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Abstract

Accurate high-resolution soil moisture data are needed for a range of agricul-

tural and hydrologic activities. To improve the spatial resolution of ∼40 km

resolution passive microwave-derived soil moisture, a methodology based on

1 km resolution MODIS (MODerate resolution Imaging Spectroradiometer)

red, near-infrared and thermal-infrared data has been implemented at 4 km

resolution. The three components of that method are (i) fractional vegeta-

tion cover, (ii) soil evaporative efficiency (defined as the ratio of actual to

potential evaporation) and (iii) a downscaling relationship. In this paper,

36 different disaggregation algorithms are built from 3 fractional vegetation

cover formulations, 3 soil evaporative efficiency models, and 4 downscaling

relationships. All algorithms differ with regard to the representation of the

nonlinear relationship between microwave-derived soil moisture and optical-

derived soil evaporative efficiency. Airborne L-band data collected over an

Australian agricultural area are used to both generate ∼40 km resolution mi-

crowave pixels and verify disaggregation results at 4 km resolution. Among

the thirty-six disaggregation algorithms, one is identified as being more ro-
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bust (insensitive to soil, vegetation and atmospheric variables) than the oth-

ers with a mean slope between MODIS-disaggregated and L-band derived soil

moisture of 0.94. The robustness of that algorithm is notably assessed by

comparing the disaggregation results obtained using composited (averaged)

Terra and Aqua MODIS data, and using data from Terra and Aqua sepa-

rately. The error on disaggregated soil moisture is systematically reduced by

compositing daily Terra and Aqua data with an error of 0.012 vol./vol..

Key words: disaggregation, downscaling, soil moisture, evaporation,

nonlinear, SMOS, NAFE, MODIS.

1. Introduction

Many hydrological processes and interactions are nonlinear functions of

land surface characteristics and state (e.g. McDonnell et al., 2007; Beven,

2008; Sivapalan, 2009). Their representation is thus dependent upon the

observational scale for which it is developed and calibrated. For example,

Nykanen and Foufoula-Georgiou (2001) quantified the errors associated with

nonlinearities in hydrological processes. They suggested that the mismatch of

scales between calibration and application should be accounted for by mod-

ifying the nonlinear parameterizations. Otherwise, model-predicted water

and energy fluxes were systematically biased. Another example was given

by the recent study of Gebremichael et al. (2009) who demonstrated that

the comparison of predicted streamflow to hydrographs did not allow the

performance of a distributed physically-based model to be assessed, as the

runoff production mechanism was not accurately reproduced at the applica-

tion scale. They argued that the spatial distribution of soil moisture fields
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within the watershed provided more insight into actual physical processes.

Soil moisture remote sensing methods could help improve the represen-

tation of hydrological processes and their prediction at the watershed scale

(e.g. Vereecken et al., 2008; Robinson et al., 2008). However, the resolution

at which current and near-future remotely sensed soil moisture data are avail-

able is in general not compatible with the high spatial variability of land-

scape properties. In particular, the mean spatial resolution of the SMOS

(Soil Moisture and Ocean Salinity, Kerr et al. (2001)) mission launched in

November 2009 is 40 km. Moreover, the spatial resolution of the forthcom-

ing SMAP (Soil Moisture Active Passive, http://smap.jpl.nasa.gov) mission

is also about 40 km for the passive sensor. Nevertheless, disaggregating

remotely sensed soil moisture is one way to solve the mismatch of scales be-

tween spaceborne observations and model requirements, and SMAP proposes

to provide a 10 km product by merging the radiometer with radar data. The

challenge then lies in implementing such disaggregation approaches due to

nonlinearity issues. Accounting for nonlinearities is critical because the sub-

pixel variability of surface properties is generally high (this is actually the

rationale for applying a disaggregation procedure).

Soil moisture relationships to temperature and vegetation parameters

have been known since the early 90s with Carlson et al. (1994) being one

of the first to formalize that relationship. Later, Chauhan et al. (2003) took

a step towards disaggregating microwave-derived soil moisture to obtain high-

resolution soil moisture. Recently, Merlin et al. (2008b) improved that for-

malism by using a semi-empirical soil evaporative efficiency model to link

microwave-derived soil moisture with red, near-infrared, and thermal-infrared
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data. In the methodology of Merlin et al. (2008b), nonlinearities are repre-

sented by three components. The first component is a formulation of the

fractional vegetation cover derived from red and near-infrared data. Frac-

tional vegetation cover is used to estimate soil evaporative efficiency (defined

as the ratio of actual to potential soil evaporation) from remotely sensed

surface temperature. The second component is a model of soil evaporative

efficiency. It is used to estimate the slope between soil evaporative efficiency

and soil moisture, subsequently used to translate spatial variations in soil

evaporative efficiency into spatial variations in soil moisture. The third com-

ponent is a downscaling relationship, which links soil moisture and soil evap-

orative efficiency observations across a range of scales. All three components

control the representation of the relationship between microwave-derived soil

moisture and optical-derived soil evaporative efficiency. This relationship is

known to be strongly nonlinear (e.g. Noilhan and Planton, 1989; Komatsu,

2003). The impact of this nonlinear behaviour of soil evaporative efficiency

on disaggregation results needs to be further investigated, as this was not

fully addressed in Merlin et al. (2008b).

