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Tree-width of hypergraphs and surface duality1

Frédéric Mazoit2

LaBRI, Université de Bordeaux,
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Abstract
In Graph Minors III, Robertson and Seymour write:“It seems that the

tree-width of a planar graph and the tree-width of its geometric dual are
approximately equal — indeed, we have convinced ourselves that they differ
by at most one.” They never gave a proof of this. In this paper, we prove
a generalisation of this statement to embedding of hypergraphs on general
surfaces, and we prove that our bound is tight.

Keywords: tree-width, duality, surface.

1 Introduction

Tree-width is a graph parameter which was first defined by Halin [Hal76],
and which has been rediscovered many times (see [AP89, RS84]). In [AP89],
Arnborg and Proskurovski introduced a general framework to efficiently solve
NP-complete problems when restricted to graphs of bounded tree-width.
Courcelle [Cou90] extended this framework by showing that any problem
expressible in a certain logic can be efficiently solved for graphs of bounded
tree-width. Tree-width thus seems to be a good “complexity measure” for
graphs.

Given an embedding Γ of a graph in a surface, it is easy to obtain the dual
embedding Γ∗: just put a vertex in each face and for every edge e separating
the faces f and g, add a dual edge fg. One could thus expect that Γ and Γ∗

have the same “complexity”, and indeed in [RS84], Robertson and Seymour
claimed that for a plane embedding Γ, tw(Γ) and tw(Γ∗) differ by at most
one.

In an unpublished paper, Lapoire [Lap96] gave a more general state-
ment about embeddings of hypergraphs on orientable surfaces. Nevertheless,

1This research is supported by the french ANR project DORSO.
2Email: Frederic.Mazoit@labri.fr
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his proof was rather long and technical. Later, Bouchitté et al. and Ma-
zoit [BMT03, Maz04] gave easier proofs for plane graphs. Here we give a
proof that Lapoire’s claim is valid for general surfaces3:

Theorem 1 For any 2-cell embedding Λ of a hypergraph on a surface Σ,

tw(Λ∗) ≤ max{tw(Λ) + 1 + kΣ, αΛ∗ − 1}.

Here αΛ∗ is the maximum size of an edge of Λ∗ and kΣ is the Euler genus of
Σ.

In Section 2, we give the basic definitions. Section 3 is devoted to the
proof of Theorem 1 while in Section 4 we give examples of embeddings which
match the bound of this theorem.

2 Preliminaries

A tree-decomposition of a hypergraph H is a pair T = (T, (Xv)v∈VT
) with T

a tree and (Xv)v∈VT
a family of subsets of vertices of H called bags such that

every every edge of H is contained in at least one bag of T , and for every
vertex v ∈ VH , the vertices of T whose bag contain v induces a non-empty
sub-tree of T . The width of T is tw(T ) = max{|Xt| − 1 ; t ∈ VT} and the
tree-width tw(H) of H is the minimum width of one of its tree-decompositions.

A surface is a connected compact 2-manifold without boundaries. Oriented
surfaces can be obtained by adding “handles” to the sphere, and non-orientable
surfaces, by adding “crosscaps” to the sphere. The Euler genus kΣ of a surface
Σ (or just genus) is twice the number of handles if Σ is orientable, and is the
number of crosscaps otherwise.

We denote by X the closure of a subset X of Σ. We say that two disjoint
subsets X and Y of Σ are incident if X ∩ Y or Y ∩X is non-empty. Since
we consider finite graphs and hypergraphs, we can assume that the curves
involved in the embeddings are not completely wild and are, say, piecewise
linear. This implies that connectivity and arc-connectivity coincide. An open
curve is a subset of Σ which is homeomorphic to ]0, 1[. An open curve whose
closure is homeomorphic to the 1-sphere S1 is a loop and is a strait edge
otherwise. A connected subset X of Σ is a star if it contains a point vX called
its centre such that X \ {vX} is a union of pairwise disjoint strait edges called
half edges. Note that an open curve is also a star. Let X be an open curve or
a star. The elements of X \X are the ends of X.

3This result also appears as an extended abstract in [Maz09]. Unfortunately although
the general scheme of the proof is the same, some definitions are wrong and we could not
obtain a valid proof with them.
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An embedding of a hypergraph on a surface Σ is a pair Λ = (V,E) in which
V is a finite subset of Σ whose elements are the vertices of the embedding,
and E is a finite set of pairwise disjoint stars called (hyper)edges. Edges
contain no vertex and their ends are vertices. Such an embedding naturally
corresponds to an abstract hypergraph H. We say that Λ is an embedding of
H. An embedding of a graph on Σ is an embedding of a hypergraph whose
edges are strait edges and loops. Let Λ be an embedding of a hypergraph on
Σ. We denote by VΛ the vertex set of Λ and by EΛ the edge set of Λ. Let
VEΛ

contain the centre of all the edges and let LΛ contain all the half edges.
Then (VΛ ∪ VEΛ

, LΛ) is an embedding of a bipartite graph on Σ which is the
incidence embedding of Λ. We denote embeddings of graphs with the Greek
letters Γ and Π and embeddings of hypergraphs with the Greek letter Λ. We
only consider embedding of graphs and hypergraphs up to homeomorphisms.
Since embeddings of hypergraphs naturally have abstract counterparts, we
apply graph theoretic notions to them without further notice. For example,
we may consider an edge e as a subset of Σ or as a set of vertices. We also
consider embeddings of hypergraphs on Σ as subsets of Σ.

A face of an embedding Λ is a component of Σ \ Λ. We denote by FΛ

the set of faces of Λ. An embedded hypergraph is 2-cell if all its faces are
homeomorphic to open discs. Let Γ be a 2-cell embedding of a graph on a
surface Σ. Euler’s formula links the number of vertices, edges and faces of Γ
and the genus of the surface:

|VΓ| − |EΓ|+ |FΓ| = 2− kΣ.

We now let Λ be a 2-cell embedding of a hypergraph on a surface Σ. The
dual of Λ is the embedding Λ∗ such that:

Figure 1: A planar hypergraph and its dual.

i. Every vertex of Λ∗ belongs to a face of Λ and every face of Λ contains
exactly one vertex of Λ∗;
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ii. For every edge e of Λ, there exists a dual edge e∗ sharing its centre, and
every edge of Λ∗ corresponds to an edge of Λ.

iii. For every edge e of Λ with centre ve, the half edges of e and e∗ around ve
alternate in their cyclic order.

Note that the construction does not need Λ to be 2-cell but if not, Λ∗ is not
unique and (Λ∗)∗ need not be Λ.

