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Running title 
Quaternary Uplift of the Central Andes Forearc 
 

Abstract 
Most of the Pacific coast of the Central Andes, between 15°S and 30°S, displays a wide (a 

couple of kilometres) planar feature, gently dipping oceanwards and backed by a cliff. This 
morphology, usually of marine orgin, is called rasa, and argues for a recent and spatially 
continuous uplift of the margin over the 1,500-km-long coastal region we describe. The cliff 
foot is found at a similar elevation (~110 m amsl) all over the studied area, with the exception 
of peninsulas such as the Mejillones Peninsula. The compilation of published chronological 
data and the extrapolation of re-appraised uplift rates provide evidence for a common cliff 
foot age of around 400 ka (i.e., Marine Isotopic Stage MIS 11). This, together with other 
geological constraints, indicates a Quaternary renewal of uplift in the Central Andes forearc 
after a late Pliocene quiescence or subsidence. 
 

Key words. Andes, Quaternary, Subduction, Rocky Coast, Geomorphology, Marine 
Terrace 

1 Introduction 
How and when the Andes reached their current elevation is highly debated. Studies have 

mainly focused on the Oligo-Miocene uplift (see the review by Ehlers and Poulsen, 2009). 
There is clear evidence that the Central Andes forearc (Figure 1) was 1,000 m lower than 
today during mid-Miocene, as demonstrated by the occurrence of mid-miocene marine strata 
at ~1,000 m amsl (above mean sea level) (Huamán, 1985), and incision timing (e.g., Hoke et 
al., 2007; Schildgen et al., 2009; Schildgen et al., 2007; Thouret et al., 2007). Most of the 
uplift must have been achieved at the end of the Pliocene era, as indicated by a basalt flow we 
encountered at less than 250 m amsl near the bottom of the Ocoña valley, indicating that 
almost all the incision currently observed  had already occurred; it has been dated some 
kilometres upstream, similarly near the valley bottom at 2.0 to 2.3 Ma (Schildgen et al., 2009; 
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Thouret et al., 2007). Despite this, the coast presents many sequences of marine terraces and 
beach ridges, attesting to Quaternary uplift (e.g., Darwin, 1846; Domeyko, 1848; Gonzalez et 
al., 2003; Goy et al., 1992; Hartley and Jolley, 1995; Hsu et al., 1989; Machare and Ortlieb, 
1992; Marquardt et al., 2004; Ortlieb et al., 1996a; Ortlieb et al., 1996b; Ota et al., 1995; 
Paskoff, 1977; Quezada et al., 2007; Saillard et al., 2009). Nevertheless, marine terrace 
sequences are not continuous (cf. Marquardt, 2005; Saillard, 2008).  
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Figure 1. Central Andes topography (SRTM data) with the extent of the study area: the 
central Andes forearc is hatched. The trench is shown; convergence velocity does not 
vary much and the convergence vector is drawn for southern Peru, after Nuvel-1A 
model (DeMets et al., 1990).  
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Figure 2. Schematic and field illustrations of rasa surfaces. A rasa is a gently dipping 
wave-cut surface, limited at its continent side by a cliff foot. A) General sketch of a rasa, 
which locally can be occupied by marine terraces. B) Landsat image of a rasa in 
southern Peru. C) The rasa and cliff at Tanaka (northern limit of this study, 15.75°S, 
photo V. Regard); the cliff foot is at ~300 m amsl. D) ~50-m rasa near Ite (Puerto Grau 
and Punta San Pablo, 18.00°S, photo L. Audin). E) Rasa near caleta de Hornos 
(29.61°S); cliff foot is at 200-250 masl. F) Google Earth view of Hornitos (22.85°S), 
showing the continuity between Hornitos’ sedimentary terraces and a wave cut rasa; the 
cliff foot is measured far from the colluvial wedge at 120 m amsl; the summit of the cliff 
there is at ~1,400 m amsl. G. Relief view of Chala Bay (15.8°S) showing the transition 
between the wave cut rasa and the terrace sequence. 

Another striking coastal feature of this region is defined by a morphology formed by a cliff 
bounding a gently sloping oceanward landform (Figure 2). This landform corresponds to a 
wave-cut landform with remnants of shore morphology such as seastacks or beach ridges 
(e.g., Hartley and Jolley, 1995; e.g., Marquardt et al., 2004; Ortlieb et al., 1996b; Paskoff, 
1970; Paskoff, 1977; Paskoff, 1978; Radtke, 1987; Saillard, 2008). It differs from a marine 
terrace as its slope and relief are too high to constitute a simple terrace. However, it is 
sometimes laterally connected to marine terrace sequences like in Chala (Peru, Goy et al., 
1992; Saillard, 2008)(Figure 2A).  Similar features have been described along the northern 
Spanish coast where it could be 1-2 Ma-old (Alvarez-Marron et al., 2008).  There, the term 
"rasa" was used to define a planation surface due to repeated highstands superimposed on an 