Another difficulty in using remote sensing methods is the nonlinear nature

of the relationship between remote sensing observations and surface proper-

ties. For instance, the SMOS soil moisture retrieval algorithm (Kerr et al.,

2006) accounts for nonlinearities between surface properties and the bright-

ness temperatures observed at 40 km resolution by using information on soil

type, land use and land cover at 4 km resolution in the forward model. Such

an approach is expected to significantly reduce the impact of vegetation het-

erogeneity on SMOS soil moisture (Davenport et al., 2008; Loew, 2008). In
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the optical domain, nonlinearity issues are also present since the radiative

transfer problem is linear in incident radiation but nonlinear in scattering

(Myneni et al., 1995).

In summary, one may state that hydrology, disaggregation and remote

sensing face the same issue regarding nonlinear magnitudes: the combina-

tion of nonlinearity and spatial variability makes (hydrologic, disaggregation,

radiative transfer) models strongly dependent upon the scale at which input

and output data are considered. This issue is particularly important for dis-

aggregation methodologies like in Merlin et al. (2008b) that apply to remote

sensing data and are based on a hydrologic (the soil evaporative efficiency)

model.

This study aims to develop a robust disaggregation algorithm, which bet-

ter represents nonlinearities between microwave-derived soil moisture and

the soil evaporative efficiency derived from red, near-infrared and thermal-

infrared data. Consequently, the methodology of Merlin et al. (2008b) is

tested using three different formulations of fractional vegetation cover, three

different models of soil evaporative efficiency, and four different downscaling

relationships. The data from the National Airborne Field Experiment 2006

(NAFE’06) are used to both generate ∼40 km resolution microwave pixels

and verify disaggregation results at 4 km resolution.

2. Data

The NAFE’06 was conducted from 31 October to 20 November 2006 over

a 40 km by 60 km area near Yanco (−35◦N; 146◦E) in southeastern Australia.

While a full description of the data set is given in Merlin et al. (2008c), a
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brief overview of the most pertinent details are provided here. The data used

in this study are comprised of L-band derived soil moisture and MODIS data

collected over the Yanco area on twelve days.

2.1. PLMR-derived soil moisture

The near-surface soil moisture was retrieved from the 1 km resolution

brightness temperature collected by the Polarimetric L-band Multibeam Ra-

diometer (PLMR) on eleven days over the 40 km by 60 km study area: 31

October, 2, 3, 4, 5, 7, 9, 13, 14, 16, 18 November (Merlin et al., 2009b).

The surface temperature data used for the PLMR soil moisture inversion

came from MODIS data on clear sky days, and from in situ measurements

on overcast days. The root mean square difference between PLMR-derived

and ground-measured soil moisture at 1 km resolution was estimated as 0.03

vol./vol. in non-irrigated areas. A bias of about −0.09 vol./vol. was obtained

over pixels including some irrigation. This bias was explained by a differ-

ence in sensing depth between the L-band radiometer (∼0–3 cm) and in situ

measurements (0–5.7 cm), associated with a strong vertical gradient in the

top 0–6 cm of the soil. Moreover, following the rainfall event on 3 November,

the PLMR-derived soil moisture appeared affected by the presence of water

intercepted by vegetation (Merlin et al., 2008c,b). In this study, data from

this date were discarded.

2.2. MODIS data

The MODIS data used in this paper are the Version 5 MODIS/Terra

(10:30 am) and MODIS/Aqua (1:30 pm) 1 km resolution daily surface tem-

perature, and MODIS/Terra 250 m resolution 16-day red and near-infrared
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reflectances. The 16-day reflectance product was cloud free. In between the

first (31 October) and last day (18 November) of 1 km resolution PLMR

flights over the Yanco area, sixteen cloud free MODIS Version 5 surface tem-

perature images were acquired including nine aboard Terra (3, 5, 7, 8, 9, 10,

11, 17, 18 November) and seven aboard Aqua (31 October and 3, 4, 6, 8,

9, 17 November). In this study, the Terra and Aqua images on 3 Novem-

ber were discarded as for PLMR data. MODIS data were re-sampled on

the same 1 km resolution grid as PLMR-derived soil moisture, and MODIS

surface temperature was shifted of (+1 km E; −0.5 km N) and (+2 km E;

0 N) for Terra and Aqua respectively to maximize the spatial correlation

with 1 km resolution MODIS NDVI, which was used as a reference for the

co-registration.

3. Methodology

The disaggregation methodology of Merlin et al. (2008b) is first described,

followed by different formulations of fractional vegetation cover, soil evapo-

rative efficiency model, and downscaling relationships. The disaggregation

resolution is set to four times the MODIS thermal resolution (4 km) as in

Merlin et al. (2009a).