3 The upper bound

Since Theorem 1 is about 2-cell embedings, and since the theorem is trivial
for edge-less embeddings, we always consider connected embeddings and
hypergraphs with at least one edge.

The border of a partition µ of EH is the set δH(µ) of vertices which are
incident with edges in at least two parts of µ, and the border of A ⊆ EH is
δH(A) = δH({A,EH \ A}). A partitioning tree of H is a tree T whose leaves
are bijectively labelled by edges of H. Removing an internal node v of T
results in a partition of the leaves of T and thus in a node-partition λv of EH .
Removing an edge e of T results in a bipartition of the leaves of T and thus
in an edge-partition λe of EH .

Lemma 1 Let H be a connected hypergraph with at least one edge. Let T
be a partitioning tree of H. Labelling each internal node v of T with δH(λv)
turns T into a tree-decomposition.

Proof. By construction, every edge of H is contained in a bag of T . Let
x ∈ VH . Let S be the set of leaves of T whose label contain x, and let Tx be
the subtree of T whose set of leaves is S. Since x is not isolated, Tx contains
at least one leaf. Moreover, an internal bag of T contains x if and only if it
separates two leaves u and v of T whose edge label contain x. Since those
bags are precisely its internal bags, Tx is precisely the subgraph induced by
the vertices of T whose bag contain x. �

The tree-width of a partitioning tree is its tree-width, seen as a tree-de-
composition.

Let Λ be a 2-cell embedding of a hypergraph on a surface Σ. If T is a
partitioning tree of Λ, then dual of T is the partitioning tree T ∗ of Λ∗ obtained
by replacing in T each label e by the dual edge e∗.

Given these definition, it is tempting to try to prove that for any embedding
Λ of a hypergraph on Σ:
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i. there always exists a partitioning tree T such that tw(T ) = tw(Λ);

ii. for any partitioning tree T , tw(T ∗) ≤ max{tw(T ) + 1 + kΣ, αΛ∗ − 1}.

The first item is true but we could not prove the second one. However, we
prove that both properties hold for a restricted class of partitioning tree which
we call p-trees.

3.1 A sketch of the planar case

Before we go on with the proof, we consider the planar case as it contains
most ideas. The proof which we now sketch is based on the proof in [Maz04].
Note that all definitions in this subsection are local to this subsection.

Let Γ be an embedding of a graph on the sphere S2. Moreover, let us
suppose that Γ has no bridge and no loop. A pretty curve is a subset of S2

which is homeomorphic to S1, which crosses Γ only on vertices, and which
never “enters” a face twice or more. A Θ-structure is a union of three curves
ρe ∪ ρf ∪ ρg such that ρe ∪ ρf , ρf ∪ ρg and ρg ∪ ρe are all pretty curves. Pretty
curves induce bipartitions of EΓ, and Θ-structures induce tripartitions of
EΓ. A partitioning tree is geometric if all its node partitions come from
Θ-structures.

Let T and T ∗ be dual geometric partitioning tree, and let v be a node of
T . We claim that the size of the dual bags Xv and X∗

v differ by at most 1.
This is clearly true for leaf bags whose size is either 1 or 2. So let us suppose
that v is an internal node and let Θ = ρe ∪ ρf ∪ ρg be a Θ-structure realising
the node partition λv. By construction Xv contains all the vertices which
belong to Θ, and X∗

v contains all the faces that Θ goes through. Since ρe ∪ ρf
is a pretty curve which alternatively crosses vertices and faces of Γ and never
enters the same face twice, |Xv ∩ (ρe ∪ ρf )| = |X∗

v ∩ (ρe ∪ ρf )|. The difference
between |Xv| and |X∗

v | thus comes from ρg. But ρg also alternatively crosses
vertices and faces of Γ without entering the same face twice. This implies
that difference between |Xv| and |X∗

v | is at most 1. Since this inequality holds
for any node, we have tw(T ∗) ≤ tw(T ) + 1.

To finish, we only need to prove that there exists a geometric partitioning
tree T such that tw(Γ) = tw(T ). To do this, we apply an induction on planar
hypergraphs. Suppose that ρ is a pretty curve whose bipartition of EΓ is
{A,B}. Let DA and DB be the two components of S2 \ ρ. If we remove all
the vertices and edges in DA and replace them by a star whose set of ends if
δΓ(A), be obtain a contracted hypergraph Γ/A. Let T/A and T/B be geometric
partitioning trees of Γ/A and Γ/B. By removing from the disjoint union
T/A ∪ T/B the leaves labelled eA and eB and adding a new edge between their
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respective neighbours, we obtain a geometric partitioning tree T of Γ. We
show that tw(T ) = max{tw(T/A), tw(T/B)}. By induction tw(Γ/A) = tw(T/A)
and tw(Γ/B) = tw(T/B). The result follows from the fact that it is always
possible to find ρ such that tw(Γ) = max{tw(Γ/A), tw(Γ/B)}.

Before we go on with the general case, let us make some comments.

• On higher genus surfaces, we can still describe separators in terms of
curves on Σ but as the genus increases, the number of curves involved
increases and it quickly becomes too complex to control how the curves
interact. As a matter of fact we do not really care about curves. Θ-
structures are only important because they cut the sphere in three
connected regions.

Indeed, we can prove that |X∗
v | ≤ |Xv|+ 1 without considering curves

as follows. Let Θ be a Θ-structure which realises λv, and let DA, DB

and DC be the components of S2 \Θ. We contract all the vertices and
faces which are contained in DA into a single vertex vA. We do the
same thing in DB and DC and to obtain two vertices vB and vC . We
obtain a bipartite embedding Γv whose set of vertices is {vA, vB, vC} ∪
Xv and whose set of faces is X∗

v . Euler’s formula thus implies that
(|Xv|+ 3) + |X∗

v | − |EΓv | = 2. Since the faces of Γv are incident with at
least 4 vertices, it is easy to prove that |EΓv | ≥ 2|X∗

v |. The bound for
the planar case follows.

Although the contracting process becomes quite technical, this proof
does generalise to higher genus surfaces.

• Some loops and bridges are troublesome and must be taken care of
separately.

Indeed, let e be a loop of Γ which separates vertices of Γ, and let v be
an internal node of T which is the neighbour of a leaf labelled by e.
Since any curve which isolates e from E \ {e} has to enter the end of e
twice, the node partition λv cannot come from a Θ-structure. The same
kind of problem arises if e is a separating bridge because any curve
isolating e must enter the same face twice.

