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Tree-width of hypergraphs and surface duality

Frédéric Mazoit1

LaBRI Université Bordeaux,

351 cours de la Libération F-33405 Talence cedex, France

Abstract

In Graph Minors III, Robertson and Seymour write:”It seems that the
tree-width of a planar graph and the tree-width of its geometric dual are
approximately equal — indeed, we have convinced ourselves that they differ
by at most one.” They never gave a proof of this. In this paper, we prove
that given a hypergraph H on a surface of Euler genus k, the tree-width of
H∗ is at most the maximum of tw(H) + 1 + k and the maximum size of a
hyperedge of H∗ minus one.

Keywords: Tree-width, duality, surface.

1 Introduction

Tree-width is a graph parameter that was first defined by Halin [Hal76], and
which has been rediscovered many times (see [RS84, AP89]). In [AP89], Arn-
borg and Proskurovski introduced a general framework to solve NP-complete
problems efficiently when restricted to graphs of bounded tree-width. Cour-
celle [Cou90] extended this framework by showing that any problem express-
ible in a certain logic on graph can be solved efficiently for a class of graph
of bounded tree-width. Tree-width thus seems to be a good “complexity
measure” for graphs.

Given a graph G embedded in a surface, it is easy to obtain the dual
embedding G∗: just put a vertex in each face and for every edge e separating
the faces f and g, add a dual edge fg. One could thus expect that G and G∗

have the same “complexity”, and indeed in [RS84], Robertson and Seymour
claimed that for a plane graph G, tw(G) and tw(G∗) differ by at most one.
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In an unpublished paper, Lapoire [Lap96] gave a more general statement
about hypergraphs on orientable surfaces. Nevertheless, his proof was rather
long and technical. Later, Bouchitté et al. and Mazoit [BMT03, Maz04] gave
easier proofs for plane graphs. Here we give a proof of the following theorem:

Theorem 1 For any 2-cell embedding H of a hypergraph on a surface Σ,

tw(H∗) ≤ max{tw(H) + 1 + kΣ, αH∗ − 1}.

in which αH∗ is the maximum size of an edge of H∗ and kΣ is the Euler genus
of Σ.

We will of course define formally the required notions but “hand waving”,
the proof is as follows. We first define p-trees which can be seen as a restricted
class of tree-decomposition. We then prove that

i. there always exists a p-tree T such that tw(T ) = tw(H);

ii. for any p-tree T , tw(T ∗) ≤ max{tw(T ) + 1 + kΣ, αH∗ − 1}.

In section 2, we give the basic definitions needed to properly state the
theorem. Section 3 is devoted to the first step of the proof and we prove the
second one in section 4.

2 Tree-width and embedded hypergraphs

2.1 Hypergraphs and partitioning trees

If X is a graph or hypergraph, we denote by VX its vertex set, by EX its
edge or hyperedge set, and αX the maximum size of an edge of X . Let H be
a fixed hypergraph. A tree-decomposition of H is a pair T = (T, (Xv)v∈VT

)
with T a tree and (Xv)v∈VT

a family of subsets of vertices of H called bags

with:

i.
⋃

v∈VT
Xv = VH ;

ii. ∀e ∈ EH , ∃v ∈ VT with e ⊆ Xv;

iii. ∀x, y, z ∈ VT with y on the path from x to z, Xx ∩Xz ⊆ Xy.
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The width of T is tw(T ) = max{|Xt| − 1 ; t ∈ VT} and the tree-width tw(H)
of H is the minimum width of one of its tree-decompositions.

In this paper, we only consider partitions that do not contain the empty
set. The border of a partition µ of EH is the set of vertices δH(µ) which are
incident with edges in at least two parts of µ, and the border of A ⊆ EH is
δH(A) = δH({A,EH \A}). A partitioning tree of H is a tree T whose leaves
are labelled by edges of H in a bijective way. Removing an internal node
v of T results in a partition of the leaves of T and thus in a node-partition

λv of EH . It is straightforward to check that labelling each internal node
v of T with δH(λv) turns T into a tree-decomposition. The tree-width of a
partitioning tree is its tree-width, seen as a tree-decomposition.