3.1. A reference disaggregation algorithm

The soil moisture θ4 km disaggregated at 4 km resolution can be expressed

as:

θ4 km = θ40 km

+
(

β4 km − 〈β4 km〉40 km

)

×
(

∂θ

∂β

)

40 km

(1)

7



with θ40 km being the SMOS-scale soil moisture, β4 km the soil evaporative

efficiency estimated at 4 km resolution, 〈β4 km〉40 km its average at 40 km res-

olution, and ∂θ/∂β the partial derivative of soil moisture to soil evaporative

efficiency. The 4 km resolution soil evaporative efficiency is estimated as:

β4 km =
Tmax − T4 km

Tmax − Tmin

(2)

with T4 km the MODIS-derived soil temperature, Tmin the minimum soil tem-

perature and Tmax the maximum soil temperature. MODIS-derived soil tem-

perature T4 km is computed as:

T4 km =
TMODIS, 4 km − f4 kmTveg

1 − f4 km
(3)

with TMODIS, 4 km being the MODIS surface temperature aggregated at 4 km

resolution, f4 km the fractional vegetation cover and Tveg the vegetation tem-

perature. Both minimum soil temperature in Equation (2) and vegetation

temperature in Equation (3) are set to the minimum MODIS surface tem-

perature observed within the study area. In Equation (2), the maximum soil

temperature is set to the maximum value of the soil temperature derived at

1 km resolution by applying Equation (3) at 1 km resolution. Consequently,

fractional vegetation cover is accounted for in T4 km and Tmax, but not in

Tmin. Fractional vegetation cover is estimated from the NDVI (Normalized

Difference Vegetation Index) as in Gutman and Ignatov (1998):

fG98 =
NDVI4 km − NDVIS
NDVIV − NDVIS

(4)

with NDVIS and NDVIV being the NDVI for bare soil and fully-vegetated

pixels, respectively. The NDVI is computed as:

NDVI4 km =
NIR4 km − R4 km

NIR4 km + R4 km
(5)
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with NIR4 km and R4 km being the MODIS near-infrared and red reflectances

averaged at 4 km resolution. In Equation (1), the partial derivative is esti-

mated using the formulation of Komatsu (2003):

βmod, K03 = 1 − exp(−θ/θC, K03) (6)

with θC, K03 being a semi-empirical parameter depending on soil type and

boundary layer conditions (wind speed). Herein, the dependance of θC on

wind speed is neglected and θC is referred to as a soil parameter.

Algorithm parameters are θC and the reflectance over bare soil and full-

cover vegetation in the red and near-infrared band. To determine reflectance

end-members, two 250 m resolution pixels within the NAFE’06 area are

identified as full-cover vegetation and bare soil. Note that 250 m reflectances

are used intead of 1 km resolution NDVI in case the 1 km resolution pixel

with the lowest NDVI is not free of vegetation (Montandon and Small, 2008).

The red and near-infrared reflectance are determined as 0.20 and 0.25 for bare

soil and 0.05 and 0.60 for full-cover vegetation, respectively. The calibration

strategy of parameter θC is presented in the Application section.

3.2. Fractional vegetation cover

Many formulations of fractional vegetation cover have been developed

based on red and near-infrared reflectances. Recent reviews of methods are

provided in Jiang et al. (2006); Kallel et al. (2007) and Jiménez-Muñoz et al.

(2009). The large variety of formulations comes from the difficulty in deriving

a vegetation index which is (i) highly sensitive to fractional vegetation cover,

(ii) approximately linear over the full range of covers, and (iii) insensitive
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to view angle, atmospheric attenuation, and soil background. The objec-

tive here is not to test all existing formulations, but rather to compare the

NDVI-based formulation from Gutman and Ignatov (1998) with two other

simple formulations; one from Huete (1988) based on the SAVI (Soil Ad-

justed Vegetation Index) and another from Jiang et al. (2006) based on the

SDVI (Scaled Difference Vegetation Index).

The reflectance observed over mixed pixels is a composite of both soil

and vegetation contributions. To correct for soil effects, Huete (1988) devel-

oped a SAVI that was later optimized by Rondeaux et al. (1996). Fractional

vegetation cover can be estimated as:

fH88 =
OSAVI4 km − OSAVIS
OSAVIV − OSAVIS

(7)

with OSAVIS and OSAVIV being the OSAVI (Optimized SAVI) over bare

soil and fully-vegetated pixels, respectively. The OSAVI is computed as:

OSAVI4 km =
NIR4 km − R4 km

NIR4 km + R4 km + X
(8)

with X being an empirical parameter set to 0.16 (Rondeaux et al., 1996).

For heterogeneous surfaces, NDVI measurement does not aggregate lin-

early. Moreover, the relationship between NDVI and fractional vegetation

cover is generally nonlinear (Baret et al., 1995; Carlson and Ripley, 1997).