Let e be a separating loop. If we take a closer look, the bag Xv is {e} so
the bag X∗

v should be {e∗}. For such internal nodes, we could just drop
the condition λv comes from a Θ-structure and take any partition whose
border is contained in e. But this idea does not work. For example,
in figure 2, e is a separating loop whose end is v. The border of the
partition

{
{a}, {b, c, d}, {e}, {f},

}
is {v} but the border of the dual

partition is {F1, F2, F3} whereas the dual of e is the edge {F1, F2}.
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Figure 2: A troublesome loop.

To make this work, we cannot just take any partition whose border is a
subset of e, we have to take a partition whose parts correspond to the
connected components of S2 \ ē.

• In the planar case, for our purpose, any two pretty curve which induce
the same bipartition of EΓ are equivalent. To avoid explicitly considering
equivalent classes of pretty curves, the proof in [Maz04] proceed as
follows. For each face F ∈ FΓ, it put a vertex which is linked to all the
vertices in VΓ which are incident to F . The resulting embedding Π a
radial embedding of Γ. Pretty curves then correspond to cycles of Π.

In this paper, we do not explicitly realise partitions of EΓ with curves
on Σ but with some disjoint connected subsets ΣA, ΣB, ΣC of Σ. As for
curves, there is not a single way to realise a node partition with such
subsets and we use radial embeddings to avoid dealing with cumbersome
equivalent classes.

3.2 Partitioning trees

Given a non-empty subset A ⊆ EH , we define the contracted hypergraph
H/A of H as the hypergraph with vertex set ∪(EH \ A) and with edge set
(EH \ A) ∪ {eA} in which eA = δH(A) is a new hyperedge. Let {A,B} be a
non trivial bipartition of EH and T/A and T/B be respectively partitioning
trees of H/A and H/B. By removing from the disjoint union T/A ∪ T/B the
leaves labelled eA and eB and adding a new edge between their respective
neighbours, we obtain a partitioning tree T which is the merge of T/A and
T/B.

Lemma 2 Let H be a connected hypergraph with at least one edge. Let
{A,B} be a non trivial bipartition of EH , and let T/A and T/B be partitioning
trees of H/A and H/B. Then the merge T of T/A and T/B is such that

tw(T ) = max{tw(T/A), tw(T/B)}.

Proof. Let C ⊆ EH be disjoint from A. We claim that δH(C) and δH/A
(C)

are equal. Indeed, let v ∈ δH/A
(C). By definition, there exists e ∈ EH/A

\ C
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and f ∈ C which contain v. If e 6= eA, then e ∈ EH \ C. Otherwise,
e = eA = δH(A) and there exists e′ ∈ A ⊆ EH \ C which contains v. In
both cases, v ∈ δH(C). Conversely, let v ∈ δH(C). By definition, there
exists e ∈ EH \ C and f ∈ C which contain v. If e /∈ A, then e ∈ EH/A

\ C.
Otherwise v ∈ δH(A) = eA. In both cases v ∈ δH/A

(C).
Let u be an internal node of T . By symmetry, we can suppose that u be-

longs to T/A. The node-partition of u in T/A is λu/A = {E1∪{eA}, E2, . . . , Ep},
and the node-partition of u in T is λu = {E1 ∪ A,E2, . . . , Ep}. The above
claim implies that δH(λu) = δH/A

(λu/A). The result follows. �

Lemma 2 and the following folklore lemma are the key tools to our proof
of Theorem 2 that there always exists a p-tree of optimal width.

Lemma 3 Let H be a hypergraph with at least one edge and no isolated
vertices. For any bipartition {A,B} of EH ,

tw(H) ≤ max{tw(H/A), tw(H/B)}.

If δH({A,B}) belongs to a bag of an optimal tree-decomposition of H, then

tw(H) = max{tw(H/A), tw(H/B)}.

Proof. Let T/A = (T/A, (Xv)v∈VT/A
) and T/B = (T/B, (Yv)v∈VT/B

) be respective

optimal tree-decompositions of H/A and H/B. Let u be a vertex of T/A whose
bag contain e/A and let v be a vertex of T/B whose bag contain e/B. By adding
an edge uv to the disjoint union T/A ∪ T/B, we obtain a tree-decomposition
T of H such that tw(T ) = max{tw(H/A), tw(H/B)}, which proves the first
part of the lemma.

Suppose now that δH({A,B}) belongs to the bag of a vertex v of an
optimal tree-decomposition T = (T, (Zv)v∈VT

) of H. By removing V \ (∪B)
from the bags of T , we obtain a tree-decomposition T/A of H/A such that
tw(T/A) ≤ tw(H). Similarly, we obtain a tree-decomposition T/B of H/B such
that tw(T/B) ≤ tw(H). The second part of the lemma follows. �

3.3 Radial embeddings

Note that, in this subsection, we do not require embedded hypergraphs to be
2-cell but they must be connected and have at least one edge.

Let Λ be an embedding of a hypergraph on a surface Σ. A radial embedding
of Λ is an embedding Π of a bipartite graph on Σ such that:

i. {VΛ, VΠ \ VΛ} is a bipartition of VΠ, and VΠ \ VΛ contains exactly one
vertex per face of Λ;
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Figure 3: A radial embedding of the left example of Figure 1.

ii. each edge of Λ is contained in a face of Π and each face of Π contains
exactly one edge of Λ.

First radial embeddings do exist.

Lemma 4 Every embedding Λ of a connected hypergraph with at least one
edge on a surface Σ admits a radial embedding.

Proof. The set VΛ being fixed, let us first choose one face vertex per face
of Λ to get VΠ \ VΛ. Let (De)e∈EΛ

be pairwise disjoint open discs such that
each De contains e. Such discs can be obtained by “thickening” each edge a
little. We now continuously distort all the discs intersecting a given face so
that they become incident with its corresponding “face vertex”.

The union of the boundaries of the discs De correspond to the drawing of
a bipartite graph Γ that satisfies all the required condition except that some
faces may be empty. Indeed, suppose that F ∈ FΛ is homeomorphic to a disc
and that v ∈ VΛ is incident with F . Let e1 and e2 ∈ EΛ bound an “angle at v
in F”. Between e1 and e2, there is an edge f1 ∈ EΓ which is in the boundary
of De1 and and edge f2 ∈ EΓ which is in the boundary of De2 . The edges f1
and f2 bound an empty face.

As long as Γ contains an empty edge F , we remove any edge incident with
F to merge it with a neighbouring face and thus decrease the total number
of empty faces of Γ. In the end, we obtain a radial embedding Π of Λ. �

If Λ is a 2-cell embedding, then the radial embedding of Λ is unique and
two distinct embeddings share the same radial embedding if and only if they
are dual embeddings. But, as already mentioned, we consider embeddings
which are not 2-cell. This implies that a given embedding may have more
than one radial embedding (see Figure 4).

