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1 Introduction

Consider the following modification of a standard branching random walk on Z
d. The population

is initiated at time t = 0 by a single particle. Being outside the origin the particle performs a

continuous time random walk on Z
d with infinitesimal transition matrix

A = |a(x,y)|x,y∈Zd , a(0,0) < 0,

until the moment when it hits the origin (that is, the time which the particle spends at a point

x 6= 0 is exponentially distributed with parameter a := −a(0,0)). At the origin it spends an

exponentially distributed time with parameter 1 and then either jumps to a point y 6= 0 with

probability

(1.1) − (1− α)a(0,y)a−1(0,0) =: (1− α)πy,

or dies with probability α producing just before the death a random number of children ξ in

accordance with offspring generating function

1Supported in part by RFBR grant 08-01-00078, and the programm “Mathematical Control Theory” RAS
2Supported in part by the programm “Contemporary Problems of Theoretical Mathematics of the MI SB RAS”
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f(s) := Es ξ =

∞∑

k=0

fks
k, 0 ≤ s ≤ 1.

At the birth moment the newborn particles are located at the origin and from this point they

begin their own branching random walks behaving independently and stochastically the same as

the parent individual.

This model was investigated in [1, 2, 3, 4, 5] where some basic equations for the probability

generating functions of the number of particles η(t;x) at point x ∈ Z
d at time t were deduced

and, under certain conditions, the asymptotic behavior of the moments of η(t;x) as t → ∞ was

investigated. For the continuous counterpart of the above model, we refer to [10], [7], [11], [8] and

the references therein.

In the present paper we assume that the branching random walk is initiated at time t = 0 by a

single individual located at the origin and impose the following restrictions on the characteristics

of the process:

Hypothesis (I): The underlying random walk on Z
d is symmetric, irreducible and homogeneous

a(x,y) = a(y,x), a(x,y) = a(0,y − x) =: a(y − x),

where a(x) ≥ 0 for x 6= 0 and a(0) < 0; besides we assume that

(1.2)
∑

x∈Zd

a(x) = 0, b2 :=
∑

x∈Zd

|x|2a(x) < ∞,

where |x|2 :=
∑d

i=0 x
2
i for x = (x1, ..., xi, ..., xd) ∈ Z

d.

Denote hd the probability that a particle, leaving the origin and performing a random walk on Z
d

satisfying Hypothesis (I), will never come back. Observe that h1 = h2 = 0, while hd ∈ (0, 1), d ≥ 3.

Hypothesis (II): The offspring process is critical

αf ′(1) + (1− α)(1 − hd) = 1

and f (2)(1) ∈ (0,∞).

Here and in what follows for k = 2, 3, . . . we use the notation f (k)(s) := dkf(s)/dsk.

Clearly, for the dimensions d = 1, 2 the introduced criticality of the branching random walk is

reduced to the criticality of the offspring generating function at the origin, that is to the condition

f ′(1) = 1. For the dimensions d ≥ 3 this is not the case.

Let µ0(t) denote the number of particles in the process located at time t at the origin, µ(t) denote

the number of particles in the process at time t outside the origin, and let η(t) = µ0(t) + µ(t) be

the total number of individuals at the process at moment t.
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For the case d = 1 the authors of papers [13, 14, 15, 16] investigate the asymptotic properties

of the probabilities {µ0(t) > 0} and {µ(t) > 0} and prove conditional limit theorems for a properly

scaled vectors (µ0(t), µ(t)) by studying an auxiliary branching process. A modification of this model

when the initial number of particles at the origin is large was considered for the case d = 1 in [12].

The asymptotic behavior of the probability q(t) := P (µ0(t) > 0) for the dimensions d 6= 4

(again, by constructing an auxiliary branching process) has been found in [17]. However, the

behavior of the probability q(t) for the case d = 4 remained an open problem. The present paper

fills this gap.

Our main result looks as follows.

Theorem 1.1 For a branching random walk evolving in Z
4 and satisfying Hypotheses (I) and (II),

(1.3) q(t) ∼ C
log t

t
, t → ∞,

with C = 3a(1 − α)γ4h
2
4/(αf

(2)(1)) > 0 and γ4 a constant given by Lemma 2.1 below, and

(1.4) lim
t→∞

P

(
µ0(t)

E [µ0(t)|µ0(t) > 0]
≤ x |µ0(t) > 0

)
=

1

3
+

2

3

(
1− e−2x/3

)
, x > 0.

Remark 1.2 It will be shown later on that

E [µ0(t)|µ0(t) > 0] =
Eµ0(t)

P (µ0(t) > 0)
∼ 3

αf (2)(1)C2

t

log2 t
, t → ∞.

To obtain Theorem 1.1, the crucial step is to show the asymptotic for the survival probability

q(t), which satisfies some convolution equation (see (2.6) below). It turns out that a first order

analysis of this equation only gives a rough upper bound for q(t) (Lemma 3.3), and we need a

second order argument to get the exact asymptotic (Proposition 3.4).

The rest of this paper is organized as follows: In Section 2, we recall some known facts and

present some basic evolution equations. The proof of Theorem 1.1 will be given in Section 3.

2 Auxiliary results and basic equations

For further references we first list some results obtained in [17]. We forget for a wile that we deal

with a branching random walk in Z
d, d ≥ 3, and consider only the motion of a particle performing

a random walk satisfying Hypothesis (I) without branching.

Denote

p(t;x,y) = p(t;0,y − x) =: p(t;y − x)

the probability that a particle located at moment t = 0 at point x will be at point y at moment t.
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Lemma 2.1 (see [17]) Under Hypothesis (I) as t → ∞

p(t;0) ∼ γd t
−d/2, γd > 0.