To overcome this limitation, Jiang et al. (2006) proposed a scale-invariant

method to derive fractional vegetation cover from red and near-infrared re-

flectances. Accordingly, fractional vegetation cover can be estimated as:

fJ06 =
DVI4 km − DVIS
DVIV + DVIS

(9)
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with DVIS and DVIV being the DVI (Difference Vegetation Index) over bare

soil and fully-vegetated pixels, respectively. The DVI is computed as:

DVI4 km = NIR4 km − R4 km (10)

Figure 1 compares the fractional vegetation cover derived at 1 km reso-

lution from G98, H88 and J06 formulations. Significant differences are ob-

served. In particular, the vegetation cover predicted by J06 is about half

of that predicted by G98 or H88. Note that fractional vegetation cover was

relatively low during NAFE’06 and this is the reason why all formulations

seem to be linearly correlated. In fact, fJ06 is expected to increase rapidly in

the higher range of vegetation cover, where the sensitivity of G98 formulation

tends to decrease (Jiang et al., 2006).

3.3. Soil evaporative efficiency

A limitation of all the disaggregation methodologies of microwave-derived

soil moisture based on optical data is the mismatch in sensing depth of mi-

crowave (several cm) and thermal infrared (∼1 mm) radiometers. To quan-

tify the errors due to this limitation, the soil evaporative efficiency model

K03 (Komatsu, 2003) in Equation (6) is compared with two other formula-

tions. Noilhan and Planton (1989) developed a simple expression (NP89) as

a function of soil moisture:

βmod, NP89 = 0.5 − 0.5 cos(πθ/θC, NP89) (11)

with θC, NP89 being the soil moisture at field capacity. Another expression

(LP92) of soil evaporative efficiency was derived by Lee and Pielke (1992):

βmod, LP92 =
[

0.5 − 0.5 cos(πθ/θC, LP92)
]2

(12)
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with θC, LP92 being the soil moisture at field capacity. While K03 represents

a soil layer of ∼1 mm, N89 and LP92 represent a soil layer of several cm.

Therefore K03 is consistent with the MODIS sensing depth and N89 and L92

are consistent with the SMOS sensing depth. As the disaggregation approach

combines simulated SMOS and MODIS data using one of these models, this

provides a unique opportunity to test the capability of each model to account

for the mismatch in sensing depth of SMOS and MODIS radiometers.

Note that the same notation θC is kept for all models because their physi-

cal meaning is equivalent: in Equations (6), (11) and (12) θC controls in given

atmospheric conditions the capability of the soil to evaporate the soil water.

However, the scalar value of θC for K03, NP89 and LP92 should be different,

as each model is a different representation of soil evaporative efficiency.

Figure 2 plots the soil evaporative efficiency predicted by model K03,

N89 and LP92 for a range of soil moisture values. Parameter θC is set to

0.10, 0.30 and 0.30 vol./vol. for K03, NP89 and L92, respectively. The

shape of βmod, K03 has a singular convex form, while both βNP89 and βLP92

have an inflection point at around the middle of the soil moisture range. The

concave form of soil evaporative efficiency at low soil moisture values has been

observed in numerous experiments (e.g. Kondo et al., 1990; Lee and Pielke,

1992; Chanzy and Bruckler, 1993). In fact, N89 and L092 more accurately

represent the behaviour of soil evaporative efficiency at low soil moisture

values than K03 (Komatsu, 2003).

3.4. Downscaling relationship

Four different downscaling relationships are developed to assess the im-

pact on disaggregation results of nonlinearities between soil evaporative effi-
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ciency, soil moisture and model parameter θC. Currently, two methodologies

have been used to represent nonlinearities within a disaggregation framework:

the Taylor series and the projection technique. The Taylor series has been

successfully tested with a single variable θ in Merlin et al. (2008b, 2009a).

In this paper, the Taylor approach is extended to two independent vari-

ables θ and θC. On the other hand, the projection technique (Merlin et al.,

2005) is a powerful tool that reduces the dimensionality of the disaggrega-

tion problem. More specifically, it can be used to deterministically represent

the nonlinear behaviour of multi-resolution observations. The projection

approach was successfully applied to ground-based −2.5 cm soil tempera-

ture in Merlin et al. (2006b), ground-based surface evaporative fraction in

Merlin et al. (2008a), and Formosat-derived fractional green vegetation cover

in Merlin et al. (2010). In this paper, it is applied to MODIS-derived soil

evaporative efficiency.

3.4.1. Genuine derivative approach

The downscaling relationship D1 is a Taylor series of soil moisture θ at

first order with respect to soil evaporative efficiency β and model parameter

θC:

θ
(1)
4 km = θ40 km

+
(

β4 km − 〈β4 km〉40 km

)

×
(

∂θ

∂β

)

40 km

+
(

θC, 4 km − 〈θC, 4 km〉40 km

)

×
(

∂θ

∂θC

)

40 km

(13)

with ∂θ/∂θC being the partial derivative of soil moisture to model parame-

ter θC. The partial derivatives are determined analytically using the model

formulations K03, NP89 or LP92.
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Similarly, the downscaling relationship D2 is a Taylor series of soil mois-

ture θ at second order with respect to soil evaporative efficiency β and model

parameter θC:

θ
(2)
4 km = θ40 km

+
(

β4 km − 〈β4 km〉40 km

)

×
(

∂θ

∂β

)

40 km

+
1

2

(

β4 km − 〈β4 km〉40 km

)2 ×
(

∂2θ

∂β2

)

40 km

+
(

θC, 4 km − 〈θC, 4 km〉40 km

)

×
(

∂θ

∂θC

)

40 km

+
1

2

(

θC, 4 km − 〈θC, 4 km〉40 km

)2 ×
(

∂2θ

∂θ2
C

)

40 km

(14)

with ∂2θ/∂β2 being the second partial derivative of soil moisture to soil

evaporative efficiency β and ∂2θ/∂θ2
C the second partial derivative of soil

moisture to model parameter θC.