uplifting coast (Cueto y Rui Diaz, 1930; Hernandez-Pacheco, 1950). After its formation, a 
rasa can be degraded by depositional (e.g. fan deposition or reoccupation) or erosional (e.g. 
cliff degredation) processes, resulting in a less marked cliff-foot.  Hereafter, we follow 
Paskoff (1970) and refer to the coastal landform that we find relatively continuously from 
Nazca, Peru to Valparaiso, Chile (Figure 1) as a rasa (Figure 2).  
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We present a compilation of the Southern Peru-Northern Chile rasa cliff-foot elevation. In 
the literature, cliff-foot is often named as a shoreline angle or inner edge. In the following, 
‘cliff-foot’ refers to the foot of the main rasa cliff and ‘shoreline angle’ to the foot of the 
secondary cliffs of the marine terraces (cf. Figure 2A). As in Northern Peru and Ecuador, we 
consider that the rasa, and therefore its cliff-foot elevation, corresponds to repeated sea level 
highstands superimposed on a “stable” or slowly uplifting rocky coast. In other words, only a 
succession of different highstands can produce such a wide morphology. We discuss its 
elevation distribution all over the study area in terms of uplift. Then, we review the literature 
concerning Quaternary palaeoshore dating (and correlation to Marine Isotopic Stages (MIS)) 
and attempt to extrapolate it to date this shore platform formation and emersion. We finally 
discuss the timing of rasa formation and forearc uplift along the coast of the Central Andes.  

2 Study area and geological setting  
The study area extends for 1,800 km along the central Andean coast, from Tanaka to the 

north (southern Peru, 74.4°W, 15.7°S) to the La Serena area to the south (northern Chile, 
71.3°W, 30°S). We chose this study area because, as shown in this work, this segment of the 
Andean coast is currently uplifting, and displays many uplifted geomorphologic features. 
Further north, between Tanaka and Pisco, coastal uplift is accelerated by subduction of the 
southward-migrating Nazca Ridge (Espurt et al., 2007; Hampel, 2002; Machare and Ortlieb, 
1992; Regard et al., 2009; Wipf et al., 2008). In turn, north of Pisco, in the Lima area, the 
coast segment is currently subsiding (le Roux et al., 2000), possibly related to the transient 
response following the passage of oceanic ridge subduction.  

Southward of La Serena, the morphological signal is harder to interpret, probably as a 
result of the combined effects of greater complexity, and a greater dissection by the wetter 
climate. The morphological complexity of the La Serena area could be interpreted as local 
uplift induced by the nearby subducting Juan Fernandez ridge and its associated flat 
subduction segment (Le Roux et al., 2005; Yañez et al., 2002). But, in contrast to the Nazca 
ridge, whose meeting point with the coast is migrating southwards (Hampel, 2002), the Juan 
Fernandez ridge has been subducting beneath the same coastal position since ~10 Ma (Yañez 
et al., 2001), long before the formation of Quaternary uplifted shorelines. This segment of 
Andean coast is usually marked by the Coastal Cordillera; it has relief in the order of ~1,000 
m, except in the Arica bend between Ilo and Arica where the coast dips gently oceanwards. 
The coastal relief is particularly well expressed in northern Chile between Arica and 
Antofagasta, where the coastal geomorphology is described as an ocean-facing cliff (i.e., 
Gonzalez et al., 2003; Ortlieb et al., 1995). This relatively simple cliff-face coastal 
morphology is interrupted by peninsulas such as Ilo, Mejillones or the area south of Caldera, 
where some of the best preserved coastal sequences are preserved. 

Marine terraces and rasas developed over the coastal batholith, forming the Coastal 
Cordillera all along the study area (Gansser, 1973). Flat surfaces and depressions are located 
to the east, between the Coastal and Main Cordilleras. They are often filled by Miocene or 
older clastic sediments (for example the Moquegua Group in southern Peru (Huamán, 1985), 
or El Diablo Formation in northern Chile (Tobar et al., 1968)). The marine origin of rasas is 
attested by fossils found on them, the remains of sea stacks, the continuity with marine terrace 
deposits and the ages they yield close to that of the neighbouring marine terraces (Hartley and 
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Jolley, 1995; Marquardt et al., 2004; Ortlieb et al., 1996b; Paskoff, 1970; Paskoff, 1978; 
Radtke, 1987). 

2.1 Cliff-foot  
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Figure 3. Example of profiles normal to the shore (the coordinates of the profiles at the 
coast are indicated). All the profiles have the same vertical scale (100 m between 
tickmarks) but the horizontal scale differs between top profiles (continuous line) and 
bottom ones (discontinuous line). Greater and smaller arrows indicate, respectively, the 
rasa cliff foot and other shoreline angles.  