Consider a particle located at the origin at moment t = 0 and let τ0 be the time the particle

spends at the origin. Denote by τ2,d the time needed for a particle which has left the origin to come

back to the origin. Let θ(y) be the time needed for a particle located at point y 6= 0 at time 0 to

hit the origin for the first time. Let

G1(t) := P(τ0 ≤ t) = 1− e−t, G2,d(t) := P(τ2,d ≤ t), Gy(t) := P (θ(y) ≤ t)

and G2,d := P(τ2,d < ∞). It follows from (1.1) that

G2,d(t) =
∑

y 6=0

πyG
y(t).

Lemma 2.2 (see [17]) Under Hypothesis (I), τ2,d, d ≥ 3, is an improper random variable with

P(τ2,d = ∞) = hd = 1−G2,d(∞) = 1−G2,d.

Besides, for G2(t) := G2,d(t)/(1 − hd) as t → ∞

1−G2(t) ∼
2aγdh

2
d

(1− hd) (d− 2)
t−d/2+1.

Let

Kd(t) = K(t) =: αf ′(1)G1(t) + (1− α)(1 − hd)G1 ∗G2(t).

Lemma 2.3 (see [17]) Under Hypothesis (I) for d ≥ 3 as t → ∞

1−Kd(t) ∼ (1− α) (G2,d −G2,d(t)) ∼
2a(1 − α)γdh

2
d

d− 2
t−d/2+1,(2.1)

kd(t) := K ′
d(t) ∼ a(1− α)γdh

2
d t

−d/2.(2.2)

Let

Fy(t; s1, s2) := Eys
µ0(t)
1 s

µ+(t)
2 , 0 ≤ s1, s2 ≤ 1,

be probability generating function for the number of particles at the origin and outside the origin

at moment t ≥ 0 in the branching random walk generated by a single particle located at point y

at moment 0. By the total probability formula we have

F0(t; s1, s2) = s1(1−G1(t)) +

∫ t

0
αf(F0(t− u; s1, s2)) dG1(u)

+(1− α)

∫ t

0



∑

y 6=0

πyFy(t− u; s1, s2)


 dG1(u),
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while for y 6= 0

Fy(t; s1, s2) = s2(1−Gy(t)) +

∫ t

0
F0(t− u; s1, s2) dG

y(u).

Hence

F0(t; s1, s2) = s1(1−G1(t)) +

∫ t

0
αf(F0(t− u; s1, s2)) dG1(u)

+(1− α)s2

∫ t

0



∑

y 6=0

πy(1−Gy(t− u))


 dG1(u)

+(1− α)

∫ t

0



∑

y 6=0

πy

∫ t−v

0
F0(t− u− v; s1, s2) dG

y(v)


 dG1(u)

= s1(1−G1(t)) +

∫ t

0
αf(F0(t− u; s1, s2)) dG1(u)

+(1− α)s2

∫ t

0
(1−G2,d(t− u))dG1(u)

+(1− α)

∫ t

0
F0(t− u; s1, s2)d (G1 ∗G2,d(u)) .

Using this relation and setting F (t; s) := F0(t; s, 1) = E0s
µ0(t), we get that for all 0 ≤ s ≤ 1,

F (t; s) = s(1−G1(t)) + (1− α)(1 − hd)(1 −G2(·)) ∗G1(t)

+

∫ t

0
αf(F (t− u; s)) dG1(u) + (1− α)hdG1(t)

+

∫ t

0
(1− α)(1 − hd)F (t− u; s) d(G1 ∗G2(u)).(2.3)

Hence, letting q(t; s) := 1− F (t; s),

(2.4) Φ(x) := f ′(1)x − (1− f(1− x)) =: xΨ(x) ∼ f (2)(1)

2
x2, x → 0,

we deduce that for all 0 ≤ s ≤ 1,

(2.5) q(t; s) = (1− s)(1−G1(t)) + q(·; s) ∗K(t)− αΦ(q(·; s)) ∗G1(t).

Define q(t) := P (µ0(t) > 0) = q(t; 0). We have

q(t) = 1−G1(t) + q ∗K(t)− αΦ(q(·)) ∗G1(t), t ≥ 0.

Note that

kd(t) = αf ′(1)e−t + (1− α)(1 − hd)(G1 ∗G2(t))
′.
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Thus, we have

(2.6) q(t) = 1−G1(t) +

∫ t

0
q(t− u)

(
kd(u)− αΨ(q(t− u))e−u

)
du.

The previous arguments hold for any dimension d. Now we concentrate on the case d = 4 and

recall that by (2.2)

(2.7) k4(t) ∼ c4t
−2

as t → ∞ where c4 := a (1− α) γ4h
2
4 > 0. This asymptotic formula allows us to prove the following

statement.

Lemma 2.4 For any fixed ε ∈ (0, 1) and p ∈ (0, 1], we have for t → ∞

I : =

∫ tε

0

logp (t− u+ 1)

t− u+ 1
k4(u)du =

logp(t+ 1)

t+ 1
+

c4 log
1+p t

t2
(1 + o(1)),(2.8)

I∗ :=

∫ t

tε

logp (t− u+ 1)

t− u+ 1
k4(u)du =

c4 log
1+p t

(1 + p) t2
+ o

(
log1+p t

t2

)
,(2.9)

∫ t

0

logp (t− u+ 1)

t− u+ 1
k4(u)du =

logp(t+ 1)

t+ 1
+ c4

2 + p

1 + p
(1 + o(1))

log1+p t

t2
.(2.10)

Proof. Clearly (2.10) follows from (2.8) and (2.9). To prove (2.8), we use the expansions (valid

for 0 ≤ u ≤ εt)

logp (t− u+ 1) =

(
log (t+ 1)− u

t
+O

(
u2 + u

t2

))p

= logp(t+ 1)

(
1− pu

t log (t+ 1)
+O

(
u2 + u

t2 log (t+ 1)

))

and
1

t− u+ 1
=

1

t+ 1

(
1 +

u

t
+O

(
u2 + 1

t2

))

implying

logp (t− u+ 1)

t− u+ 1

=
logp(t+ 1)

t+ 1
+

u logp t

t2
+O

(
(u2 + u) logp t

t3

)
− pu

t2 log1−p(t+ 1)
+O

(
u2 + u

t3 log1−p(t+ 1)