Both D1 and D2 are called genuine derivative approaches because the fine-

scale information that is used by both disaggregation algorithms is entirely

controlled by model-predicted derivatives.

3.4.2. Hybrid projective-derivative approach

Alternatively to the genuine derivative downscaling relationships, other

relationships can be developed by including the projection technique of Merlin et al.

(2005). This approach consists of writing a Taylor series of soil moisture with

respect to “projected soil evaporative efficiency”.

At first order, the hybrid downscaling relationship noted D1’ is:

θ
(1′)
4 km = θ40 km

+
(

βproj
4 km − 〈βproj

4 km〉40 km

)

×
(

∂θ

∂β

)

40 km

(15)
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with βproj
4 km being the soil evaporative efficiency projected using one of the

models K03, NP89 or LP92. Projected soil evaporative efficiency is expressed

as:

βproj
4 km = β4 km −

[

βmod

(

θ4 km, θC, 4 km

)

− βmod

(

θ4 km, 〈θC, 4 km〉40 km

)

]

(16)

with βmod(θ4 km, θC, 4 km) being the soil evaporative efficiency simulated using

4 km resolution soil moisture and 4 km resolution model parameter θC, and

βmod(θ4 km, 〈θC, 4 km〉40 km) the soil evaporative efficiency simulated using 4

km resolution soil moisture and the model parameter aggregated at SMOS

resolution 〈θC, 4 km〉40 km. As 4 km resolution soil moisture is unknown before

the disaggregation, it is initialized at the value observed at 40 km resolution

and a loop on θ4 km is run until convergence is achieved. In practice, two or

three iterations are sufficient.

The hybrid projective-derivative approach can also be implemented at

second order. The downscaling relationship denoted D2’ is:

θ
(2′)
4 km = θ40 km

+
(

βproj
4 km − 〈βproj

4 km〉40 km

)

×
(

∂θ

∂β

)

40 km

+
1

2

(

βproj
4 km − 〈βproj

4 km〉40 km

)2 ×
(

∂2θ

∂β2

)

40 km

(17)

The main difference between D1 and D1’ and between D2 and D2’ is the

representation of the nonlinear behaviour of soil moisture with respect to

model parameter θC. In the Taylor series approach, nonlinearities are rep-

resented by a second order derivative term whereas in the hybrid approach,

they are represented by a difference between two modelled soil evaporative

effiencies. It is hypothesized that the projection method will be more accu-

rate, since no assumption is made on the relationship between soil moisture
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and model parameter. However, the robustness of the different approaches

may also rely on the soil evaporative efficiency model used. These assump-

tions are tested with data in the following section.

4. Application

The three formulations of fractional vegetation cover (G98, H88 and J06),

three models of soil evaporative efficiency (K03, NP89 and LP92) and four

downscaling relationships (D1, D2, D1’ and D2’) are combined to generate 36

different disaggregation algorithms. Each of them is tested over the 40 km by

60 km Yanco area using the fourteen MODIS images. On 6, 8, 10, 11 and 17

November, the PLMR-derived soil moisture data of the day before are used.

This extrapolation is valid because no rainfall occurred between the PLMR

flight and MODIS overpass on each date. Random uncertainties in 4 km

resolution PLMR-derived soil moisture can be estimated as the root mean

square error in 1 km resolution PLMR-derived soil moisture (0.03 vol./vol.,

Merlin et al. (2009b)) divided by the square root of the number (16) of 1 km

pixels within 4 km resolution pixels: 0.03/
√

16 = 0.008 vol./vol..

4.1. Estimating soil parameter θC

In the case study presented here, L-band data are available at the down-

scaling resolution (4 km). Therefore, models K03, NP89 and LP89 can be

calibrated at 4 km resolution. In particular, the parameter θC can be mapped

at 4 km resolution using simultaneous observations of MODIS-derived soil

evaporative efficiency and PLMR-derived soil moisture. This is achieved by

inverting Equations (6), (11) and (12) and analytically expressing θC as a

function of β and θ. The calibration data set is comprised of the first seven
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MODIS images on 31 October (Aqua), 4 November (Aqua), 5 November

(Terra), 6 November (Aqua), 7 November (Terra) and 8 November (Terra

and Aqua). The remaining seven MODIS images are retained as validation

data. Calibrated θC values are obtained by averaging the soil parameter

retrieved for each of the seven calibration images.