Given a non-empty subset A ⊆ EH , we define the contracted hypergraph

H/A of H as the hypergraph with vertex set ∪(EH \ A) and with edge set
(EH \ A) ∪ {eA} in which eA = δH(A) is a new hyperedge. Let {A,B} be a
bipartition of EH and T/A and T/B be respectively partitioning trees of H/A

and H/B. By removing from the disjoint union T/A ∪ T/B the leaves labelled
eA and eB and adding a new edge between their respective neighbours, we
obtain a partitioning tree T which is the merge of T/A and T/B.

Lemma 1 Let H be an hypergraph, let {A,B} be a bipartition of EH , and

let T/A and T/B be partitioning trees of H/A and H/B. Then the merge T of

T/A and T/B is such that

tw(T ) = max{tw(T/A), tw(T/B)}.

Proof. Let C ⊆ EH be disjoint from A. We claim that δH(C) and δH/A
(C)

are equal.
Indeed, let v ∈ δH/A

(C). By definition, there exists e ∈ EH/A
\C and f ∈

C which contain v. If e 6= eA, then e ∈ EH \ C. Otherwise, e = eA = δH(A)
and there exists e′ ∈ A ⊆ EH \C which contains v. In both cases, v ∈ δH(C).
Conversely, let v ∈ δH(C). By definition, there exists e ∈ EH \C and f ∈ C
which contain v. If e /∈ A, then e ∈ EH/A

\C. Otherwise v ∈ δH(A) = eA. In
both cases v ∈ δH/A

(C).

Let u be an internal node of T . By symmetry, we can suppose that u be-
longs to T/A. In T/A, u corresponds to a partition λ/A = {E1∪{eA}, E2, . . . , Ep}
of EH/A

and in T/A, and to the partition λ = {E1 ∪ A,E2, . . . , Ep} of EH

in T . The above claim implies that δH(λ) = δH/A
(λ/A), and thus that

tw(T ) = max{tw(T/A), tw(T/B)}.
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Lemma 1 and the following folklore lemma are the key tools to our proof
of Theorem 2 that there always exists a p-tree of optimal width.

Lemma 2 Let H be an hypergraph. For any bipartition {A,B} of EH ,

tw(H) ≤ max{tw(H/A), tw(H/B)}.

If δH({A,B}) belongs to a bag of an optimal tree-decomposition, then

tw(H) = max{tw(H/A), tw(H/B)}.

Proof. Let T/A = (T/A, (Xv)v∈VT/A
) and T/B = (T/B, (Yv)v∈VT/B

) be respec-

tive optimal tree-decompositions of H/A and H/B. Let u ∈ VT/A
and v ∈ VT/B

whose bags respectively contain eA and eB. By adding an edge uv to the
disjoint union T/A ∪ T/B, we obtain a tree-decomposition T of H such that
tw(T ) = max{tw(H/A), tw(H/B)}, which proves the first part of the lemma.

Suppose now that δH({A,B}) belongs to the bag of a vertex v of an
optimal tree-decomposition T = (T, (Zv)v∈VT

) of H . By removing V \ (∪B)
from the bags of T , we obtain a tree-decomposition T/A of H/A such that
tw(T/A) ≤ tw(H). Similarly, we obtain a tree-decomposition T/B of H/B

such that tw(T/B) ≤ tw(H). The second part of the lemma follows.

2.2 Embedded hypergraphs

A surface is a connected compact 2-manyfold without boundaries. Ori-
ented surfaces can be obtained by adding “handles” to the sphere, and non-
orientable surfaces, by adding “crosscaps” to the sphere. The Euler genus

kΣ of a surface Σ (or just genus) is twice the number of handles added if Σ
is orientable and kΣ is the number of crosscaps added otherwise. We denote
by X the closure of a subset X of Σ. We say that two disjoint subsets X
and Y of Σ are incident if X ∩ Y or Y ∩X is non empty. Since we consider
finite graphs and hypergraphs, we can assume that all the subsets of surfaces
that we consider have enough regularity. This implies that connectivity and
arc-connectivity coincide.