Let Λ be an embedding of a hypergraph on a surface Σ, and let Π be a
radial embedding of Λ. We say that an edge or a vertex of Π is private to a
set F of faces of Π if all the faces it is incident to belong to F .

9



Figure 4: Two radial embeddings of a hypergraph on the projective plane.

We now define several notions with respect to a radial embedding Π. Let
A be a set of edges of Λ. We denote by AΠ the open set that contains
all the faces of Π corresponding to edges in A together with the edges and
vertices of Π which are private to these faces. We say that A is Π-connected
if AΠ is connected, and that a partition of E is Π-connected if its parts are
Π-connected. Two edges e and f of Λ are Π-adjacent if {e, f}Π is Π-connected.
An edge e of Λ is troublesome if the partition {e, E \ {e}} is not Π-connected.
The components of {e}Π then induce a partition of EΛ \ {e}. Together with
{e}, this partition is the e-partition.

If a vertex of Π is private to a set of faces of Π, then so are all its incident
edges. Thus if we denote by GΠ the graph whose vertices are the edges
of Λ, and in which two vertices are adjacent if their corresponding edges
are Π-adjacent, then Π-connected sets of edges of Λ exactly correspond to
connected subgraphs of GΠ.

Let A be a Π-connected set of edges of Λ. Let us denote Ã and H the
respective abstract counterparts of A and Λ. If we remove the edges and
vertices of Λ which are contained in AΠ and replace them by an edge eA
whose set of ends is δΛ(A) (which is possible because AΠ is connected), we
obtain an embedding of a hypergraph whose abstract counterpart is H/Ã.
We thus denote this new embedding by Λ/A. By removing from Π all the
edges and vertices which are contained in AΠ, we obtains the contracted radial
embedding Π/A of Λ/A.

Remark 1 Let A ⊆ EΛ be Π-connected. By construction of Π/A,

i. a partition {E1∪A,E2, . . . , El} is Π-connected if and only if the partition
{E1 ∪ {eA}, E2, . . . , El} is Π/A-connected;
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ii. edge e is troublesome in ΛA if and only if e is a troublesome edge in Λ
(and thus e belongs to Λ);

iii. moreover, {{e}, E2 ∪ {eA}, E3, . . . , Ep} is the e-partition in Λ/A if and
only if {{e}, E2 ∪ A,E3, . . . , Ep} is the e-partition in Λ.

3.4 P-trees

Let Λ be an embedding of a connected hypergraph with at least one edge on
a surface Σ, and let Π be a radial embedding of Λ. A p-tree of (Λ,Π) is a
partitioning tree T of Λ such that:

i. if a edge-partition λe of T is not Π-connected, then e is incident with a
leaf labelled by a troublesome edge.

ii. if v is an internal node of T whose degree is not 3, then v is a neighbour
of a leaf labelled by a troublesome edge e and λv is the e-partition.

Note that when no troublesome edge exist, all edge partitions are Π-connected
and all internal nodes have degree three.

Remark 1 implies that:

Lemma 5 Let Λ be an embedding of a connected hypergraph with at least
one edge on a surface Σ, let Π be a radial embedding of Λ, and let {A,B} be
a Π-connected bipartition of EΛ. Let T/A and T/B be p-tree of (Λ/A,Π/A) and
(Λ/B,Π/B) respectively. The merged partitioning-tree T of T/A and T/B is a
p-tree of (Λ,Π).

Proof. Let e be an edge of T , and let λe be its edge-partition in T . If e is
the edge linking T/A and T/B, then λe = {A,B} is Π-connected. Otherwise,
by symmetry, we can suppose that, say, e belong to T/A. By Remark 1.i.,
if edge-partition of e in Λ/A is Π/A-connected, then the edge-partition of e
in Λ is Π-connected. Otherwise, say, e is incident with a leaf labelled by
a troublesome edge in Λ/A, and by Remark 1.ii., e is incident with a leaf
labelled by a troublesome edge in Λ. Moreover, Remark 1.iii. directly implies
that the node contition of p-trees is satisfied. �

We can now prove that

Theorem 2 Let Λ be an embedding of a connected hypergraph with at least
one edge on a surface Σ, and let Π be a radial embedding for Λ. There exists
a p-tree T of (Λ,Π) such that tw(T ) = tw(Λ).

11



Proof. We proceed by induction on |VΛ|+ |EΛ|. We say that an embedding
Λ is smaller than another embedding Λ′ if |VΛ| + |EΛ| < |VΛ′ | + |EΛ′ |. Let
T be a tree-decomposition of Λ of optimal width. We may assume that T
has no two neighbouring bags, one of which contains the other — otherwise,
contract the corresponding edge in T and merge the bags.

Suppose that we find a Π-connected bipartition {A,B} of EΛ whose bor-
der is contained in a bag of T , and such that Λ/A and Λ/B are smaller than
Λ. Such a partition is good. By induction, let T/A and T/B be p-trees of
(Λ/A,Π/A) and (Λ/B,Π/B) of optimal width, and let T be the merge of T/A

and T/B. By Lemma 5, T is a p-tree of (Λ,Π). By Lemma 2, its tree-width is
max{tw(T/A), tw(T/B)} = max{tw(Λ/A), tw(Λ/B)}. Since, δΛ({A,B}) is con-
tained in a bag of T , Lemma 3 implies that tw(Λ) = max{tw(Λ/A), tw(Λ/B)},
and thus, tw(T ) = tw(Λ). We thus only have to find good partitions to
complete the inductive step of our proof.

Three cases arise:

• Λ contains a troublesome edge e.

If e contains and separates all the other edges of Λ, then the partitioning
star with one internal node is a p-tree of optimal width. Otherwise,
there exists a set of edges A such that AΠ is a component of (EΛ \{e})Π
and Λ/A is smaller that Λ. Since e, and thus δΛ(A), is contained in least
one bag of T and since Λ/(EΛ\A) is also smaller than Λ then {A,EΛ \A}
is good.

• T contains at least two nodes.

In any tree-decomposition of Λ with no bag being a subset of a neigh-
bouring one, the intersection of two neighbouring bags is a separator of
Λ. There thus exists a separator S which is contained in a bag of T .