Note that MODIS-derived β in Equation (2) depends on the formulation

chosen for fractional vegetation cover. Consequently, θC, K03, θC, NP89 and

θC, LP92 are also dependent on the f formulation. To assess the impact of

uncertainties in fractional vegetation cover on calibrated θC, Figure 3 plots

for K03, N89 and L92 the soil parameter retrieved using H88 and J06 against

that retrieved using G98 fractional vegetation fraction. One observes that

the calibrated soil parameter value remains remarkably stable despite the

relative high difference between fractional vegetation cover formulations (see

Figure 1). Soil evaporative efficiency models seem to have low sensitivity

to the formulation of fractional vegetation cover. This is due to the fact

that both the numerator and denominator of the ratio in Equation (3) have

the same sense of variation in fractional vegetation cover: an increase in the

numerator is compensated by an increase in the denominator and vice versa.

Nevertheless, Figure 3 indicates that the soil parameter retrieved using K03

is more stable than that retrieved using LP89 and LP92. The stability in θC

is quantified for each soil evaporative efficiency model K03, NP89 and LP92

by computing a stability index SI defined as:

SI = 1 −
∥

∥θC, H88/LP92 − θC, G98

∥

∥

‖θC, G98 − 〈θC, G98〉40 km‖
(18)

with
∥

∥θC, H88/LP92 − θC, G98

∥

∥ being the variability in θC due to differences in

the formulation of fractional vegetation cover and ‖θC, G98 − 〈θC, G98〉40 km‖
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the spatial variability of θC, G98. The higher SI, the more stable retrieved soil

parameter. SI is estimated as 0.71, 0.66 and 0.49 for K03, NP89 and LP92,

respectively. Therefore, K03 is shown to be more stable to uncertainties in

fractional vegetation cover than NP89 and LP92.

Figure 4 presents the image at 4 km resolution of the θC, K03, θC, NP89

and θC, LP92 parameters retrieved using fG98. One observes that retrieved

parameter θC and fractional vegetation cover fG98 are largely independent.

This confirms that retrieved θC effectively characterizes the soil properties.

In the application to SMOS, L-band data will only be available at ∼40

km resolution. Consequently, the approach presented here is limited to the

calibration of θC at 40 km resolution only. An important point is that the

temporal dynamics of MODIS-derived soil evaporative efficiency could be

used to retrieve θC at higher resolution. However, the coupling of the dis-

aggregation with an assimilation scheme as in Merlin et al. (2006a) will not

be addressed in this paper. The objective here is to focus on the disaggrega-

tion scheme, and quantify the gain in accuracy and robustness when the soil

parameter is provided at the downscaling resolution (4 km).

4.2. Uniform soil parameter

Disaggregation algorithms are first tested using a uniform value of θC

parameter within the 40 km resolution pixel. The SMOS-scale parameter

θC, 40 km is retrieved from the time series of 40 km resolution PLMR-derived

soil moisture and 40 km resolution aggregated MODIS-derived soil evapo-

rative efficiency between 31 October and 8 November. In this particular

case, the partial derivative ∂θ/∂θC in Equations (13) and (14) is null and

the projected soil evaporative efficiency in Equations (15) and (17) is equal
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to soil evaporative efficiency. Consequently, D1 is identical to D1’ and D2 is

identical to D2’.

Downscaling relationships D1=D1’ and D2=D2’ are applied to the four-

teen MODIS images of the NAFE’06 data set. Figure 5 presents the scatter-

plots of MODIS-disaggregated versus PLMR-derived soil moisture for each

model K03, NP89 and LP92, and using the formulation of fractional vegeta-

tion cover given by J06. It is apparent that the scatter in disaggregated data

is higher with K03 than with NP89 and LP92. However, the slope between

disaggregated and PLMR-derived soil moisture is better with K03. When

comparing the results obtained for D1=D1’ and D2=D2’, the addition of

a second order term does not improve the disaggregation results. On the

contrary, it increases the scatter.

Quantitative results in terms of root mean square difference, correlation

coefficient and slope between MODIS-disaggregated and PLMR-derived soil

moisture are presented in Table 1. Statistical results are presented for each

soil evaporative efficiency model and each fractional vegetation cover formu-

lation. They indicate that the formulation of fractional vegetation cover has

a small impact on the disaggregation. In fact, vegetation cover was relatively

low during NAFE’06 so that the difference between formulations at high cov-

ers is not so visible with these data. Nevertheless, the formulation from J06

decreases the error, slightly but systematically, and increases the correlation

coefficient and slope. Regarding the soil evaporative efficiency model, great

differences are apparent between K03 and NP89 or LP92. Although the error

is about 0.03 vol./vol. for K03 and 0.02 vol./vol. for NP89 and LP92, the

slope is about 1 for K03 and 0.6-0.7 for NP89 and LP92. Consequently, the
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disaggregation algorithms based on K03 are less accurate but more robust

than those based on NP89 or LP92. When comparing D1=D1’ and D2=D2’

in Table 1, statistical results are slightly degraded by adding a second order

term into the downscaling relationship.

4.3. Space-varying soil parameter

Soil parameter θC is now used at 4 km resolution in the disaggregation

algorithms. The comparison between D1 and D1’ and between D2 with D2’

aims at assessing the stability of the hybrid derivative-projective versus the

genuine derivative approach.