An embedding of a graph G on a surface Σ is a drawing G on Σ, i.e. each
vertex is an element of Σ, each edge is an open curve between two vertices,
and edges are pairwise disjoint. A bipartite embedded graph G with biparti-
tion V ∪ V ′ can be seen as the incidence graph of an hypergraph. For each
ve ∈ V ′, we merge ve and its incident edges into an edge e and call ve its
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centre. The edges of G which are incident to ve are the half edges of e. Let
E be the set of all edges. An embedded hypergraph on Σ is any such pair
H = (V,E). We denote by GH the embedded incidence graph of an embed-
ded hypergraph H , and we only consider embedded graph and hypergraphs
up to homeomorphisms. Note that embedded graphs also are embedded hy-
pergraphs, and since embedded graphs and embedded hypergraphs naturally
have abstract counterparts, we apply graph theoretic notions to them with-
out further notice. For example, we may consider an edge e as a subset of
Σ or as a set of vertices. We also consider embedded hypergraphs on Σ as
subsets of Σ.

A face of a hypergraph H is a component of Σ \ H . We denote by FH

the set of faces of H . An embedded hypergraph is 2-cell if all its faces are
homeomorphic to open discs. Let G be a 2-cell embedding of a graph in a
surface Σ. Euler’s formula links the number of vertices, edges and faces of G
and the genus of the surface:

|VG| − |EG|+ |FG| = 2− kΣ.

We now let H be a 2-cell embedding of a hypergraph in a surface Σ. The
dual of H is the hypergraph H∗ such that:

i. Every vertex of H∗ belongs to a face of H and every face of H contains
exactly one vertex of H∗;

ii. For every edge e of H , there exists a dual edge e∗ sharing its centre, and
every edge of H∗ corresponds to an edge of H .

iii. For every edge e of H with centre ve, the half edges around e and the
half edges around e∗ alternate in their cyclic order.

Note that the construction does not need H to be 2-cell but if not, H∗ is not
unique and (H∗)∗ need not be H . If µ is a partition of EH , then δ∗H(µ) if the
set of faces of H which are incident with edges in at least two parts of µ.

Given a partitioning tree T of H , the dual partitioning tree is the parti-
tioning tree T ∗ of H∗ obtained by replacing in T each label e by the dual
edge e∗.
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3 P-trees

In this section, we define p-trees which are special partitioning trees, and
we prove that, for any embedded hypergraph H , there always exists a p-tree
whose tree-width is tw(H). Note that in this section, the hypergraphs are
not required to be 2-cell but they must be connected and have at least one
edge.

Let H be an embedding of a hypergraph in a surface Σ. A radial graph

of H is an embedding Π of a bipartite graph on Σ such that:

i. {VH , VΠ \ VH} is a bipartition of Π, and VΠ \ VH contains exactly one
vertex per face of H ;

ii. each edge of H is contained in a face of Π and each face of Π contains
exactly one edge of H .

First radial graphs do exist.

Lemma 3 Every embedding H of a connected hypergraph with at least one

edge on a surface Σ admits a radial graph.

Proof. The set VH being fixed, let us first choose one face vertex per face
of H to get VΠ \ VH .

Let (De)e∈EH
be pairwise disjoint open discs such that each De contains

e. Such discs can be obtained by “thickening” each edge a little. We now
continuously distort all the discs intersecting a given face so that they become
incident with it corresponding “face vertex”.

At this time, the union of the borders of the discs De correspond to the
drawing of a bipartite graph that satisfies all the required condition except
that some faces may be empty. If such a face exists, then we just remove one
of its incident edge to merge it with an adjacent face, and thus decreasing
the total number of empty faces. In the end, we obtain a radial graph Π of
H .

Let Π be a radial graph of H . We say that an edge or a vertex of Π is
private to a set F of faces of Π if all the faces it is incident to belong to F .

We now define several notions which all depend on Π. They thus are
defined with respect to a radial graph. Let A be a set of edges of H . We
denote by ΠA the open set that contains all the faces of Π corresponding
edges in A, together with the edges and vertices of Π which are private to
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these faces. We say that A is Π-connected if ΠA is connected, and that a
partition of E is Π-connected if its parts are Π-connected. Two edges e and f
of H are Π-adjacent if Π{e,f} is Π-conencted. An edge e of H is troublesome

is the partition {e, E \ {e}} is not Π-connected.
If a vertex x of Π is private to a set of faces of Π, then so are all its incident

edges. Thus if we denote by GΠ the graph whose vertices are the faces of
Π, and in which two faces are adjacent if they are incident to a common
edge, then Π-connected sets of edges of H exactly correspond to connected
subgraphs of GΠ. Note that two edges e and f are Π-adjecent if and only if
their corresponding faces in Π are adjacent in GΠ.