Let C be a component of Λ \ S, and let EC be the sets of edges which
are incident with vertices in C. The set EC is Π-connected. Let ΠE1

,
. . . , ΠEp be the components of ΠE\EC

. Since S ′ := δΛ(EC) ⊆ S is a
separator, then there exists a component D of Λ \ S ′ which is not C.
The set of edges which are incident with D is Π-connected, and is thus a
subset of, say, E1. Since the sets ΠEi

(2 ≤ i ≤ p) are incident with ΠEC
,

then µ := {E1, E \ E1} is Π-connected. Since both Λ/E1
and Λ/(EΛ\E1)

contain fewer vertices than Λ and are thus smaller than Λ, and since
δΛ(µ) ⊆ S ′ ⊆ S is contained in a bag of T , then µ is good.

• T is the trivial decomposition of Λ with one node.

If Λ contains at most three edges, then all partitioning trees are p-trees,
so we can suppose that Λ contains at least four edges. Since no edge of
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Λ is troublesome, GΠ contains at least two vertices of degree at least 2.
And since GΠ is connected, it contains at least two disjoint edges which
can be extended in a non trivial bipartition of GΠ in two connected
sets. This partition corresponds to a non trivial Π-connected partition
µ := {A,B} of EΛ. Since Λ/A and Λ/B contain fewer edges than Λ and
are thus smaller than Λ, then µ is good.

�

3.5 P-trees and duality

We now turn to the second step of our proof, that is, the tree-width of a
p-tree and that of its dual cannot differ too much.

Let us recall the strategy outlined in the sketch of the planar case. We
prove that if T is a p-tree, then for every node v of T , the corresponding
bags Xv in T and X∗

v in T ∗ have roughly the same size. To do so, if v is an
internal node of T , then we construct a 2-cell embedding Λ′ with vertex set
Xv and with face set X∗

v . We then apply Euler’s formula on the graph of
the incidence relation between vertices and edges of Λ′ to obtain our bound.
It is easy to define an embedding with vertex set Xv. Indeed, if the node
partition of v is {A,B,C}, then ((Λ/A)/B)/C will do. The problem is that
this embedding is not 2-cell, and that its face set need not be X∗

v . We thus
have to be more careful when contracting to obtain such an embedding. The
only problem is that we may have to consider more than 3 subsets of Σ to
realise λv. For example, suppose that Σ is the torus and that AΠ is a cylinder.
We may be forced to replace AΠ by 2 discs that fill the holes of Σ \ AΠ and
consider both discs in our realisation of λv. This increases the number of
parts of Σ which we must consider and could cause problems when we try to
bound |X∗

v |. But fortunately this always comes from a decrease in the genus
of the surface and the required inequality remains true.

If µ is a partition of EΛ, then we denote by δ∗Λ(µ) the set of faces of Λ
which are incident with edges in at least two parts of µ.

Lemma 6 Let Λ be a 2-cell embedding of a hypergraph on a surface Σ with
at least three edges, let Π be a radial embedding of Λ, and let µ = {A,B,C}
be a Π-connected partition of EΛ.

There exists a 2-cell embedding Λ′ on a surface Σ′, and a partition µ′ =
{A′, B′, C ′} of EΛ′ such that

i. VΛ′ = δΛ(µ), FΛ′ = δ∗Λ(µ) = δ∗Λ′(µ′);

13



ii. kΣ′ ≤ kΣ + 3− |EΛ′ |.

Proof. Since AΠ, BΠ and CΠ are disjoint, we can work independently in
each one of them. We thus start with AΠ.

First we claim that we may assume that Λ ∩ AΠ is a connected subset
of AΠ. Since A is Π-connected, it corresponds to a connected subgraph of
GΠ. If all the pairs (e, f) ∈ A2 of Π-connected edges are such that e ∪ f ∩AΠ

is connected, then we are done. So let (e, f) ∈ A2 Π-connected edges with
e ∪ f ∩ AΠ disconnected. This can happen if e and f are incident with a
vertex v in δΛ(A). In this case, let D be a small disc around v. We add
a new vertex ve in e ∩ D, a new vertex vf in f ∩ D, and an edge vevf in
D ∩ AΠ. When doing so, we split a face of Λ which may belong to δ∗Λ(A) but
the new triangle face vvevf is only incident with edges in ΠA, and the other
face belongs to δ∗Λ(A) if and only if the original face did. The claim follows.

Let Γ be the incidence embedding of Λ. Since Λ ∩ AΠ is connected, we
can contract a spanning tree of Γ ∩ AΠ so that it contains a single vertex vA
linked to δΛ(A) together with some loops. We then remove all the loops. Let
e be such a loop. Two cases arise:

• The loop e bounds one face F whose boundary is vAP1vAevAP2. We
remove F ∪ e from Σ and add a disc whose boundary is vAP1vAP2. If
F ∪ e was a disc, then e would split this disc in two parts which is not
the case. The genus of the new surface is thus lower than the genus of
the previous one.

• The loop e bounds two faces F1 and F2 whose respective boundaries are
vAP1vAe and vAP2vAe. Note that e ∪ {vA} may bound an empty disc
in Σ in which case P1 or P2 is empty. If either F1 or F2 does not belong
to δ∗Λ(A), then we remove e and merge F1 and F2. Otherwise, e bounds
no disc. In this case, we remove e from Λ and cut Σ along e ∪ {vA}.
More precisely, we remove e ∪ {vA} from Σ and take the closure of the
resulting topological space. We thus obtain a surface of lower genus and
whose boundary is made of two holes v1Ae

1 and v2Ae
2. We then fill the

holes with two discs. Note that in the process, vA has been split in v1A
and v2A but, as already mentioned the genus of the surface has dropped.

In the end, we have removed all the faces which were only incident with
edges in A, and kept all the others. We have replaced A by, say, p edges
and done some surgery on Σ to keep the embedding 2-cell and the surgery
resulted in a decrease of genus of at least p− 1. The lemma follows. �

We are now ready to prove:
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Theorem 3 Let Λ be a 2-cell embedding of a hypergraph with at least one
edge on a surface Σ and let Π be a radial embedding of Λ.

For any p-tree T of (Λ,Π),

tw(T ∗) ≤ max{tw(T ) + 1 + kΣ, αΛ∗ − 1}.

Proof. Let v be a vertex of T , let Xv be its bag in T and let X∗
v be

its bag in T ∗. If v is a leaf labelled by an edge e, then X∗
v = e∗ and

|X∗
v | − 1 ≤ max{tw(T ) + 1 + kΣ, αΛ∗ − 1}. If v is the neighbour of a leaf

labelled by a troublesome edge e, then the fact that λv is the e-partition
implies that X∗

v ⊆ e∗ and |X∗
v | − 1 ≤ max{tw(T ) + 1 + kΣ, αΛ∗ − 1}.