Topographic analyses are based on Shuttle Radar Topography Mission (SRTM) digital 
elevation models (DEMs) with a spatial resolution of 3 arc seconds (~90 m) and a vertical 
accuracy of ~10 m (Farr et al., 2007). We generated cross-sections normal to the shore where 
the cliff-foot is clearly visible (see examples in Figure 3), and basement rock outcrops, 
attested by the rasa surface shape and the presence of sea-stacks (cf. Figures 2B, 2C and 2D): 
the sediment cover is thus negligible. We recorded cliff-foot elevations for each cross-section 
along the coast (Figure 4).  
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Figure 4. Top: cliff foot elevation of the main planar levels vs. distance from Tanaka. 
The main rasa is indicated by black diamonds whereas other levels are indicated by 
white squares. A level at ~100 m amsl appears clearly between Atico and Caldera 
(kilometres 100 to 1500). Before and after, the surface elevation trend is less clear. An 
upper level is found in southern Peru at ~300 m amsl, and a lower one at ~50 m amsl is 
found discontinuously all over the area. The ~110-m main level and lower level are 
progressively uplifted from kilometre 100 (respective elevations of 110m and 70 m amsl) 
to kilometre 0 (respective elevations of  300m and 150 m amsl), probably due to the 
subduction of the Nazca Ridge underneath. White triangles, diamonds and circles 
indicate dating locations and the technique used (see caption). Bottom: main rasa width 
(same points as top graph). 

This exercise revealed one to three planar coastal features in the study area (Figure 4). 
Among these surfaces, the main one has a width of between 1 and 3 km on average, and in 
some places reaches 10 km (Figure 4). It lies at 110±20 m amsl between Atico and Caldera. 
This feature corresponds to a rasa, and is almost continuous in southernmost Peru and 
northern Chile, from Iquique to Caldera. In southern Peru, to the north of Atico this level is a 
well developed rasa. Its elevation progressively becomes higher and reaches ~300 m amsl in 
the Chala area. Between Atico and Ilo, this level is discontinuous and less clear (Figure 4). 
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In southern Peru, a level higher than the ~110 m amsl one is found in some places between 
Tanaka and Ilo; it is not well preserved and stands mainly at ~300 m amsl. In Chile, planation 
levels higher than the ~110 m one are only present near (and within) the Mejillones Peninsula 
and southward from Caldera (Figure 4). 

A lower surface, usually located between 40 and 60 m amsl (cf. Marquardt, 2005), is 
present discontinuously all over the area, but without major variations in its elevation except 
in the northernmost part, north of Atico. There, its elevation increases northward, similarly to 
the ~110-m main level, and reaches 150 m amsl at the northern end of the study area 
(Figure 4). This level is sometimes cut into the main rasa (see Figure 2C for example). 

In the southernmost 300 km of the study area, the extensive rasa displays a wide range of 
elevations (100-250 m) with no clear trends.  We find this wide range to be typical in 
uncommonly large rasas (i.e., greater than 4 km wide, Figure 3), such as around Mejillones or 
Ilo, areas whose Quaternary uplift is known to be complex (Marquardt et al., 2004; Ortlieb et 
al., 1996a).  

2.2 Chronological Constraints 
A significant number of studies have been conducted to date the Quaternary sequence of 

shorelines (and particularly the marine terrace deposits). Dating was performed using amino 
acids racemisation, electron spin resonance (ESR), U-Th, cosmogenic nuclide dating, or the 
faunal content of the terrace (for shorelines related to MIS 11) (see references in Table 1). 
Chrono-stratigraphic interpretations for each site (detail of individual dates are described in 
additional material) allow us to determine an uplift rate based on the 
paleoshorelines. Assuming that this uplift rate is representative of uplift since the 
abandonment of the rasa surface final abandonment, we used this uplift rate to extrapolate the 
age of the upper rasa cliff foot. We present the methodology and dates used and then discuss 
the validity of our extrapolation. 

2.2.1  Methodology and dates used 
The age of the rasa could be evaluated using the following equation,  assuming a constant 