Let A be a Π-connected set of edges of H . Let us denote Ã and H̃ the
respective abstract counterparts of A and H . If we remove the part of H
which is contained in ΠA and replace it by an edge eA whose set of ends is
δH(A) (which is possible because ΠA is connected), we obtain a hypergraph

embedded on Σ whose abstract counterpart is H̃/Ã. We thus denote this new
embedding by H/A. By removing from Π all the edges and vertices which
are contained in ΠA, we obtains the contracted radial graph Π/A of H/A. Any
hypergraph H/A is implicitly equipped with his contracted radial graph. Note
that, by construction of Π/A, a partition {C ∪ A,D} is Π-connected if and
only if the partition {C ∪ {eA}, D} is Π/A-connected.

Let H be an embedding of a connected hypergraph with at least one
edge on a surface Σ, and let Π be a radial graph of H . A p-tree of H is a
partitioning tree of H such that:

i. all node partitions are Π-connected;

ii. if v is an internal node of T whose degree is not three, then v is a
neighbour of a leaf labelled by a troublesome edge e and δH(λv) ⊆ e.

Lemma 4 Let H be an embedding of a connected hypergraph with at least

one edge on a surface Σ, let Π be a radial graph of H, and let {A,B} be a

Π-connected bipartition of EH . Let T/A and T/B be respective p-tree of H/A

and H/B. The merged partitioning-tree T of T/A and T/B is a p-tree of H.

Proof. Let v be an internal node of T . By symmetry, we can suppose that
v is a node of T/A.

We first prove that the node partition λ = {E1∪A,E2, . . . , Ep} of v in T is
Π-connected. In T/A, the node partition of v is λ/A = {E1∪{eA}, E2, . . . , Ep}.
Since λ/A is Π/A-connected, (Π/A)E1∪{eA} and all (Π/A)Ei

(2 ≤ i ≤ p) are
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connected. But, by definition of ΠA, ΠE1∪A = (Π/A)E1∪{eA} and ΠEi
=

(Π/A)Ei
for 2 ≤ i ≤ p. This implies that λ is Π-connected.

Suppose for now that the degree of v is not three in T . Since this is
also the case in T/A, v is the neighbour of a leaf u which is labelled by a
troublesome edge e of H/A and δH/A

(λ/A) ⊆ e. Since {A,B} is Π-connected,
then eA is not a troublesome edge in H/A. The node v is thus a neighbour
of a leaf u labelled by the troublesome edge e in H , and δH(λv) ⊆ e. This
finishes the proof.

We can now prove that

Theorem 2 Let H be an embedding of a connected hypergraph with at least

one edge on a surface Σ, and let Π be a radial graph for H. There exists a

p-tree T such that tw(T ) = tw(H).

Proof. We proceed by induction on |VH |+ |EH |. We say that a hypergraph
H is smaller than another hypergraph H ′ if |VH|+ |EH | < |VH′|+ |EH′ |. Let
T be a tree-decomposition of H of optimal width. By eventually merging
them, we can suppose that T has no two neighbouring bags, one of which
contains the other.

Suppose that we find a Π-connected bipartition {A,B} of EH such that
δH({A,B}) is contained in a bag of T , and such that H/A and H/B are
smaller than H . Such a partition is good. By induction, let T/A and T/B

be p-trees of H/A and H/B of optimal width, and let T be the merge of
T/A and T/B. By Lemma 4, T is a p-tree. By Lemma 1, its tree-width is
max{tw(T/A), tw(T/B)} = max{tw(H/A), tw(H/B)}. Since, δH{A,B} is con-
tained in a bag of T , Lemma 2 implies that tw(H) = max{tw(H/A), tw(H/B)},
and thus, tw(T ) = tw(H). We thus only have to find good partitions.

Suppose thatH contains a troublesome edge e. If e contains and separates
all the other edges of H , then the partitioning star with one internal node is
a p-tree of optimal width. Otherwise, there exists a set of edges A such that
ΠA is connected component of ΠEH\{e}, and either A contains at least two
edges or the set of vertices of H/A is a strict subset of VH . Since δH(A) ⊆ e,
e is contained in least one bag of T , and both H/A and H/E(H)\A are smaller
than H , then {A,EH \ A} is good. So let us thus suppose that H contains
no troublesome edge.