)
.
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Hence we have

I =
logp(t+ 1)

t+ 1

∫ tε

0
k4(u)du +

logp t

t2

∫ tε

0
uk4(u)du

+O

(
logp t

t3

)∫ tε

0
(u2 + 1)k4(u)du +O

(
logp−1(t+ 1)

t2

)∫ tε

0
uk4(u)du

=
logp(t+ 1)

t+ 1
+

c4 log
1+p t

t2
(1 + o(1)) +O

(
logp t

t2

)

=
logp(t+ 1)

t+ 1
+

c4 log
1+p t

t2
(1 + o(1)),

proving (2.8). It remains to show (2.9). Observe that

I∗ := c4(1 + o(1))

∫ t

tε

logp (t− u+ 1)

t− u+ 1

1

u2
du.

Further,

∫ t

tε

logp (t− u+ 1)

t− u+ 1

1

u2
du =

∫ t(1−ε)

0

logp (u+ 1)

u+ 1

1

(t− u)2
du

=
1

t2

∫ t(1−ε)

0

logp (u+ 1)

u+ 1
du+O

(
1

t3

∫ t(1−ε)

0
logp (u+ 1) du

)

=

(
1

1 + p
+ o(1)

)
log1+p t

t2
,

proving (2.9) and the Lemma. �

Let

Ik(t) :=

∫ t−2

2

(t− u)k−1 δ1(t− u)δ2(u)

log2k(t− u)

du

log u
, k = 1, 2, ...,

where δ1(t) and δ2(t) are bounded functions such that δ1(t) ∼ 1 and δ2(t) ∼ 1 as t → ∞.

We end this section by the following estimate on Ik(t):

Lemma 2.5 For any fixed integer k ≥ 1, we have as t → ∞

Ik(t) =
1 + o(1)

k

tk

log2k+1 t
.

Proof. For any ε ∈ (0, 1), if 0 ≤ u ≤ εt then

log(t− u) = log t+O(1)

while if t ≥ u ≥ εt then

log u = log t+O(1).
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Clearly,

I1(t) =
(1 + o(1))

log2 t

∫ t/2

2

1

log u
du+

(1 + o(1))

log t

∫ t/2

0

1

log2 u
du = (1 + o(1))

t

log3 t
.

Further, for k ≥ 2 we have

Ik(t) =
(1 + o(1))

log2k t

∫ tε

2

(t− u)k−1

log u
du+

(1 + o(1))

log t

∫ t−2

tε

(t− u)k−1

log2k(t− u)
du.

For large t ∫ εt

2

(t− u)k−1

log u
du ≤ 2tk−1 εt

log t

while ∫ t−2

εt

(t− u)k−1

log2k(t− u)
du =

∫ t(1−ε)

2

uk−1

log2k u
du ∼ 1

k

(1− ε)ktk

log2k t
.

Hence letting first t → ∞ and than ε → +0 the statement follows. �

3 Proofs of the main results

First we study the asymptotic behavior of the moments

Pk(t) := Eµ
[k]
0 (t),

where x[k] = x(x− 1) · · · (x − k + 1), assuming that the offspring generating function is infinitely

differentiable at point s = 1. To this aim we need the classical Faa di Bruno formula for the n-th

derivative of the composition of functions g(h(s)) (see [6]):

dng(h(s))

dsn
= g′(h(s))h(n)(s)

+

n∑

k=2

g(k)(h(s))
∑

j1+j2+···+jn−1=k
j1+2j2+···+(n−1)jn−1=n

n!

j1!j2! · · · jn−1!

(
h(1)(s)

1!

)j1

· · ·
(
h(n−1)(s)

(n− 1)!

)jn−1

.

Lemma 3.1 If f(s) satisfies Hypothesis (II) and is infinitely differentiable at point s = 1 then for

any fixed n ≥ 1,

(3.1) Pn(t) ∼ n!

(
αf (2)(1)

2

)n−1
1

c2n−1
4

tn−1

log2n−1 t
, t → ∞.

Proof. From formula (2.3) by differentiation we have for all t ≥ 0,

P1(t) = 1−G1(t) +

∫ t

0
αf ′(1)P1(t− u) dG1(u) +

∫ t

0
(1− α)(1 − h4)P1(t− u) d(G1 ∗G2(u)).
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It follows that

P1(t) = 1−G1(t) +

∫ t

0
P1(t− u) dK(u) = (1−G1) ∗ VK(t)

where

VK(t) =

∞∑

j=0

K∗j(t)

is the renewal function corresponding to the distribution function K(t) (Recalling that K(t) :=

αf ′(1)G1(t) + (1− α)(1 − h4)G1 ∗G2(t)). Since

1−K(t) ∼ c4t
−1

we have by Theorem 3 in [9] that

(3.2) P1(t) ∼
1

c4 log t
, t → ∞.

Note that in view of G1(t) = 1− e−t we have

(3.3)
d

dt
(G1 ∗ VK(t)) = (1−G1) ∗ VK(t) = P1(t).

Further, by writing F (n)(t; s) = ∂nF (t;s)
∂ns for n ≥ 2, we have

F (n)(t; s) =

∫ t

0
α
dnf(F (t− u; s))

dsn
dG1(u) +

∫ t

0
(1− α)(1 − h4)F

(n)(t− u; s) d(G1 ∗G2(u))

or, by the Faa di Bruno formula at s = 1,

(3.4) Pn(t) = α

∫ t

0
Hn(t− u) dG1(u) +

∫ t

0
Pn(t− u) dK(u),

where

(3.5) Hn(t) :=

n∑

k=2

f (k)(1)
∑

j1+j2+···+jn−1=k
j1+2j2+···+(n−1)jn−1=n

n!

j1!j2! · · · jn−1!

