the convergence

Y -1 9
—v=—U—-7J) u=———
N (U= gy

Therefore, passing to the limit in (B.57) with (B.79) we obtain the homogenized equation

(I+~J)u weakly-+ in M(Q)%.  (3.79)

1
- Au+1Ju+Vp+ (vI—J)u=f inD(Q), (3.80)

1
4 +1)
which yields the desired Brinkman equation (B.61]) with the matrix T" of (B.63).

Second step: Derivation of the matrix M.

Let A € R?. Consider the solutions Wj\, € H}(Y) (the set of the Y-periodic functions in
Hi (R?)) and Q7. € LZ(Y)/R of the perturbed Stokes problem

(

1 1
A QW‘E A — -
—Awm+€(|Qrs —1) JA+VQ;. =0 inR?
div(W).) =0 inR?

3.81
is Y -periodic ( )

Y

Note that the first equation of (B.81)) is equivalent to the variational formulation in the torus,

vV e H(Y), /YDWﬁfg :DVdy+e <][ V—]{/V) -JA—/)/QQEdiv(V)dy:O. (3.82)

Hence, the re-scaled functions wa\ﬁ and qﬁ):s defined by

\

T x
w}(x) == e W)L <g) and ¢ (z) == Q. (g) , forz e (3.83)

are €Y -periodic solutions of the problem

1 1
—Awﬁ‘,ng( Qre <§>__) J)\JrtiE =0 in R?

|G| 4 (3.84)
div (w},) =0 in R
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First of all, let us determine a priori estimates satisfied by the sequences Wﬁ’,\e, wg‘ﬁ, QH\,E,
and qa\,e. Putting I/Vﬁ’,\€ as test function in equation (B.82) we have

/ |IDW|* dy + 5][ JX- Wi dy =0, (3.85)
Y T,

(S

hence by the estimates (B.6q) of Lemma B.I0 and (B.56)

HDWﬁTeH;(Y)M =€

£ weay| < € TRAT[DW2 gy < €lDW2 e
Therefore, W\, is bounded in H}(Y)?, and there exists a constant vector W* € R? such that

up to a subsequence we have
lim (5][ W dy) =W (3.86)
e—0 Qr. ’

On the other hand, let ¢ € Cy°(Y') with zero Y-average. There exists ® € C’g’o(Y)2 with zero
Y -average such that

div(®) = inR* and ||®||r2pexe < ez,

where ¢ is a constant independent of ¢, ®. Putting ® as test function in (B.83) we have by
(B-66) and (B.5Q)
o

’/Qiewdy' <
Y
|D®||L2(y)2><2

< c||D®||r2yyxe + cey/|Inr|

S C ||D(I)||L2(y)2><2 S C ||(p||L2(y),

/DW@E:Dwy’m
Y

hence @7, is bounded in LZ(Y')/R. From the boundedness and the Y-periodicity of W, and
Qﬁ\ﬁ we thus deduce that the sequences wa\ﬁ and %):e of (B.83) satisfy the convergences

w). — 0 weakly in H'()?
{ - ) (3.87)

¢. — 0 weakly in L*(Q)/R.

Now, let us check that the periodic function wg‘,e of (B.84)) gives the same matrix M (B.20) as
the function w? of (B-7) which satisfies a Dirichlet boundary condition. Since M is symmetric,
this is equivalent to prove that for any \ € R,

(Dw)) v - A — (D))o, - A — 0 in D'(Q), (3.88)

where v, is defined by (B:5d). Let € C°(Q). Putting ¢ w, in the equation (B.7) satisfied by
w? and pw? in the equation (B:89) satisfied by wy., and using the convergences (B:87) satisfied
by wa\ﬁ, %):e as well as the similar ones satisfied by w?, ¢, we get

e—0

/ Duw? Dwﬁ’\ﬁ ©— / curl (v.) Jup, - A — 0
“ 2 (3.89)

/ Dwﬁ’\ﬁ : Dwl o — / curl (v.) Juw) - A~ — 0.
Q Q

e—0
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Moreover, by the representation formula (B.I1]) we have
curl (v, Jw)‘€ — Dw’\e To. —0
(ve) Juge = (D) in D'(Q)2. (3.90)
curl (v.) Jw? — (Dw))Tv.  — 0
Therefore, combining (B-89) and (B.90) we obtain the desired convergence (B.8§).