Now two cases arise:

• T contains at least two nodes.
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In any tree-decomposition of H with no bag being a subset of a neigh-
bouring one, the intersection of two neighbouring bags is a separator
of H . There thus exists a separator S which is contained in a bag of
T .

Let C be a connected component of H \ S, and let EC be the sets of
edges which are incident with vertices in C. The set EC is thus Π-
connected. Let ΠE1

, . . . , ΠEp be the connected components of ΠE\EC .
Since S ′ := δH(E

C) ⊆ S is a separator, then there exists a connected
component D of H \ S ′ which is not C. The set of edges which are
incident with D is Π-connected, and is thus a subset of, say, E1. Since
the sets ΠEi

(2 ≤ i ≤ p) are incident with ΠEC , the partition µ :=
{E1, E \ E1} is Π-connected. Since both H/E1

and H/EH\E1
contain

fewer vertices than H , and since δH(µ) ⊆ S ′ ⊆ S is contained in a bag
of T , then µ is good.

• T is the trivial one node decomposition of H .

IfH contains at most three edges, then all partitioning trees are p-trees,
so we can suppose that H contains at least four edges. Since no edge of
H is troublesome, GΠ contains at least two vertices of degree two. And
since GΠ is connected, it contains at least two disjoint edges which can
be extended in a non trivial bipartition of GΠ in two connected sets.
This partition corresponds to a Π-connected partition µ := {A,B} of
EH . Since H/A and H/B contain fewer edges than H , then µ is good.

4 P-trees and duality

In this section, we prove that the tree-width of a p-tree and that of its dual
cannot differ too much. In fact, we prove something stronger: if T is a p-tree,
then for every node v of T , the corresponding bags Xv in T and X∗

v in T ∗

have roughly the same size. To do so, if v is an internal node of T , then
we construct a 2-cell embedded hypergraph H ′ with vertex set Xv and with
face set X∗

v . We then apply Euler’s formula on the incidence graph of H ′ to
obtain our bound. It is easy to define an embedded hypergraph with vertex
set Xv. Indeed, if the node partition of v is {A,B,C}, then ((H/A)/B)/C will
do. The problem is that it is not 2-cell, and its face set need not be X∗

v . But
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if we are a little more careful when contracting, then we can obtain such an
embedding.

Lemma 5 Let H be a 2-cell embedding on a surface Σ of a hypergraph with

at least three edges, let Π be a radial graph of H, and let µ = {A,B,C} be a

Π-connected partition of EH .

There exists a 2-cell embedded hypergraph H ′ on a surface Σ′, and a

partition µ′ = {A′, B′, C ′} of EH′ such that

i. VH′ = δH(µ), FH′ = δ∗H(µ) = δ∗H′(µ′);

ii. kΣ′ ≤ kΣ + 3− |EH′|.

Proof. Since ΠA, ΠB and ΠC are disjoint, we can work independently in
each one of them. We thus start with ΠA.

First we claim that we can suppose that H ∩ΠA is a connected subset of
Πa. Since ΠA is Π-connected, it corresponds to a connected subgraph of GΠ.
If all the pairs (e, f) ∈ A2 of Π-connected edges are such that (e ∪ f) ∩ ΠA

are connected, then we are done. So let (e, f) ∈ A2 Π-connected edges, and
(e ∪ f) ∩ ΠA is not connected. This can happen if e and f are incident with
a vertex v in δH(A). In this case, let D be a small disc around v. We add a
new vertex ve in e∩D, a new vertex vf in f ∩D, and an edge vevf in D∩ΠA.
When doing so, we split a face of H which may have belong to δ∗H(A) but
the new triangle face vvevf is only incident with edges in ΠA, and the other
face belongs to δ∗H(A) if and only if the original face did. The claim follows.

Since H ∩ ΠA is connected, we can contract a spanning tree of GH ∩ ΠA

so that it contains a single vertex linked to δH(A) together with some loops.
Then we remove all the loops as follows:

• If e can be contracted, then we do so.

• If e is incident with two faces at least one of which is not in δ∗H(A),
then we remove e.