(
P1(t)

1!

)j1

· · ·
(
Pn−1(t)

(n− 1)!

)jn−1

.

Solving the renewal equation (3.4) with respect to Pn(t) gives

Pn(t) = α

∫ t

0
Hn(t− u) d (G1 ∗ VK(u))

or, in view of (3.3)

Pn(t) = α

∫ t

0
Hn(t− u)P1(u)du.

For n = 2 we have

P2(t) = αf (2)(1)

∫ t

0
P 2
1 (t− u)P1(u)du.
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On account of Lemma 2.5 this leads to

P2(t) ∼
αf (2)(1)

c34
I1(t) ∼

αf (2)(1)

c34

t

log3 t
= 2!

αf (2)(1)

2c34

t

log3 t
.

Now we use induction. Assume that for all i < n

Pi(t) ∼ i!

(
αf (2)(1)

)i−1

2i−1c2i−1
4

ti−1

log2i−1 t
.

Then for 2 ≤ k ≤ n as t → ∞
∑

j1+j2+···+jn−1=k
j1+2j2+···+(n−1)jn−1=n

n!

j1!j2! · · · jn−1!

(
P1(t)

1!

)j1

· · ·
(
Pn−1(t)

(n− 1)!

)jn−1

∼
∑

j1+j2+···+jn−1=k
j1+2j2+···+(n−1)jn−1=n

n!

j1!j2! · · · jn−1!

(
1

c4 log t

)j1

· · ·
((

αf (2)(1)
)n−2

2n−2c2n−3
4

tn−2

log2n−3 t

)jn−1

=

(
αf (2)(1)

2

)n−k
1

c2n−k
4

tn−k

log2n−k t

∑

j1+j2+···+jn−1=k
j1+2j2+···+(n−1)jn−1=n

n!

j1!j2! · · · jn−1!
.

One may check that for any n ≥ 2

∑

j1+j2+···+jn−1=2
j1+2j2+···+(n−1)jn−1=n

1

j1!j2! · · · jn−1!
=

n− 1

2
.

Thus, as t → ∞

Hn(t) ∼ f (2)(1)

(
αf (2)(1)

2

)n−2
1

c2n−2
4

tn−2

log2n−2 t

∑

j1+j2+···+jn−1=2
j1+2j2+···+(n−1)jn−1=n

n!

j1!j2! · · · jn−1!

= n!
f (2)(1)

2

(
αf (2)(1)

2

)n−2
(n− 1)

c2n−2
4

tn−2

log2n−2 t
.

Therefore, on account of Lemma 2.5

Pn(t) = α

∫ t

0
Hn(t− u)P1(u)du

∼ n!

(
αf (2)(1)

2

)n−1
(n− 1)

c2n−1
4

∫ t−2

2

(t− u)n−2

log2n−2 (t− u)

1

log u
du

∼ n!

(
αf (2)(1)

2

)n−1
1

c2n−1
4

tn−1

log2n−1 t
,

as desired. �
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Corollary 3.2 If f(s) satisfies Hypothesis (II) then

(3.6) lim inf
t→∞

tq(t)

log t
≥ c4

αf (2)(1)
.

Proof. From the proof of Lemma 3.1 it is clear that for the asymptotic representation (3.1) be

valid for n = 1, 2 it suffices that f (2)(1) < ∞. From this and the Lyapunov inequality

q(t) = P (µ0(t) > 0) ≥ (Eµ0(t))
2

Eµ2
0(t)

∼ log t

t

c4

αf (2)(1)

the needed statement easily follows. �

Before giving the exact asymptotic of q(t), we show at first a rough upper bound for q(t).

Lemma 3.3 We have

lim sup
t→∞

tq(t)

log t
< ∞.

Proof. Fix an arbitrary u > 0. Define for 0 ≤ x ≤ 1,

T (x) := xk4(u)− αΦ(x)e−u = α(f ′(1)x −Φ(x))e−u + x(1− α)(1 − h4)(G1 ∗G2)
′(u).

Recalling (2.4). We have

T (1)(x) = αf ′(1− x)e−u + (1− α)(1 − h4)(G1 ∗G2)
′(u) > 0, 0 ≤ x ≤ 1.

Hence T (x) is monotone increasing in x ∈ (0, 1). This fact will be used several times in the sequel.

Let us write a formal representation

q(t) = β(t)
log (t+ 1)

t+ 1
, t ≥ 0,

and set

q(u, t) := β(t)
log (t− u+ 1)

t− u+ 1
, 0 ≤ u ≤ t.

Assume that the desired statement is not true, that is that

(3.7) lim sup
t→∞

β(t) = ∞.

Under (3.7), there exists a sequence tk → ∞ as k → ∞ such that β(tk) = supu≤tk β(u) and

limk→∞ β(tk) = ∞. Then, for sufficiently large t = tk (we omit the low index for simplicity),

β(t) = sup0≤s≤t β(s) > 1. In view of (2.9) with p = 1, we have
∣∣∣∣∣

∫ t

t/2
q(t− u)

(
k4(u)− αΨ(q(t− u))e−u

)
du

∣∣∣∣∣

≤
∫ t

t/2
β(t− u)

log (t− u+ 1)

t− u+ 1
k4(u)du + α

∫ t

t/2
Φ(q(t− u))e−udu

≤ β(t)
2c4
t2

log2 t,(3.8)
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since β(t) > 1 and α
∫ t
t/2 Φ(q(t− u))e−udu ≤ αf ′(1)e−t/2 = o( log

2 t
t2

).