uplift rate over geologic times: 
slz

Agez

t

Terracecf

ESPAge
−

= where zcf and zt are the elevations of 

the cliff foot and the terrace shoreline angle respectively, on which the extrapolation is made; 
and sl is the highstand sea level. This hypothesis will be discussed below, because it has been 
shown previously to be erroneous in the case of Altos de Talinay where the uplift rate varied 
in time (Saillard et al., 2009). This exercise gives results for 16 sites (2 of them can each be 
divided into sub-sites) for the age of the ~110 m amsl and upper levels (Figure 5 and Table 1). 
The maximum distance between two evaluations is ~500 km (Figure 4). The dating results 
found in the literature are compiled for each terrace of each site (details are in Table in the 
additional material).  
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It is now widely accepted that terrace inner edges correspond to sea level highstands, 
which are correlated to odd Marine Isotopic Stages (i.e. MIS 5, 7, 9 in Table 1)(e.g., Bradley 
and Griggs, 1976; Keller and Pinter, 2002; Lajoie, 1986). Highstands are generally complex 
with second order variations referred to as sub-stages (for example 5a,  5b, etc.). Each sub-
stage represents a long enough still-stand in sea level that can result in significant 
morphogenesis, but generally interglacial maxima (or peaks) corresponding to the highest 
highstands (e.g. MIS 5e) are best expressed in the landscape (Bull, 1985; El-Asmar, 1997; 
Lajoie, 1986; Muhs, 1983; Pedoja et al., 2006b; Pirazzoli et al., 1993). Thus authors typically 
relate terrace formation to one of the sea level highstands (column ‘MIS’ in Table 1), which 
generally offer much more precise timing constraints than the reported dating results. In our 
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study we similarly preferred a correlation of shoreline angle to the peaks of past interglacials 
(in Obispito for example, Table 1 and additional material). These highstands (MIS or sub-
stages) are relatively well known, at least in terms of timing, if not in terms of elevation of 
past sea levels relative to the modern one (e.g., Siddall et al., 2006) (see Table 1). Moreover, 
assigning the dates to an MIS allows taking into account the global sea level (sl) at this time: 
this is reported in Table 1 and used in the aforementioned equation to calculate the age of the 
rasa at the cliff foot. The associated error indicated in Table 1 is a result of propagation of the 
errors on AgeMIS the MIS (or substage) age, sl, the MIS sea level, zcf, and zt. Its complete 
expression is: 
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Rarely, rasa deposits or the erosion surface itself have been dated in a site close to the cliff 
foot (Table 1: Saillard et al. 2009 for Ilo and Altos de Talinay; Leonard et al. 1994, Marquardt 
et al. 2004, and Quezada et al. 2007 at Caldera/Bahia Inglesa). In these cases, there is no need 
to extrapolate the age; consequently, we derived these ages through direct dating and we 
regard them as particularly reliable (highlighted in Figure 5 and Table 1). 

2.2.2 Results: extrapolated cliff foot ages 
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Figure 5a. Extrapolation of terrace ages to cliff foot for the main, ~100 m amsl level. 
Each datum comes from a different study (see Table 1). The calculated uplift rates are 
reported at the bottom. For each site (from north to south), the different evaluations are 
shown (see Table 1). Extrapolations that seem more reliable than others are highlighted 
in larger and bolder symbols (see text for why they are more reliable). Most of the 
extrapolated ages fall in the range, 400±100 ka. 
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Figure 5b. Same as Figure 5a, for the upper level. Most of the extrapolated ages fall in 
the range 800±200 ka, but they are more scattered than for the ~110-m main level. 

The ~110 m level age has been evaluated with our technique to ~400±100 ka (Figure 5a 
and Table 1). A couple of sites display a different age, but they are located around the 
Mejillones Peninsula (Abtao and north Mejillones) and the Coquimbo-Tongoy Bay, areas 
already known for their tectonic complexity (Marquardt, 2005; Ortlieb et al., 1996b; Paskoff 
et al., 1995). Some sites yield different uplift rates depending on the terrace used, such as in 
Altos de Talinay and possibly at Abtao in the Mejillones Peninsula. In these two cases, we 
used the dated terrace with elevation closest to that of the cliff foot as being most 
representative (cf. Figure 5a and Table 1). Other sites display relatively similar uplift rates, 
regardless of the level of the dated terrace (sites Caldera/Bahia Inglesa, Chacaya/Hornitos, Ilo 
and possibly Abtao and the Coquimbo Bay, Figure 5a and Table 1). These sites give evidence 
for a constant (or slightly changing) uplift rate, different from the highly variable one 
calculated for the Altos de Talinay by Saillard et al. (2009). 

For the 150 to 450-m upper level, in a similar way, we extrapolated uplift rates derived 
from dated terraces found at lower levels, or chose the closest terrace from which to derive 
uplift rates if there was evidence for variability. Despite a greater uncertainty, the data 
highlight a possible common cliff foot age for the different sites at around 800±200 ka (cf. 
Table 1 and Figure 5b). We believe this age estimate is reasonable since this result is close to 
direct dating of the rasa at the cliff foot (Figure 5b) in Altos de Talinay (678±51 10Be kyr, 
Saillard et al., 2009) and in Caldera (860±110 21Ne kyr, Quezada et al., 2007). 