We can thus suppose that v is an internal node of T whose node-partition
λv = {A,B,C} is Π-connected. We then have Xv = δΛ(λv), and X∗

v = δ∗Λ(λv).
Let Λ′ be given by Lemma 6 with µ = λv. Let Γ be the incidence graph of Λ′.
We claim that any face of Γ is incident with at least 4 edges. This follows
from the faces that Γ is bipartite, and that no face of Γ is incident with only
one part A, B and C. Let F2k denotes the set of faces of length 2k. If an
edge is incident with only one face F , then it counts twice in the length of F .
We have 2|EΓ| = 4|F4|+ 6|F6|+ · · · ≥ 4|FΓ|, and thus since the face set of Γ
is exactly δ∗Λ(λv) = X∗

v ,
|EΓ| ≥ 2|X∗

v |. (1)

Since Γ has |X∗
v | faces, |Xv|+ |EΛ′ | vertices, and since kΣ′ ≤ kΣ+3−|EΛ′ |,

by replacing these in Euler’s formula, we obtain:

|Xv|+ |EΛ′ | − |EΓ|+ |X∗
v | ≥ 2− kΣ − 3 + |EΛ′ |. (2)

Adding (1) and (2), we get

|Xv|+ 1 + kΣ ≥ |X∗
v |

which proves that |X∗
v | − 1 ≤ max{tw(T ) + 1 + kΣ, αΛ∗ − 1}, and thus

tw(T ∗) ≤ max{tw(T ) + 1 + kΣ, αΛ∗ − 1}. �

Theorem 1, which we restate below, is a direct corollary of Theorem 2
and Theorem 3.

Theorem 1 For any 2-cell embedding of a hypergraph Λ on a surface Σ,

tw(Λ∗) ≤ max{tw(Λ) + 1 + kΣ, αΛ∗ − 1}.
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4 Examples of graphs attaining the bound

In Theorem 1, the αΛ∗ − 1 part is clearly necessary. Indeed, let Λ∗ be the
plane embedding of the hypergraph with one edge that contains k vertices.
The dual Λ contains exactly one vertex, and thus tw(Λ) = 0 and k − 1 =
tw(Λ∗) = α(Λ∗)− 1. We now focus on embedding of graphs.

A graph G is minimally embeddable on a surface Σ if there exists an
embedding of G in Σ and for every embedding of G on a surface Σ′, then
kΣ′ ≥ kΣ. We also say that Γ is a minimum genus embedding on Σ. In this
section, we prove the following theorem:

Theorem 4 For any surface Σ, there exists a minimum genus embedding Γ
on Σ such that tw(Γ) = tw(Γ∗) + 1 + kΣ.

To do so, we need some more definitions. A bramble of G is a family B of
subsets of vertices of G such that for every element X ∈ B, G[X] is connected,
and for all elements X, Y ∈ B, G[X ∪ Y ] is connected (we say that X and Y
touch). The order of a bramble B is the minimum size of a set X ⊆ VG which
intersects all the elements of B. We use brambles to compute tree-width with
the following theorem:

Theorem 5 ([ST93]) The maximum order of a bramble of G is tw(G) + 1.

Let Γ be an embedding of a graph on a surface Σ which is not the sphere,
and let θ > 0 be an integer. We say that Γ is θ-representative if for every
µ ⊆ Σ homeomorphic to a circle, if γ is not the boundary of some closed
disc in Σ (we call such µ a non-contractile noose) then |γ ∩ Γ| ≥ θ. We
use representativity to certify that graphs are minimally embedded with the
following theorem which is an easy corollary of a theorem in [ST96].

Theorem 6 Let Γ be a θ-representative embedding of a graph on a surface Σ
which is not the sphere. If θ ≥ 100kΣ then Γ is a minimum genus embedding.

4.1 Todinca graphs and their tree-widths

Let p ≥ 1 be an integer. Let A, B and C be three 2p× 2p grids. Let a1, . . . ,
ap, a

′
p, . . . , a

′
1, be the top row of A. Let b1, . . . , bp, b

′
p, . . . , b′1 be the top

row of B. Let c1, . . . , cp, c
′
p, . . . , c

′
1 be the top row of C. A Todinca graph4

of order p is any graph G obtained by bijectively linking the edges between
a1, . . . , ap and b′1, . . . , b

′
p, between b1, . . . , bp and c′1, . . . , c

′
p and between c1,

. . . , cp and a′1, . . . , ap. As an example, in Figure 5, the left graph is obtained

4The name come from Ioan Todinca who first showed us the plane graph of Figure 5 as
an example of graph whose tree-width + 1 equals 3/2 its branch-width.
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Figure 5: Two Todinca graphs.

by adding the edges aib
′
i, bic

′
i and cia

′
i, while in the right graph, we link bi to

c′p+1−i.

Lemma 7 The tree-width of every Todinca graph G of order p is at least
3p− 1.

Proof. By Theorem 5, we only have to produce a bramble of order 3p to
prove our lemma. To do so, we give some definitions.

The edges added to the grids A, B and C link their columns and thus
define columns of G. Depending on which columns were linked, we obtain
AB-columns, BC-columns and CA-columns. We also call the respective rows
of A, B and C, the A-rows, the B-rows and the C-rows of G. Together, they
are the rows of G (see Figure 6). The union of an A-row and an AB-column
is an A-cross. In the same spirit, we define B-crosses and C-crosses, and we
claim that the set C of all these crosses is a bramble of G of order 3p.

They clearly are connected, so let us prove that any two crosses X and Y
touch. By symmetry, we can suppose that X is an A-cross. Since X contains
an A-row, and since A-rows intersect all AB- and all CA-columns, if Y is
an A- or a C-cross, then X and Y touch. If Y is a B-cross, then it contains
a B-row which intersects all AB-columns. The crosses X and Y therefore
touch, which finishes our proof that C is a bramble.

Since there are exactly 3p columns, the order of C is at most 3p. Let us
prove that no set S of size 3p− 1 can intersect all the crosses. Obviously, the
set S ⊆ VG misses at least one column. We split this proof in two cases

• There exists an AB-column X, a BC-column Y and a CA-column Z
avoiding S. Since G contains 6p rows, there exists a row L avoiding S.
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Figure 6: The rows and the columns of a Todinca graph.

Depending on what kind of row L is, one of L ∪X, L ∪ Y and L ∪ Z is
a cross of G avoiding S.

• There exists, by symmetry, an AB-column C avoiding S, and no BC-
column avoiding S. Since there are at least p vertices of S on the
BC-columns, there can only be 2p− 1 vertices from S on the grid A.
There thus exists an A-row L avoiding S. The cross L ∪ C avoids S.