Let us observe that q(t) → 0 as t → ∞. In fact, we have a rough bound: q(t) = P(µ0(t) > 0) ≤
Eµ0(t) = P1(t) ∼ 1

c4 log t
by (3.2). It follows that for 0 ≤ u ≤ t/2,

q(t− u) = β(t− u)
log (t− u+ 1)

t− u+ 1
≤ β(t)

log (t− u+ 1)

t− u+ 1

= q(u, t) ≤ β(t)
log (t/2)

t/2
≤ 3β(t)

log t

t
= 3q(t) ≤ 1,

for all sufficiently large t. Thus, the inequality

q(t− u)
(
k4(u)− αΨ(q(t− u))e−u

)
≤ q(u, t)

(
k4(u)− αΨ(q(u, t))e−u

)

is valid for 0 ≤ u ≤ t/2. This, in view of (2.6) and (3.8), implies that

β(t)
log(t+ 1)

t+ 1
= q(t)

= 1−G1(t) +

∫ t

0
q(t− u)

(
k4(u)− αΨ(q(t− u))e−u

)
du

≤ β(t)
3c4
t2

log2 t

+

∫ t/2

0
β(t− u)

log (t− u+ 1)

t− u+ 1

(
k4(u)− αΨ

(
β(t− u)

log (t− u+ 1)

t− u+ 1

)
e−u

)
du

≤ β(t)
3c4
t2

log2 t

+β(t)

∫ t/2

0

log (t− u+ 1)

t− u+ 1

(
k4(u)− αΨ

(
β(t)

log (t− u+ 1)

t− u+ 1

)
e−u

)
du.

By (2.8), we have that

(3.9)

∫ t/2

0

log (t− u+ 1)

t− u+ 1
k4(u)du ≤ log(t+ 1)

t+ 1
+ 2c4

log2 t

t2

and, for any small δ > 0 and sufficiently large t,

∫ t/2

0

log (t− u+ 1)

t− u+ 1
αΨ

(
β(t)

log (t− u+ 1)

t− u+ 1

)
e−udu

≥ (1− δ)β(t)
αf (2)(1)

2

∫ t/2

0

log2 (t− u+ 1)

(t− u+ 1)2
e−udu ≥ (1− 2δ)β(t)

αf (2)(1)

2

log2 t

t2
.

As a result we get that

β(t)
log(t+ 1)

t+ 1
≤ β(t)

(
log(t+ 1)

t+ 1
+ 5c4

log2 t

t2

)
− (1− 2δ)β2(t)

αf (2)(1)

2

log2 t

t2
.

12



Hence, after simplification we see that

(1− 2δ)β2(t)
αf (2)(1)

2
≤ 5c4β(t),

which is impossible if β(t) → ∞. Hence lim supt→∞ β(t) < ∞ and the lemma is proved. �

The crucial step in the proof of Theorem 1 is the following lemma:

Proposition 3.4 In the case d = 4,

(3.10) q(t) = C
log t

t
(1 + o(1)),

where

(3.11) C :=
3c4

αf (2)(1)
.

Proof. We will use a formal representation

q(t) =
log(t+ 1)

t+ 1

(
C +

ρ(t)√
log(t+ 1)

)
= C

log(t+ 1)

t+ 1
+

ρ(t)
√

log(t+ 1)

t+ 1
.

Note that by Corollary 3.2

(3.12) lim inf
t→∞

ρ(t)√
log t

= C0 ≥ −2

3
C,

and, by Lemma 3.3

lim sup
t→∞

ρ(t)√
log t

≤ C1 < ∞,

for some constant C1 > 0. If ρ(t) is bounded then the lemma is proved. Thus, assume that

lim sup
t→∞

ρ(t) = ∞ and lim inf
t→∞

ρ(t) = −∞.

Clearly, if we prove the desired statement for this case then the cases when one of the limits above

is finite will follow easily.

Assume first that lim supt→∞ ρ(t) = ∞ and let

A+ :=

{
t ∈ [0,∞) : ρ(t) = sup

v≤t
ρ(v)

}
.

Then there exists an unbounded sequence (tk) ∈ A+ such that ρ(tk) → ∞ as k → ∞. Our

subsequent arguments are for large t ∈ A+. Then a priori, ρ(t) > 1. For 0 ≤ u ≤ t, set

Q(u, t) := C
log(t− u+ 1)

t− u+ 1
+

ρ(t)
√

log(t− u+ 1)

t− u+ 1
≥ q(t− u).

13



Fix a small ε > 0. Clearly, for 0 ≤ u ≤ tε and sufficiently large t,

Q(u, t) ≤ C
log(t+ 1)

t(1− ε)
+

ρ(t)
√

log (t+ 1)

t(1− ε)
≤ 1

1− ε
q(t) < 1,

since q(t) → 0. Using again the monotonicity of the function: x(∈ (0, 1)) → xk4(u) − αΦ(x)e−u

(just like in Lemma 3.3), we get the inequality

q(t− u)
(
k4(u)− αΨ(q(t− u)) e−u

)
≤ Q(u, t)

(
k4(u)− αΨ(Q(u, t)) e−u

)
.

It follows that

q(t) =

∫ t

tε
q(t− u)k4(u)du

+

∫ tε

0
q(t− u)

(
k4(u)− αΨ(q(t− u)) e−u

)
du+ o

(
log2 t

t2

)

≤
∫ t

tε
Q(u, t)k4(u)du+

∫ tε

0
Q(u, t)

(
k4(u)− αΨ(Q(u, t)) e−u

)
du+ o

(
log2 t

t2

)

=

∫ t

0
Q(u, t)k4(u)du− α

∫ tε

0
Φ (Q(u, t)) e−udu+ o

(
log2 t

t2

)
.(3.13)

We now evaluate the integrals in (3.13). Recalling (2.10) with p = 1 and p = 1/2, we have
∫ t

0
Q(u, t)k4(u)du = C

∫ t

0

log(t− u+ 1)

t− u+ 1
k4(u)du + ρ(t)

∫ t

0

√
log (t− u+ 1)

t− u+ 1
k4(u)du

= C
log(t+ 1)

t+ 1
+

3Cc4 log
2 t

2t2
(1 + o(1)) +

ρ(t)
√

log(t+ 1)

t+ 1
+

5c4ρ(t) log
3/2 t

3t2
(1 + o(1)).