• If e is incident with only one face F , just removing e will create a
crosscap, but then it is possible to remove F and replace it by a new
face which is a disc. In this case, we obtain a new surface with a lower
genus.

• If e is incident to two faces which belong to δ∗H(A), then we cut the
surface along e. This creates two holes that we can fill with discs that
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we contract. While doing so, we have created a copy of vA but we also
have replaced Σ by a surface of lower genus.

In the end, we have removed all the faces which were only incident with
edges in A, and kept all the others. We have replaced A by, say, p hyperedges
and done some surgery on Σ to keep the embedding 2-cell, and the surgery
resulted in a decrease of genus of at least p− 1. The lemma follows.

We are now ready to prove:

Theorem 3 Let H be a 2-cell embedding of a hypergraph with at least one

edge on a surface Σ and let Π be a radial graph of H.

For any p-tree T of H,

tw(T ∗) ≤ max{tw(T ) + 1 + kΣ, αH∗ − 1}.

Proof. Let v be a vertex of T , let Xv be its bag in T and let X∗
v be its bag

in T ∗. If v is a leaf labelled by an edge e, then X∗
v = e∗ and |X∗

v | − 1 ≤
max{tw(T ) + 1 + kΣ, αH∗ − 1}. If v is the neighbour of a leaf labelled by
a troublesome edge e, then Xv ⊆ e which implies X∗

v ⊆ e∗ and |X∗
v | − 1 ≤

max{tw(T ) + 1 + kΣ, αH∗ − 1}.
We can thus suppose that v is an internal node of T whose node partition

is λv = {A,B,C}. We then have Xv = δH(λv), and X∗
v = δ∗H(λv). Let

H ′ be given by Lemma 5 with µ = λv. Let GH′ be the incidence graph
of H ′. Since GH′ is bipartite, and since they are incident with edges in at
least two parts among A, B and C, its faces are incident with at least 4
edges. If F2k denotes the set of 2k-gones faces of GH′ , we have 2|EGH′

| =
4|F4| + 6|F6| + · · · ≥ 4|FGH′

|, and thus since the face set of GH′ is exactly
δ∗H(λv) = X∗

v ,
|EGH′

| ≥ 2|X∗
v |. (1)

Since GH′ has |X∗
v | faces, |Xv|+ |EH′ | vertices, and since kΣ′ ≤ kΣ + 3−

|EH′|, by replacing these in Euler’s formula, we obtain:

|Xv|+ |EH′| − |EGH′
|+ |X∗

v | ≥ 2− kΣ − 3 + |EH′|. (2)

Adding (1) and (2), we get

|Xv|+ 1 + kΣ ≥ |X∗
v |

which proves that |X∗
v | − 1 ≤ max{tw(T ) + 1 + kΣ, αH∗ − 1}, and thus

tw(T ∗) ≤ max{tw(T ) + 1 + kΣ, αH∗ − 1}.
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The following theorem is a direct corollary of Theorem 2 and Theorem 3.

Theorem 4 For any 2-cell embedding of a hypergraph H on a surface Σ,

tw(H∗) ≤ max{tw(H) + 1 + kΣ, αH∗ − 1}.

Note that we dropped the condition that H contains at least one edge but
the results is quite obvious for the one node 2-cell edge-less hypergraph.

5 Conclusion and open questions

In this paper, we show that tree-width is quite a robust parameter considering
surface duality. Indeed, our proof says more than just “the difference between
the tree-width of H and that of H∗ is not too big”. Our proof says that
there always exists a decomposition which is optimal for H and very good
for H∗. This leads to a natural question: For any embedding G of a graph
(or hypergraph) on a surface, does there always exists a p-tree T such that
tw(T ) = tw(G) and tw(T ∗) = tw(G∗)? To our knowledge, the question is
open, even for planar graphs. Another natural question is: Is the bound
tight?
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École normale supérieure de Lyon, 2004. In french.

[RS84] N. Robertson and P. Seymour. Graph Minors. III. Planar Tree-
Width. Journal of Combinatorial Theory Series B, 36(1):49–64,
1984.

13


	1 Introduction
	2 Tree-width and embedded hypergraphs
	2.1 Hypergraphs and partitioning trees
	2.2 Embedded hypergraphs

	3 P-trees
	4 P-trees and duality
	5 Conclusion and open questions