�

We also need the following folklore lemma (see Figure 7).

Lemma 8 An n×m grid G has tree-width at most min(n,m), and G admits
a path-decomposition attaining this bound with a leaf containing one of its
shortest sides.

Figure 7: A tree-decomposition of the 4× 5 grid of width 4.

As a matter of fact, the tree-width of an n×m grid G is exactly min(n,m)
(see [BGK08]).

Lemma 9 The tree-width of every Todinca graph G of order p is at most
3p− 1.
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Proof. To prove or lemma, we give a tree-decomposition of G of width 3p−1.
Let A, B and C be the three 2p× 2p grids of G, and let TA, TB and TC be
path decompositions of A, B and C given by Lemma 8. Let vA, vB and vC
be the vertices of TA, TB and TC whose bag respectively contain the top rows
of A, B and C. Let u, uA, uB and uC be vertices whose bags respectively
are {a1, . . . , ap, b1, . . . , bp, c1, . . . , cp}, {a1, . . . , ap, a

′
p, . . . , a′1, b1, . . . , bp},

{b1, . . . , bp, b
′
p, . . . , b′1, c1, . . . , cp} and {c1, . . . , cp, c

′
p, . . . , c′1, a1, . . . , ap}.

The labelled tree T obtained by linking u to uA, uB and uC , and adding the
edges uAvA, uBvB and uCvC is a tree-decomposition of G of width 3p− 1. �

Lemmata 7 and 9 clearly imply that

Lemma 10 The tree-width of every Todinca graph of order p is 3p− 1.

4.2 Some minimally embeddable Todinca graphs

We now define special Todinca graphs. We first define three gadgets (see
Figure 8) that we use to link the grids of our graphs. Let P and Q be two

l vertices

(a) An l-ladder
l vertices l verticesl vertices 2l vertices

(b) An l-handle

l vertices l verticesl vertices

(c) An l-crosscap

Figure 8: linking gadgets

paths of length k, and let p1, . . . , pk and q1, . . . , qk be their respective vertices.
If we link each pi with qi (1 ≤ i ≤ k), we obtain a k-ladder. If k = 3l and we
link pi with qi (1 ≤ i ≤ l and 2l+1 ≤ i ≤ 3l) and pl+i with q2l+1−i (1 ≤ i ≤ l),
then we obtain an l-crosscap. If k = 5l and we link pi with qi (1 ≤ i ≤ l and
4l + 1 ≤ i ≤ 5l), pl+i to q2l+i (1 ≤ i ≤ 2l) and p3l+i to ql+i (1 ≤ i ≤ l), then
we obtain an l-handle.

Let k > 0 and p > 1 be integers. The graph Gk,p is the Todinca graph of
order 5kp such that the grid A is linked to the grids B and C by a 5kp-ladder,
and the grids B and C are linked k p-handles. The graph G̃k,p is the Todinca
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graph of order 3kp defined in the same way except that we use p-crosscaps
instead of p-handles.

We now define an embedding Γk,p of Gk,p in Σk as follows. We start by
embedding the three grids and the 5kp-ladders on the sphere. We also embed
the all the edges of the handles except the edges p3l+iql+i (1 ≤ i ≤ l). Then
for each p-handle, we add a handle to the surface to embed the remaining p
edges. We also define an embedding Γ̃k,p of G̃k,p in Σ̃k in a similar way except
that for each p-crosscap, we add a crosscap to the surface so that the edges
pl+iq2l+1−i (1 ≤ i ≤ l) do not cross.

We now want to prove that for p large enough, these embeddings are
minimal genus embeddings. To do so, we want to apply Theorem 6. We
thus have to prove that for p large enough, these embeddings have large
representativity. More precisely,

Lemma 11 The embeddings Γk,p and Γ̃k,p are p-representative.

Proof. The result for Γk,p and Γ̃k,p are respectively direct consequences of
Theorems 3.5 and 3.3 of [RS96], but very few people seem to have read the
graph minors paper so we give a direct proof which is, in spirit, very similar
to the proofs by Robertson and Seymour.

We start with Γk,p. As already said, to embed Gk,p on Σk, we start by
embedding a subgraph of Gk,p on the sphere, then for each handle gadget
Pi (1 ≤ ieqk), we add a handle to embed the edges p3l+iql+i (1 ≤ i ≤ l). To
do so, we remove two faces fi and gi of our partial embedding and we “sew”
a cylinder Hi to the border of the holes. It is easy to find p vertex disjoint
concentric cycle ci1, . . . , c

i
p enclosing fi and p vertex disjoint concentric cycles

di1, . . . , d
i
p enclosing gi such that all the circles are pairwise disjoint (see left

part of Figure 9). The component of Σk \
(⋃k

i=1(c
i
p ∪ dip)

)
which is incident

fi

gi
fi

Figure 9: Enclosing concentric cycles around a handle or a crosscap.

with all the cycles cip and dip is the outside region. Let µ be a non-contractile
noose on Σk. We split our proof in the following three sub-cases.
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• Suppose that µ intersects both the outside region and the handle Hi.
The curve µ has to cross all the cycles ci1, . . . , c

i
p or all the cycles d

i
1, . . . ,

dip to reach the outside region, which implies that |µ ∩ Γk,p| ≥ p.

• Suppose that µ intersects a handle Hi. Then µ is a subset of the
component H ′

i of Σk \ (c
i
p ∪ dip) which contains Hi. It is easy to find p

vertex distinct paths Q1, . . . , Qp in Γk,p which link vertices in cip and
vertices in dip and whose interior is in H ′

i (see left part of Figure 10).

c
i
p d

i
p c

i
p

Figure 10: Paths across a handle or a crosscap.

We claim that µ intersects all the paths Qi. Indeed otherwise µ is a
subset of H ′

i \Qj for some 1 ≤ j ≤ p. But H ′
i \Qj is an open disc which

implies that µ is contractible, a contradiction. This thus implies that
|µ ∩ Γk,p| ≥ p.

• Suppose that µ intersects the outside region. Then µ is a subset of
Σ′ = Σk \

(⋃k
i=1 Hi

)
. Since Σ′ is a sphere with holes bounded by the

cycles ci1 and di1, then µ separates c11 and ci1 or di1 in Σ′. In both cases,
it is easy to find p vertex disjoint paths in Γk,p between c11 and ci1 or di1
whose interior are in Σ′ (see upper part of Figure 11). Since µ has to
cut these paths, |µ ∩ Γk,p| ≥ p.

In all cases, |µ ∩ Γk,p| ≥ p which finishes our proof that the embedding of
Γk,p is p-representative.