Since all the moments of the distribution with density e−u are finite, and uke−u decays rapidly at

infinity for any k ≥ 0, we have

−α

∫ tε

0
Φ (Q(u, t)) e−udu = −αΦ (q(t)) (1 + o(1)) = −α

f (2)(1)

2
q2(t)(1 + o(1))

= −α
f (2)(1)

2

(
C2 log

2 t

t2
+ 2C

ρ(t) log3/2 t

t2
+

ρ2(t) log t

t2

)
(1 + o(1))

= −α
f (2)(1)

2

(
C2 log

2 t

t2
+ 2C

ρ(t) log3/2 t

t2
+

ρ2(t) log t

t2

)
+ o

(
log2 t

t2

)
.(3.14)

Substituting this in (3.13) we get that for any small δ > 0,

C
log(t+ 1)

t+ 1
+

ρ(t)
√

log(t+ 1)

t+ 1
= q(t)

≤ δ
log2 t

t2
+ C

log(t+ 1)

t+ 1
+

3Cc4 log
2 t

2t2
+

ρ(t)
√

log(t+ 1)

t+ 1
+

5c4ρ(t) log
3/2 t

3t2

−α
f (2)(1)

2

(
C2 log

2 t

t2
+ 2C

ρ(t) log3/2 t

t2
+

ρ2(t) log t

t2

)
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which, on account the definition (3.11) leads, after natural transformations, to

αf (2)(1)ρ(t)

2
√
log t

(
8

9
C +

ρ(t)√
log t

)
≤ δ.

Recall that ρ(t) > 1. We get that αf(2)(1)ρ(t)
2
√
log t

≤ 9δ
8 and hence

lim sup
t→∞,t∈A+

ρ(t)√
log t

= 0.

Let

t+(u) = sup {t ≤ u : t ∈ A+} .

Clearly,

ρ(u) ≤ ρ(t+(u)).

Now

lim sup
u→∞

uq(u)

log u
= C + lim sup

u→∞

(
ρ(u)√
log u

)
≤ C + lim sup

u→∞

(
ρ(t+(u))√
log t+(u)

)

= C + lim sup
t→∞,t∈A+

(
ρ(t)√
log t

)
= C.(3.15)

To get estimate from below we assume that

lim inf
t→∞

ρ(t) = −∞

(otherwise, we are done) and let

A− :=

{
t ∈ [0,∞) : ρ(t) = inf

u≤t
ρ(v)

}
.

Our subsequent arguments are for large t ∈ A−. For 0 ≤ u ≤ t

Q(u, t) = C
log(t− u+ 1)

t− u+ 1
+

ρ(t)
√

log(t− u+ 1)

t− u+ 1
≤ q(t− u) ≤ 1.

Fix a small ε > 0 and consider 0 ≤ u ≤ tε. In view of (3.12), we get that

Q(u, t) ≥ C
log(t+ 1)

t+ 1
+

ρ(t)
√

log t(1− ε)

t(1− ε)
≥ 1

4
C
log(t+ 1)

t+ 1
> 0.

Just like in (3.13), we use again the monotonicity in the reverse order and get that

q(t) ≥
∫ t

0
Q(u, t)k4(u)du− α

∫ tε

0
Φ (Q(u, t)) e−udu+ o

( log2 t
t2

)
.
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By (2.10) with p = 1 and p = 1/2 (and using the fact that |ρ(t)| = O(
√
log t)), we get as before

∫ t

0
Q(u, t)k4(u)du = C

log(t+ 1)

t+ 1
+

3Cc4 log
2 t

2t2

+
ρ(t)

√
log(t+ 1)

t+ 1
+

5c4ρ(t) log
3/2 t

3t2
+ o

(
log2 t

t2

)
.

This together with (3.14) implies that for any small δ > 0,

C
log(t+ 1)

t+ 1
+

ρ(t)
√

log(t+ 1)

t+ 1
= q(t)

≥ C
log(t+ 1)

t+ 1
+

3Cc4 log
2 t

2t2
+

ρ(t)
√

log(t+ 1)

t+ 1
+

5c4ρ(t) log
3/2 t

3t2

−α
f (2)(1)

2

(
C2 log

2 t

t2
+ 2C

ρ(t) log3/2 t

t2
+

ρ2(t) log t

t2

)
− δ

log2 t

t2

which, similarly to the previous case gives after simplifications

δ ≥ −ρ(t)αf (2)(1)

2
√
log t

(
8

9
C +

ρ(t)√
log t

)
.

This, on account of (3.12) gives that (t being large)

δ ≥ −ρ(t)αf (2)(1)

2
√
log t

1

9
C.

Since δ is arbitrary, we get that

lim sup
t→∞,t∈A

−

|ρ(t)|√
log t

= 0.

Let

t−(u) = sup {t ≤ u : t ∈ A−} .

Clearly,

|ρ(u)| ≤ |ρ(t−(u))| .

Now

lim inf
u→∞

uq(u)√
log u

= C − lim sup
u→∞

( |ρ(u)|√
log u

)
≥ C − lim sup

u→∞

(
|ρ(t−(u))|√
log t−(u)

)

= C − lim sup
t→∞,t∈A

−

|ρ(t)|√
log t

= C.(3.16)

Combining (3.15) and (3.16) gives

lim
t→∞

tq(t)

log t
= C,

proving the Proposition. �
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Theorem 3.5 Assume that f(s) is infinitely differentiable at point s = 1 and satisfies

αf ′(1) + (1− α)(1 − h4) = 1.

Then

lim
t→∞

P

(
µ0(t)q(t)

P1(t)
≤ x |µ0(t) > 0

)
=

1

3
+

2

3

(
1− e−2x/3

)
, x > 0,

or, what is the same

lim
t→∞

E
[
e−λµ0(t)q(t)/P1(t)|µ0(t) > 0

]
=

1

3
+

2

3

2

2 + 3λ
, λ ≥ 0.