3 Discussion 
This work aims at defining Quaternary rasa development in the study area, before placing 

this story in the framework of Andean Cenozoic growth and rise. The study area displays 
some rasas between ~16°S and 30°S. These probably represent a period with steady sea level 
highstands, reaching quite the same level (Siddall et al., 2010), long enough to cut a high 
coastal cliff. This period was followed by uplift during which repeated highstands allowed for 
extensive wave-cut platform (rasa) development or terrace deposition probably in function of 
the palaeogeography and tectonics, as illustrated by the peninsulas (Marquardt, 2005; 
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Marquardt et al., 2004; Saillard, 2008; Saillard et al., 2009). This platform emerged and is 
preserved through fossilization of the abandoned cliff foot (Figure 6). In this scenario, the 
rasas in southern Peru and northern Chile can be regarded as evidence for a stage without 
uplift (platform underwater development) preceding an uplift period lasting until modern 
times. The coast shows a record of Quaternary uplift along more than 1,500 km, as indicated 
by the ~ 110-m main level. The lowermost level (~50m) is more continuous, in particular in 
areas not known for displaying emerged coastal features like northernmost Chile. This uplift, 
after a period of relative stability or subsidence, started at 400±100 ka, based on our 
extrapolated age for the major rasa surface identified at ~110 m amsl. The age probably 
corresponds to MIS 9 and/or 11 (321 or 404 ka, respectively, the latter value being considered 
more representative). A higher shore platform, found only in Peru and in the Chilean 
peninsulas, could have an age extrapolated to around 800-1000 ka. This stage has possibly left 
remnants, not only in southern Peru and on the peninsulas, but also in northern Peru and 
southern Ecuador. Indeed, extensive marine landforms, locally called tablazos, are present 
there at ~300 m amsl with an age similarly estimated to be older than 700 ka by Pedoja et al. 
(2006a; 2006b). 
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Figure 6. Rasa development in relation to uplift. Top: initial stage resulting from a long 
period without uplift and shore platform underwater development. Bottom: emergence 
because of uplift. Glacio-eustatic cycles could be recorded by small features within the 
rasa. 

Indeed, our data emphasizes the particular setting of the peninsulas. The peninsula areas 
generally have a well-developed rasa of "standard" age (ca 400 ka), but they also have higher 
well-developed surfaces (possibly clustered around 800 ka). These observations correlate with 
other information regarding the MIS 11 sea level highstand. Observations from Siddall et al. 
(2006) indicate global, long-standing (at least 30 ka) high sea-levels during MIS 11. This 
could have driven extensive platform development. The question of why the peninsulas 
behave differently from the main onshore forearc remains open. They are all affected by 
Quaternary normal faults, whether they are shore-perpendicular as in Ilo (Audin et al., 2008), 
shore-parallel as in Mejillones (Delouis et al., 1998; Hartley and Jolley, 1995) or Tongoy (Ota 
et al., 1995), or slightly oblique to the coastline as in Caldera (Marquardt et al., 2004). On one 
hand, this observation supports the scenario proposed by Delouis et al. (1998), that the 



peninsulas are active horsts which will subside when subduction erosion counterbalances the 
uplift. On the other hand, our observations show no evidence for subsiding zones along the 
coast, indicating that either the model is incorrect or that tectonic erosion does not yet balance 
uplift. 
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A similar renewal of uplift was deduced by Clift and Hartley (2007) on the basis of 
offshore sedimentation.  They suggested that the renewal took place after the upper Miocene-
Pliocene subsidence at around 2 Ma, with low accuracy on their timing constraints. 
In northern Chile, the data compilation by Le Roux et al. (2005) indicates that except when 
the Juan Fernandez Ridge passed into subduction, the Coquimbo area underwent slight 
subsidence during late Miocene and Pliocene. The Andean forearc uplift was quantified in 
Northern Chile to ~ 0.1 mm/yr in the precordillera between 26 and 8 Ma, dropping to ~0.02 
mm/yr on average for the last 8 Ma (Farías et al., 2005). More accurate dating indicates uplift 
and canyon incision between ~10 and ~5 Ma (Hoke et al., 2007; Schildgen et al., 2009; 
Schildgen et al., 2007), with no more than 250 m postdating the 2.0 to 2.3 Ma-old Ocoña 
basalt in southern Peru (Schildgen et al., 2009; Thouret et al., 2007). Similarly, near Arica, the 
2.55-2.7 Ma Lauca tuff is present at ~60 m amsl in the Lluta river, and between the Lluta river 
and the Arica airport (Garcia et al., 2004; Wörner et al., 2000), whereas Quaternary marine 
sediments crop out at a higher elevation, indicating Pliocene subsidence followed by uplift. 
Our observations are more precise, both in timing and in the spatial extent of deformation. 
Our estimated uplift rate is quite rapid (0.25-0.3 mm/yr), and cannot reasonably be 
extrapolated in the Pliocene (1,000 m of uplift can be produced in less than 4 Ma), implying a 
recent renewal or acceleration of uplift. Our observations also indicate that during the last 400 
ka, the uplift is quite homogeneous all along our study area, with the exception of peninsulas 
and the area where the Nazca Ridge is subducting. This argues for regional forearc uplift 
instead of local effects that should show some segmentation along the studied coastline.  