It remains to determine the matrix M. On the one side putting wﬁ):a as test function in
(B-84)) and using the convergences (B-83), (B-20), and on the other side using the €Y-periodicity
of wy, (B:83), we get similarly to (B.J) and up to a subsequence

e—0

|Dw.|” — MA-X and |[Dwl.|" — lim (][ D[ dy) weakly-+ in M(Q). (3.91)
Y

This combined with (B.85) and (B.86) gives

1 -
M-\ =4 JWA -\ (3.92)

Let us compute the constant vector W?. To this end, putting the divergence free function W?E

in the inequality (B:72) satisfied by V¥ i = 1,2, and taking into account the estimates (B-7 l),
(B.56) and the boundedness of W, in H'(Y)?, we have

/ DV!: DW) . dy =Le; - (][ Wi dy) + o(e). (3.93)
Y QW‘E
Moreover, putting the divergence free function V' in (B:82) with V! = ¢; in Q,., we get
/ DWW, : DVldy = —¢ (][ %4 —][ V) “JX=¢eJei- A+ o(e), (3.94)
Y Te Y

since by (B-71]) V2 strongly converges to zero in L?*(Y)%. The estimates (B:99) and (B:94) divided
by e together with (B.80), (B.79) and (B.56) imply that

- - 1
yei - W*=Je;- A or equivalently W?* = — =J\. (3.95)
Y
This combined with (B.92) yields the value (B.20) of the symmetric matrix M. O

Proof of Proposition B.8. Let v = (vy,v5) € W (Q)2. Considering the functions v}, i = 1,2,
which are defined by (B.6§) and satisfy the convergences (B.76), we have

E. = / ’Dug — Du — vy Dv! — vy Dv?}2 dx
Q
— / | Du.|* do — / | Dul|? dx + / (v} | Dl + v3 | Dv2?) da (3.96)
0 0 0
- 2/ (v1 Due : Dv} + vo Du, : Dv?) dx + o(1).
Q
Putting u. in equation (B.57) and u in equation (B.61]) we get

/|Du€|2da:—/|Du|2da::(f,u)H_l(Q);Hé(Q)z—/\Du\Qd:cho(l)
Q Q Q

:/ﬂru.udx—i—o(l):ﬁ/ﬂmfdx—l—o(l).
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Moreover, putting V' in estimate (B72) together with V! = ¢; in Q,., (B71), B-79), (B-50),
and using the eY-periodicity of Dv’, we get

| Dyt |? — ll_r)l(l) (5_12 ]{/ |DI/'€i|2dy> = % weakly-* in M(Q),
hence since v; € C(€),
/Q (v} | Dvl|* + v3 | DvZ|?) / |v|*dx + o(1) (3.98)
Estimates (B.96), (B.97) and (B.98) thus imply that
E. = m /Q \u\Qd:c—l—% /Q \v|2al:1:—2/Q (v1 Du. : Dol + vy Du. : Dv?) dz+o0(1). (3.99)

On the other hand, applying the estimate (B.75) with the function v = v; u., i = 1,2, and using
the convergences (Fm) (B-73), (B:54) and (B.79), we obtain

/Dv Du, v; dx /Dv (v; ue) dx + o(1)

“ez ( 0.

—m/ c(yI = J)uv;dx —

This combined with (B.99) yields

E. = /|u|2dx+ /|v|2dx
4 (72 +

Qe

]_y\ x
1
Ue v; dx — a ‘< )ugvzdx>+0( )

q>|<

/ w; v dz + o(1).
Q

(3.100)
y
+7/u vd:p+7/Ju-vd:p+o 1).
2(v2+1) 2 +1) Jo W
Putting the function
V= —72+1 (I+~vJ)u
in (B.100) we get
EE:/ ‘Dug Du — vy Dv} —ngUQ‘ dx v 0. (3.101)
Q E—
Finally, since the sequences v? strongly converge to zero in L ()2 by (B76) and u € W (Q)?,
the strong convergence (B.63) is a straightforward consequence of (B.107]). O
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