4.3.1. First-order approximation

Disaggregation results from D1 and D1’ are presented in Figure 6 and in

Table 1. It is apparent that the scatter in disaggregated soil moisture is much

reduced by accounting for variability of the soil parameter. In particular,

for the algorithm combining D1 and K03 the error is decreased from 0.030

vol./vol. in the case “uniform θC” to 0.020 vol./vol. in the case “varying θC”.

When comparing D1 and D1’ in Table 1, it is apparent that the correlation

coefficient is generally higher for D1’ and the slope generally higher for D1,

regardless of the model K03, NP89 or LP92. These contrasting results do

not allow selection of a preferred downscaling relationship, since each has

its own advantage and drawback. However, NP89 makes the disaggregation

more accurate than with K03 and LP92, but less robust than with K03 since

the slope is systematically closer to 1 with K03.
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4.3.2. Adding second-order term

Disaggregation results from D2 and D2’ are presented in Figure 7 and in

Table 1. It is apparent that the addition of a second-order term in the down-

scaling relationship generally degrades disaggregation results. One exception

however is the case of D2’ with K03. For D2’ based on model K03, the second

order term significantly improves (as compared with D1’) the slope between

MODIS-disaggregated and PLMR-derived soil moisture. When comparing

D2 and D2’ in Table 1, the hybrid projective-derivative approach D2’ is

practically equivalent to the genuine derivative approach D2, except for K03.

For K03, the projection increases the correlation coefficient from 0.86 to 0.89

and decreases the slope from 0.97 to 0.94.

4.3.3. Summary

The analysis of statistical results from the thirty six disaggregation algo-

rithms indicate that:

• for all algorithms, knowledge of soil parameter θC at the downscaling

resolution has a strong impact on disaggregation results.

• although the formulation of fractional vegetation cover has a small im-

pact for the conditions that prevailed during NAFE’06 (low vegetation

cover at 4 km resolution), results are generally superior with J06 for-

mulation.

• all algorithms are more accurate with the NP89 model but more robust

with K03.

• the combination of D2’ (second-order hybrid derivative-projective ap-
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proach) and K03 model is a good compromise between accuracy and

robustness.

4.4. Combining the MODIS data aboard Terra and Aqua

Downscaling relationships are now applied to MODIS data on 9 Novem-

ber when both Terra and Aqua images are available and cloud free. The idea

is to combine Terra and Aqua data within the disaggregation scheme, and

assess whether output data are improved as compared with considering Terra

and Aqua data separately. In practice, the soil moisture disaggregated using

the MODIS data collected aboard Terra is averaged with the soil moisture

disaggregated using the MODIS data collected aboard Aqua platform on the

same day. As Terra and Aqua data are independent observations, combining

data is expected to reduce random uncertainties in disaggregation results.

Moreover, the reduction in uncertainty is foreseen to be all the more impor-

tant as the downscaling relationship is robust. This test is implemented here

to assess the robustness of the disaggregation algorithm composed of down-

scaling relationship D2’, soil evaporative efficiency model K03, and fractional

vegetation cover J06.

Figure 8 plots MODIS-disaggregated versus PLMR-derived soil moisture

for 9 November Terra and Aqua composited data, and for each of the six

cases D1=D1’ (first-order and uniform parameter), D2=D2’ (second-order

and uniform parameter), D1 (first-order genuine derivative and space-varying

parameter), D2 (second-order genuine derivative and space-varying parame-

ter), D1’ (first-order projective-derivative and space-varying parameter) and

D2’ (second-order projective-derivative and space-varying parameter). Con-

sistent with previous results, it is observed that D2’ is the most efficient down-
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scaling relationship. As compared with the genuine derivative approach D2,

the hybrid derivative-projective approach D2’ reduces random uncertainties

in disaggregated soil moisture. Moreover, D2’ improves the slope between

MODIS-disaggregated and PLMR-derived soil moisture as compared with

the first-order projective-derivative D1’.

Table 2 compares the results obtained from Terra and Aqua composited

(averaged) data with the average of the results obtained from Terra and

Aqua data separately. An important point is that the root mean square dif-

ference, correlation coefficient and slope between MODIS-disaggregated and

PLMR-derived soil moisture are systematically improved by combing Terra

and Aqua data, regardless of the downscaling relationship. This means that

the temporal aggregation of MODIS data is an efficient way to reduce ran-

dom uncertainties in disaggregated soil moisture. Table 2 also indicates that

D2’ is the most accurate with an error of 0.012 vol./vol. and a correlation

coefficient of 0.90. Note that the slope between MODIS-disaggregation and

PLMR-derived soil moisture is only 0.77 for D2’, whereas it is 0.86 for D2. In

fact, the relatively low slope for D2’ on 9 November is due to the uncertainty

associated with a poor representation of β by K03 at low soil moisture values.

For D2, this effect seems to be compensated by a higher scatter in disaggre-

gated soil moisture. Nevertheless, when looking at the disaggregated values

above 0.05 vol./vol. in Figure 8f, the slope between MODIS-disaggregated

and PLMR-derived soil moisture is very close to 1.

As an illustration of final results, Figure 9 presents a spatial plot over the

NAFE’06 area of (i) the soil moisture disaggregated by D1=D1’ (ii) the soil

moisture disaggregated by D2’ and (iii) PLMR-derived soil moisture. The
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spatial variability of 4 km resolution surface soil moisture is better repre-

sented using algorithm D2’.