Proof. It follows from Lemma 3.1 that

Eµn
0 (t) ∼ n!

(
αf (2)(1)

2

)n−1
1

c2n−1
4

tn−1

log2n−1 t

=

(
3

2

)n−1

n!

(
αf (2)(1)

3c4

t

log t

)n−1(
1

c4 log t

)n

∼
(
3

2

)n−1

n!
Pn
1 (t)

qn−1(t)
= q(t)

(
3

2

)n−1

n!

(
P1(t)

q(t)

)n

.

Therefore, as t → ∞

(3.17) E

[(
µ0(t)q(t)

P1(t)

)n

|µ0(t) > 0

]
=

1

q(t)

(
q(t)

P1(t)

)n

Eµn
0 (t) →

2

3

(
3

2

)n

n!.

Thus, for any n ≥ 1 the n-th moment of the conditional distribution converges to the n−th moment

of the mixture (with probabilities 2/3 and 1/3, respectively) of the exponential distribution with

parameter 2/3 (which is uniquely defined by its moments) and the distribution having the unit

atom at zero. Hence the statement of the theorem follows. �

Our next step is to generalize Theorem 3.5 to the case of arbitrary probability generating

function f(s) with finite second moment. To this aim we need an approximation lemma.

Lemma 3.6 Let f(s) be an arbitrary probability generating function with f ′(1) > 0 and f (2)(1) ∈
(0,∞). For any ε ∈ (0, 1), there exist two polynomial probability generating functions f−(s), f+(s)

and some constant s0 = s0(f−, f+, ε) < 1 such that

(3.18) f−(s) ≤ f(s) ≤ f+(s), ∀s ∈ (s0, 1],

and

f ′
−(1) = f ′

+(1) = f ′(1),
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and

(3.19)
f
(2)
+ (1)

1 + ε
≤ f (2)(1) ≤ f

(2)
− (1)

1− ε
.

Remark that necessarily, f
(2)
+ (1) ≥ f (2)(1) ≥ f

(2)
− (1).

Proof. Let N be an integer valued random variable with generating function f . We only need to

consider the unbounded N case, otherwise there is nothing to prove.

Let ε > 0 be small. Assume for the moment that there exist two integer valued and bounded

random variables N1 and N2, such that

(3.20) E(N1) = E(N2) = E(N), var(N1) < var(N) < var(N2),

and

(3.21) var(N2)− ε < var(N) < var(N1) + ε.

Define f−(s) := E(sN1), f+(s) := E(sN2) for 0 ≤ s ≤ 1. Then (3.18) follows from (3.20) by

developing the three generating functions at 1, whereas (3.19) follows from (3.21) since ε is arbitrary.

To construct N1 and N2 satisfying (3.20) and (3.21), we fix k an integer sufficiently large such

that 0 < E(N(N−k)+) ≤ ε/3 and E((N−k)−) ≥ 1 (where x+ := max(x, 0) and x− := max(−x, 0)

for any real x). Since N = N ∧ k + (N − k)+, elementary computation shows that

var(N) = var(N ∧ k) + var((N − k)+) + 2E((N − k)+)E((N − k)−).

Therefore,

(3.22) 2E((N − k)+) ≤ var(N)− var(N ∧ k) ≤ 2E(N(N − k)+) ≤ 2ε

3
.

Let r = E((N − k)+) > 0. Plainly r ≤ 1
kE(N(N − k)+) ≤ ε

3k < 1. Choose a Bernoulli variable

B with P(B = 1) = r = 1 − P(B = 0), independent of N . Define N1 := N ∧ k + B. Hence

E(N1) = E(N). On the other hand, it follows from (3.22) that var(N) ≤ var(N ∧ k) + 2ε/3 <

var(N1) + 2ε/3, and var(N1) = var(N ∧ k) + r(1 − r) ≤ var(N ∧ k) + r ≤ var(N) − r since

E((N − k)+) = r. Then N1 fulfills the conditions in (3.20) and (3.21).

To construct N2, we choose ℓ := ⌊3E(N(N−k)+))
E((N−k)+) ⌋ and b := 1

ℓE((N − k)+). Let B̃ be a Bernoulli

variable with P(B̃ = 1) = b = 1−P(B̃ = 0), independent of N . Define N2 := N ∧ k+ ℓ B̃. Plainly,

E(N2) = E(N) and

var(N2) = var(N ∧ k) + ℓ2b(1− b) < var(N ∧ k) + 3E(N(N − k)+)) ≤ var(N) + ε.
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Note that ℓ2b(1 − b) ≥ 5
2 ℓb

E(N(N−k)+))
E((N−k)+)

= 5
2 E(N(N − k)+)). It follows that var(N2) ≥ var(N ∧

k) + 5
2 E(N(N − k)+)) ≥ var(N) + 1

2 E(N(N − k)+)) > var(N). This shows that N2 also fulfills

the conditions in (3.20) and (3.21) and completes the proof of lemma. �

Lemma 3.7 If there are two branching random walks with branching at the origin only whose

offspring generating functions f1(s) and f2(s) are such that

αf ′
i(1) + (1− α)(1− h4) = 1, i = 1, 2,

and for some constant 0 ≤ s0 < 1,

f1(s) ≤ f2(s), ∀ s0 < s ≤ 1,

then the respective generating functions F 1(t; s) and F 2(t; s) for the number of particles at the

origin at moment t meet the inequality

(3.23) F 1(t; s) ≤ F 2(t; s)

for all s ∈ (s0, 1].

Proof. Let 0 ≤ s ≤ 1 and t ≥ 0. Introduce the notation

L (f, F ) (t; s) := s(1−G1(t)) + (1− α)(1 − h4)(1−G2(·)) ∗G1(t)

+

∫ t

0
αf(F (t− u; s)) dG1(u) + (1− α)h4G1(t)

+

∫ t

0
(1− α)(1 − h4)F (t− u; s) d(G1 ∗G2(u)),(3.24)

and for i = 1, 2, set

F i
0(t; s) = s, F i

n+1(t; s) := L
(
fi, F

i
n

)
(t; s) .