The proof that Γ̃k,p if p-representative is very similar. We first enclose
each crosscap by p disjoint cycles, and the we define an outside region. We
then prove that any noose µ which intersects both the outside and a crosscap
meets the embedding at least p times. If µ intersects a crosscap, it is enclosed
by the outer cycle c enclosing the crosscap. We can easily find p disjoint
paths each linking two points of c as in the right part of Figure 10, and µ
has to meet all those paths otherwise it is contractible. If µ intersects the
outer region, then it must separate some crosscaps and since it is easy to find
p disjoint path linking the inner cycles enclosing these crosscaps, µ intersects
the embedding at least p times. �
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Figure 11: Paths linking handles or crosscaps in the outside region.

As a consequence of Lemma 11 and Theorem 6, we have

Lemma 12 Γk,100k and Γ̃k,100k are minimum genus embeddings respectively

in Σk and Σ̃k.

4.3 Dual of some Todinca graphs

Lemma 13 The tree-width of Γ∗
k,p is at most 15kp− 2− k.

Proof. The embedding Γ∗
k,p is made of three (10kp− 1)× (10kp− 1) grids

A, B and C, two paths of 5kp− 1 vertices PAB and PAC , a graph GBC which
corresponds to the dual of the gadgets and two vertices vin and vout. The
path PAB is adjacent to the grids A and B, the path PAC is adjacent to the
grids A and C, and the graph GBC is adjacent to the grids B and C. The
vertex vout is adjacent to the vertices of the bottom rows of A, B and C, to
the vertices of the side columns of A, B and C and to the “outer vertex” of
PAB, PAC and GBC . The vertex vin is adjacent to the middle vertex of the
top rows of A, B, C and to the “inner vertex” of PAB, PAC and GBC (see
Figure 12).

Γk,p is an embedding of a Todinca graph of order l = 5kp in a surface
of Euler genus 2k. It thus has 12l2 vertices and 24l2 − 9l edges. By Euler’s
formula, it thus has 12l2−9l+2−2k faces. This number is also the number of
vertices of Γ∗

k,p. There are 3(2l − 1)2 vertices in the grids, 2(l − 1) vertices on
PAB and PAC and the two vertices vin and vout. This leaves l− 2k− 1 gadget
vertices on GBC . Since the tree-width of an embedding drops by at most one
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Figure 12: The embedding Γ∗
k,p − vout.

when removing a single vertex, we only have to prove that the tree-width of
Γ∗
k,p − vout is 15kp− 3− 2k so let us remove the vertex vout from Γ∗

k,p.
The grid A together with its neighbourhood is a 2l× (2l− 1) grid. We can

thus choose a path decomposition TA of width 2l− 1 of this grid and in which
a vertex vA contains the neighbourhood of A. Because of the gadgets, the
links between the grid B with its neighbourhood is more complex. Let v1, . . . ,
v2l−1 be the vertices of the top row of B which link B to the remaining of Γ∗

k,p.
The vertices v1, . . . , vl are clearly linked to PAB ∪ {vin} in an l-ladder. Since
the gadget sequence begins with a p-ladder, there is a set S of p− 1 gadget
vertices such that v1, . . . , vl+p−1 is linked to PAB ∪ {vin} ∪ S in a l + p − 1
ladder. The remaining gadget vertices are linked to the vertices vl+p, . . . ,
v2l−1. Using the idea behind the path decomposition of Figure 7, we define a
path decomposition TB of width 3l−p−2k−2 of B and its neighbourhood in
which a vertex vB contains PAB, vin, the gadget vertices and vl+p, . . . , v2l−1.
We can similarly define a tree-decomposition TC of C and its neighbourhood
in which a vertex vC contains the neighbourhood of C. Let u be a vertex
whose bag contains PAB, PAC vin and the gadget vertices, and let us add the
edges uvA, uvB and uvC . This defines a tree-decomposition of Γ∗

k,p−vout. The
bag of u is its biggest one and it contains 3l − 2− 2k vertices which proves
that the tree-width of Γ∗

k,p is at most 3l − 2k − 2 = 15kp− 2− 2k. �

Using a similar proof, we also obtain:

Lemma 14 The tree-width of Γ̃∗
k,p is at most 9kp− 2− k.

We are now ready to prove Theorem 4.
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Theorem 4 For any surface Σ, there exists a minimum genus embedding Γ
on Σ such that tw(Γ) = tw(Γ∗) + 1 + kΣ.

Proof. In [RS84], Robertson and Seymour already gave examples of planar
embeddings matching our bound. So let us consider higher genus surfaces.

Γk,100k is an embedding of a Todinca graph of order 500k2. By Lemma 10,
its tree-width is 1500k2−1. By Lemma 13, the tree-width of Γ∗

k,100k is at most
1500k2 − 2− 2k. Since Γk,100k is a an embedding in Σk, Theorem 1 implies
that tw(Γ∗

k,100k) = 1500k2 − 2 − 2k and tw(Γk,100k) − tw(Γ∗
k,100k) = 1 + 2k.

Since, by Lemma 12, Γk,100k is a minimum genus embedding in Σk, Γk,100k and
Γ∗
k,100k indeed are examples of embeddings matching the bound of Theorem 1

for the surface Σk.
Similarly, Γ̃k,100k and Γ̃∗

k,100k are examples of embeddings matching the

bound of Theorem 1 for the surface Σ̃k. �

5 Conclusion and open questions

In this paper, we show that tree-width is a robust parameter considering
surface duality. Indeed, our main proof says more than just “the difference
between the tree-width of Λ and that of Λ∗ is small”. Our proof says that
there always exists a decomposition which is optimal for Λ and very good
for Λ∗. This leads to a natural question: For any embedding Λ, does there
always exists a p-tree T such that tw(T ) = tw(Λ) and tw(T ∗) = tw(Λ∗)? To
our knowledge, the question is open, even for plane embeddings of graphs.
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[BMT03] Vincent Bouchitté, Frédéric Mazoit, and Ioan Todinca. Chordal
embeddings of planar graphs.Discrete Mathematics, 273:85–102,
2003.

24



[Cou90] Bruno Courcelle.The monadic second-order logic of graphs I: recog-
nizable sets of finite graphs.Information and Computation, 85(1):12–
75, 1990.

[Hal76] Rudolf Halin.S-functions for graphs.Journal of Geometry, 8:171–
186, 1976.

[Lap96] Denis Lapoire. Treewidth and duality for planar hypergraphs.
Manuscript http://www.labri.fr/perso/lapoire/papers/

dual_planar_treewidth.ps, 1996.
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