These data seem to require a mechanism of uplift (and preceding subsidence) operating at 
deep crustal or lithospheric levels, such as subduction processes or lithospheric mantle 
dynamics under the Central Andes. Proposed causes are multiple. It could be the result of a 
changing Benioff zone dip, as proposed by Folguera et al. (2006) for the southern Andes (36-
39°S) and modelled by Guillaume et al. (2009). This would imply a slab steepening during 
the Pliocene (subsidence) followed by Quaternary slab flattening: this remains to be proved. 
Otherwise it could be caused by temporal changes in climate-driven trench-fill leading to 
modifications in plate coupling (Lamb and Davis, 2003). Currently, no data support the 
hypothesis of a wetter climate during the Pliocene, although a wetter climate would allow for 
an increase in trench fill and subsidence due to diminished plate coupling.  

4 Conclusion 
Marine morphologies along the central Andes coast reveal that the forearc was uplifted 

relatively continuously during the late Quaternary, apart from the peninsulas. This uplift is 
attested by abandoned rasa surfaces found along the coast, and corresponds to a renewal of 
uplift since at least 400 ka (MIS 11), after Pliocene quiescence or subsidence. For the 
moment, no cause has been identified for this uplift renewal. 

In the peninsulas, a higher level is found, with a proposed age of ~800-1,000 ka, with 
lower certainty. This indicates that peninsulas have been rising for a longer period of time, 
allowing for a longer glacial-interglacial history to be traced in the geomorphic record. In 
particular, they highlight that the MIS 11 sea-level highstand is important for coastal 
morphogenesis, probably due to its long duration (Siddall et al., 2006).  
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Tables 
Table 1.  
Extrapolation of terrace ages to cliff foot ages. Data are a compilation taken from single 

works (and papers); all the data are presented in the additional Table. Each datum is assigned 
to a Marine Isotopic Stage (MIS); accuracy of this assignment is evaluated: 1: age is that of 
cliff foot (bold-faced extrapolated ages); 2: good, assignment must be to the correct MIS 
substage; 3: medium, the numerical age corresponds to a different substage to the one the data 
are assigned to; 4: lower: the uncertainty is of the order of one interglacial; 5: low, the 
uncertainty is of the order of a couple of hundred thousand years. The ancient sea level is 
taken from relevant studies (Andersen et al., 2008; Shackleton et al., 1990; Siddall et al., 
2006). Data references are: 1-Saillard (2008); 2- Radtke (1987; 1989) ; 3-Leonard and 
Wehmiller (1992) ; 4-Quezada et al. (2007); 5-Marquardt et al. (2004); 6-Leonard et al. 
(1994); 7- GEOTOP, in Ortlieb et al. (1995); 8-Gonzalez, in Marquardt (2005); 9-Ortlieb et 
al. (1996b); 10-Leonard and Wehmiller (1991); 11-Labonne and Hillaire-Marcel (2000); 12-
Ortlieb et al. (1992); 13-Ortlieb et al. (1996a). 

 
Table ADDITIONAL MAT 1.  
Terrace age data from literature. The column sample/MIS indicate if the age is the one of 

the sample(s) analyzed (sample) or if it was adjusted to an interglacial highstand (MIS); when 
many samples are available for any specific locality, they are numbered in order to follow 
dates performed on one sample (frequent when ESR, U-Th or A/I are used) or dates coming 
from different sample associations. ‘inf’ in ‘+’ uncertainty indicates minimum values. When 
many dates are available for one single place, an average value is calculated by weighting 
with the inverse of uncertainty (the minimum values are not taken into account). Reference to 
relevant papers are indicated; nevertheless, most of the data earlier than 1995 are reproduced 
in Ortlieb et al. (1995) and Paskoff et al. (1995). 

 



                 Main level Upper level 

Site Name 

latitude 
(degrees 
N) Age (kyr) ± MIS accuracy Technique Dated material 

Terrace 
shoreline 
angle or 
sample 
elevation (m) ± Reference

ancient 
sea level 
(m) ± 

uplift 
rate 
(mm/yr) ± 

cliff foot 
elevation 
(m) ± 

extrapolated 
age (kyr) ± 

cliff foot 
elevation 
(m) ± 

extrapolated 
age (kyr) ± 

altos de Talinay -30.5 122 7 5e 2 10Be 25 3 1 3 3 0.18 0.05 170 20 943 285 425 15 2357 662

altos de Talinay -30.5 225 12 7e 2 10Be 55 5 1 -10 5 0.29 0.05 170 20 588 118 425 15 1471 245

altos de Talinay -30.5 321 7 9c 1;2 10Be 170 20 1 -2.5 5.5 0.54 0.08 170 20 321 7 425 15 791 121

altos de Talinay -30.5 690 10 17 3;1 10Be 

Surface 
exposure age, 
no erosion 

425 15 1 -15 15 0.64 0.04 170 20 267 36 425 15 690 10
Tongoy -30.25 122 7 5e 3 U/Th 14 2 1 3 3 0.09 0.04      155 15 1719 805