Let us show by induction on n that

s ≤ F i
n(t; s) ≤ F i

n+1(t; s), ∀0 ≤ s ≤ 1.

Indeed, the expression

Ri(s) := αfi(s) + (1− α)(1 − h4)s+ (1− α)h4
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is a probability generating function with R′
i(1) = αf ′

i(1) + (1 − α)(1 − h4) = 1. Hence Ri(s) ≥ s

for all s ∈ [0, 1]. Using this fact, we have

F i
1(t; s) = L

(
fi, F

i
0

)
(t; s)

= s(1−G1(t)) + (1− α)(1 − h4)(1 −G2(·)) ∗G1(t)

+

∫ t

0
αfi(s) dG1(u) + (1− α)h4G1(t) +

∫ t

0
(1− α)(1 − h4)s d(G1 ∗G2(u))

= s(1−G1(t)) + (1− α)(1 − h4)(1 −G2(·)) ∗G1(t) + (1− α)h4G1(t)

+αfi(s)G1(t) + (1− α)(1 − h4)sG1 ∗G2(t)

= s(1−G1(t)) + (1− s)(1− α)(1− h4)(1 −G2(·)) ∗G1(t) +Ri(s)G1(t)

≥ s(1−G1(t)) + sG1(t) = s.

And if this is true for some n then, by monotonicity

(3.25) F i
n+2(t; s) = L

(
fi, F

i
n+1

)
(t; s) ≥ L

(
fi, F

i
n

)
(t; s) = F i

n+1(t; s) ≥ s.

Next we claim that if s ∈ (s0, 1] then

(3.26) F 1
n(t; s) ≤ F 2

n(t; s), ∀n ≥ 0.

Indeed, this is true for n = 0 and if this is true for some n then in view of (3.25) for s ∈ (s0, 1]

F 1
n+1(t; s) = L

(
f1, F

1
n

)
(t; s) ≤ L

(
f2, F

1
n

)
(t; s) ≤ L

(
f2, F

2
n

)
(t; s) = F 2

n+1(t; s).

Now on account of (3.26) we may pass to the limit as n → ∞ to get (3.23). The lemma is proved.

�

Proof of Theorem 1.1. The first part of the theorem is simply Proposition 3.4.

To prove the second part assume that f(s) is not a polynomial probability generating function

(otherwise Theorem 3.5 gives the desired statement). Let, for a fixed ε > 0, f−(s) and f+(s)

be the polynomial probability generating functions satisfying the conditions of Lemma 3.6 and

let F−(t; s) and F+(t; s) be the probability generating functions corresponding to the branching

processes in Z
4 with branching at the origin only and the reproduction laws specified by f−(s) and

f+(s) respectively. Let q±(t) := 1 − F±(t; 0). Remark that the asymptotic of q±(t) is given by

(3.10) with corresponding constants related to f
(2)
± (1). Let ε > 0 be small. By (3.19), we have that

for all sufficiently large t
1

1 + 2ε
≤ q+(t)

q(t)
and

q−(t)

q(t)
≤ 1

1− 2ε
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while by (3.10), (3.2) and (3.19), we have that for all large t,

(1− 2ε)
q−(t)

P−
1 (t)

≤ q(t)

P1(t)
≤ (1 + 2ε)

q−(t)

P−
1 (t)

, (1− 2ε)
q+(t)

P+
1 (t)

≤ q(t)

P1(t)
≤ (1 + 2ε)

q+(t)

P+
1 (t)

,

where P±
1 (t) are defined in the obvious way. Clearly, for any λ > 0

E
[
e−λµ0(t)q(t)/P1(t)|µ0(t) > 0

]
=

F
(
t; e−λq(t)/P1(t)

)
− F (t; 0)

1− F (t; 0)

= 1− 1− F
(
t; e−λq(t)/P1(t)

)

q(t)
.(3.27)

Further, e−λq(t)/P1(t) > s0 for all large t and we deduce from Lemma 3.7 that

q+(t)

q(t)

1− F+
(
t; e−λq(t)/P1(t)

)

q+(t)
≤ 1− F

(
t; e−λq(t)/P1(t)

)

q(t)

≤ q−(t)

q(t)

1− F− (t; e−λq(t)/P1(t)
)

q−(t)
.

On the other hand, by monotonicity, F+
(
t; e−λq(t)/P1(t)

)
≤ F+

(
t; e−λ(1+2ε)q+(t)/P+

1 (t)
)

and

F− (t; e−λq(t)/P1(t)
)
≥ F−

(
t; e−λ(1−2ε)q−(t)/P−

1 (t)
)
. Hence, letting t → ∞ we get on account of

Theorem 3.5 that

1

1 + 2ε

(
2

3
− 2

3

2

2 + 3(1 + 2ε)λ

)
≤ lim inf

t→∞

1− F
(
t; e−λq(t)/P1(t)

)

q(t)

≤ lim sup
t→∞

1− F
(
t; e−λq(t)/P1(t)

)

q(t)

≤ 1

1− 2ε

(
2

3
− 2

3

2

2 + 3(1− 2ε)λ

)
.

Letting now ε → +0 we see by (3.27) that

lim
t→∞

E
[
e−λµ0(t)q(t)/P1(t)|µ0(t) > 0

]
=

1

3
+

2

3

2

2 + 3λ
,

as desired. �

Remark 3.8 It follows from (3.2) and Proposition 3.4 that the scaling in Theorem 1.1 has the

following asymptotic behavior

E [µ0(t)|µ0(t) > 0] =
Eµ0(t)

P (µ0(t) > 0)
∼ 3

αf (2)(1)C2

t

log2 t
, t → ∞.
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