Tongoy -30.25 404 7 11 5 U/Th 48 2 1 8 10 0.1 0.03      155 15 1305 412

Guanaqueros -30.2 100 7 5c 3 U/Th & ESR 18 2 2 -15 10 0.33 0.12 130 10 394 149 155 15 470 180

Herradura -30 122 7 5e 2 U/Th & ESR 17.5 2.5 2 3 3 0.12 0.05 130 10 1094 428 165 30 1388 589

Herradura -30 122 7 5e 3 U/Th & ESR 22 2.5 3 3 3 0.16 0.05 130 10 835 255 165 30 1059 367

Herradura -30 225 12 7e 4 U/Th & ESR 37.5 2.5 2 -10 5 0.21 0.04 130 10 616 113 165 30 782 193

Herradura -30 404 7 11 4 A/I 41 5 3 8 10 0.08 0.04 130 10 1592 734 165 30 2020 990

South Coquimbo Bay -30 321 7 9c 4 A/I 28 5 3 -2.5 5.5 0.1 0.03 130 10 1368 484 165 30 1737 677

North Coquimbo Bay -29.9 122 7 5e 3 A/I 25 5 3 3 3 0.18 0.07 130 10 721 271 170 15 943 357

North Coquimbo Bay -29.9 404 7 11 4 A/I 58 5 3 8 10 0.12 0.04 130 10 1050 326 170 15 1374 430

Punta teatinos -29.8 122 7 5e 2 U/Th & ESR 30 3 2 3 3 0.22 0.05 130 10 587 142 170 15 768 189

Punta teatinos -29.8 225 12 7e 2 U/Th & ESR 

Marine shells in 
terrace material 

62 3 2 -10 5 0.32 0.04 130 10 406 59 170 15 531 81

Quebrada Honda -29.6 122 7 5e 3 U/Th & ESR 
Marine shells in 
terrace material 24 3 2 3 3 0.17 0.05 80 15 465 161 180 35 1046 366

Huasco -28.3 122 7 5e 3 U/Th & ESR 
Marine shells in 
terrace material 30 5 2 3 3 0.22 0.07 148 10 669 207         

Puerto Viejo -27.33 100 7 5c 3 U/Th & ESR 30 3 2 -15 10 0.45 0.13 130 10 289 89 260 10 867 260

Puerto Viejo -27.33 122 7 5e 3 U/Th & ESR 

Marine shells in 
terrace material 55 5 2 3 3 0.43 0.07 130 10 305 55 260 10 577 97

Caldera -27.06 100 7 5c 2 U/Th 23 2 2 -15 10 0.38 0.12 120 10 316 105 250 30 1087 375
Bahia Inglesa -27.12 100 7 5c 2 U/Th & ESR 15 2 2 -15 10 0.3 0.12 130 10 433 179 260 10 1733 707
Bahia Inglesa -27.12 122 7 5e 2 U/Th & ESR 

Marine shells in 
terrace material 

36 5 2 3 3 0.27 0.07 130 10 481 125 260 10 881 222

Caldera -27.15 860 15 21 3;1 21Ne 

Surface 
exposure age, 
no erosion 224 0 4 0 20 0.26 0.02 120 10 461 39 224 6 860 15

Caldera -27.12 404 7 11 1;4 Faunal assemblage 
Terrace marine 
sediments 162 10 5 8 10 0.38 0.05 120 10 315 49 250 30 656 117

Morro de Copiapo -27.1 500 10 13 1;4 U/Th 
Marine shells in 
terrace material 130 10 6 0 20 0.26 0.06 120 10 462 114 250 30 962 251

Bahia Inglesa -27.06 404 7 11 1;4 Faunal assemblage 
Terrace marine 
sediments 139 10 5 8 10 0.32 0.05 120 10 370 65 250 30 771 150

Obispito -26.45 122 7 5e 3 U/Th & ESR 
Marine shells in 
terrace material 35 8 2 3 3 0.26 0.09 95 15 362 139 240 20 915 328

Pan de Azucar -26.15 122 7 5e 3 U/Th & ESR 
Marine shells in 
terrace material 33 3 2 3 3 0.25 0.05 100 20 407 117         

Cifuncho -25.65 122 7 5e 3 U/Th & ESR 
Marine shells in 
terrace material 34 2 2 3 3 0.25 0.04 100 20 394 104         

Coloso -23.75 122 7 5e 2 U/Th & ESR 18 2 2 3 3 0.12 0.04 110 20 895 344 320 10 2603 884

Coloso -23.75 225 12 7e 3 U/Th & ESR 

Marine shells in 
terrace material 32 2 2 -10 5 0.19 0.03 110 20 589 149 320 10 1714 305

Abtao -23.45 225 12 7e 3 ESR 20 5 2 -10 5 0.13 0.05 90 10 675 240 150 30 1688 662
Abtao -23.45 225 12 7e 2 U/Th & A/I 23 5 7 -10 5 0.15 0.05 90 10 614 201 150 30 1467 538
Abtao -23.45 321 7 9c 1;3 U/Th & A/I 

Marine shells in 
terrace material 

90 10 7 -2.5 5.5 0.29 0.05 90 10 321 7 150 30 535 140

Morro Mejillones -23.1 404 7 11 1;3 21Ne 

Surface 
exposure age, 
no erosion 250 20 8 8 10 0.6 0.07 250 20 404 7 455 20 735 98

Mejillones north -23.05 122 7 5e 2 U/Th & ESR 14.5 1 2 3 3 0.09 0.03 130 30 1379 581 200 30 2122 813

Mejillones north -23.05 225 12 7e 4 U/Th & ESR 

Marine shells in 
terrace material 

31 1 2 -10 5 0.18 0.03 130 30 713 199 200 30 1098 237



Mejillones north -23.05 321 7 9c 5 U/Th & ESR 45 10 2 -2.5 5.5 0.15 0.05 130 30 879 352 200 30 1352 486

Chacaya -23 122 7 5e 3 A/I 33 3 9 3 3 0.25 0.05 110 10 447 102 200 30 813 209

Chacaya -23 225 12 7e 2 U/Th 90 10 9 -10 5 0.44 0.07 110 10 248 45 200 30 450 98

Chacaya -23 321 7 9c 4 A/I 90 10 9 -2.5 5.5 0.29 0.05 110 10 382 73 200 30 694 157

Hornitos -22.9 122 7 5e 3 U/Th & ESR 36 2 2 3 3 0.27 0.04 110 10 407 76 170 20 628 126

Hornitos -22.9 225 12 7e 3 U/Th & ESR 50 2 2 -10 5 0.27 0.03 110 10 413 65 170 20 765 133

Hornitos -22.9 100 7 5c 3 A/I 33 3 9 -15 10 0.48 0.13 110 10 229 67 170 20 354 107

Hornitos -22.9 122 7 5e 3 A/I 33 3 9 3 3 0.25 0.05 110 10 447 102 170 20 691 165

Hornitos -22.9 122 7 5e 3 U/Th 33 3 9 3 3 0.25 0.05 110 10 447 102 170 20 691 165

Hornitos -22.9 225 12 7e 3 A/I 55 8 9 -10 5 0.29 0.06 110 10 381 86 170 20 588 140

Hornitos -22.9 321 7 9c 3 A/I 

Marine shells in 
terrace material 

80 5 9 -2.5 5.5 0.26 0.03 110 10 428 68 170 20 661 116

Michilla -22.7 122 7 5e 3 A/I 39.5 2 10 3 3 0.3 0.04 135 20 417 87      

Michilla -22.7 122 7 5e 3 U/th 25 10 7 3 3 0.18 0.11 135 20 749 458      

Michilla -22.7 122 7 5e 3 U/th 

Marine shells in 
terrace material 

50 10 11 3 3 0.39 0.11 135 20 350 112         

Iquique -20.4 122 7 5e 2 U/Th & ESR 
Marine shells in 
terrace material 22 2 2 3 3 0.16 0.04 100 15 642 198         

Ilo -17.58 321 7 9c 1;3 10Be 

Surface 
exposure age, 
no erosion 80  1 -2.5 5.5 0.26 0.02 80 15 321 7 250 30 1003 122

Ilo -17.6 85 7 5a 3 U/th 10 3 12 -15 10 0.29 0.15 80 15 272 152 250 30 850 459

Ilo -17.7 122 7 5e 3 U/th 20 5 12 3 3 0.14 0.07 80 15 574 293 250 30 1794 877

Ilo -17.7 225 12 7e 4 U/th 25 5 12 -10 5 0.16 0.05 80 15 514 178 250 30 1607 505

Ilo -17.6 85 7 5a 3 A/I 10 3 13 -15 10 0.29 0.15 80 15 272 152 250 30 850 459

Ilo -17.7 225 12 7e 3 A/I 25 5 13 -10 5 0.16 0.05 80 15 514 178 250 30 1607 505

Ilo -17.7 321 7 9c 4 A/I 

Marine shells in 
terrace material 

60 15 13 -2.5 5.5 0.19 0.06 80 15 411 155 250 30 1284 449

Chala -15.85 122 7 5e 5 10Be and correlation 60 3 1 3 3 0.47 0.06      300 30 610 70

Chala -15.85 225 12 7e 5 10Be and correlation 94 3 1 -10 5 0.46 0.04      300 30 718 81

Chala -15.85 321 7 9c 5 10Be and correlation 154 3 1 -2.5 5.5 0.49 0.03      300 30 625 64

Tanaka -15.74 225 12 7e 3 10Be 90 10 1 -10 5 0.44 0.07      300 20 750 64

Chaviña -15.6 321 7 9c 4 10Be 

Surface 
exposure age, 
no erosion 

150 10 1 -2.5 5.5 0.48 0.05         300 20 642 45
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