4.5. Assumptions and operational applicability

The disaggregation approach has been evaluated using the NAFE’06 data

set. To thoroughly assess its robustness in a wider range of soil moisture,

vegetation and evaporative demand conditions, the methodology should be

tested over other regions. Its operational applicability over large areas is

conditioned by five main assumptions, which are discussed below.

1. Cloud-free conditions: MODIS data are available for clear-sky condi-

tions only.

2. Mismatch of overpass times: the MODIS/Terra overpass time at 10

am (ascending), MODIS/Aqua overpass time at 1 pm (ascending), and

the SMOS overpass time at 6 am (descending) are all different. In the

methodology, it is assumed that the soil moisture pattern is spatially

persistent for a few hours after the SMOS overpass. If no rainfall

occurs in between, this assumption is generally met because the decay

timescale of 0–5 cm soil moisture (several days) is much longer than the

time difference (several hours) between MODIS and SMOS acquisition

times.

3. Mismatch of sensing depths: the SMOS L-band sensing depth is about

5 cm while the MODIS thermal infrared only gives an estimate of

the skin temperature. Moreover, soil evaporative efficiency is bet-

ter described using observations in the first 5 cm of the soil (e.g.

Chanzy and Bruckler, 1993). In the methodology, it is assumed that
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the soil skin temperature derived from MODIS data has a horizontal

spatial correlation with the 0–5 cm soil temperature. This assumption

is required to estimate soil evaprative efficiency from 1 mm MODIS

thermal infrared data (Nishida et al., 2003). As soil skin temperature

is also correlated with air temperature, one implicitly assumes that air

temperature is relatively uniform within the SMOS pixel. This was

actually verified with the NAFE’06 data set because the θC parameter

was found to be temporally persistent, and thus relatively independent

from atmospheric conditions.

4. MODIS-derived soil evaporative efficiency: estimation of soil evapo-

rative efficiency using the “triangle method” relies on reflectance and

temperature end-members. The accuracy in determining end-members

from the MODIS images may vary with surface conditions. In this pa-

per, it is assumed that extreme conditions (dry, wet, full-cover, bare

soil) can be observed at the resolution of the MODIS spectral bands.

Note that end-members could also be estimated using look-up tables

(especially for vegetation and soil reflectances) or using ground-based

ancillary data (the minimum soil temperature can be set to air temper-

ature or to the surface temperature of a water body). Limitations of

the triangle approach and prospects for determining end-members can

be found in Carlson (2007).

5. Availability of the θC parameter. This parameter may be difficult to

obtain from ancillary data as it is expected to depend on soil texture,

soil structure (pore-size distribution and connectivity), soil aggregates

and the presence of biomass. Consequently, a more robust approach is
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to estimate θC at 40 km resolution from SMOS and aggregated MODIS

data. As the optimal application of the methodology requires θC at

the downscaling resolution, future research should tackle the issue of

estimating θC at 4 km resolution using a time series of SMOS and

MODIS data.

5. Conclusions

Thirty six different disaggregation algorithms are compared using the

NAFE’06 data set. Results indicate that (i) the soil parameter of the soil

evaporative efficiency model has a strong impact on disaggregated soil mois-

ture, (ii) the formulation of fractional vegetation cover has a small impact

with the NAFE’06 data set, (iii) disaggregation algorithms are (slightly)

more accurate with a cosine-based soil evaporative efficiency model, but more

robust with an exponential-based model and (iv) the second-order hybrid

derivative-projective approach combined with the exponential-based model

seems to be a good compromise between accuracy and robustness. The ro-

bustness of that algorithm is assessed by compositing (averaging) the soil

moisture disaggregated using the MODIS data collected aboard Terra and

Aqua. The error on disaggregated soil moisture is systematically reduced by

compositing daily Terra and Aqua data, and the most robust algorithm is

found to be the most accurate with an error of 0.012 vol./vol..

In the application to SMOS, L-band data will only be available at ∼40

km resolution. Consequently, the current approach will not allow calibrating

the θC parameter at the downscaling resolution, but at the 40 km resolu-

tion only. To estimate θC at the downscaling resolution, future research
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should tackle the issue of combining the spatial and temporal information

of data. In particular, the dynamics of disaggregated soil moisture fields is

foreseen to provide some information on the spatial distribution of θC. A

disaggregation-assimilation coupling scheme may allow improving disaggre-

gation results iteratively.
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Table 1: Root mean square difference (RMSD), correlation coefficient (R) and slope be-

tween MODIS-disaggregated and PLMR-derived soil moisture. Superior statistical results

are highlighted in bold.

RMSD (vol./vol.) R (-) Slope (-)

βK03 βNP89 βLP92 βK03 βNP89 βLP92 βK03 βNP89 βLP92

D1=D1’ fG98 0.028 0.021 0.022 0.79 0.83 0.82 0.94 0.66 0.59

& fH88 0.029 0.021 0.022 0.79 0.83 0.82 0.96 0.68 0.60

uniform θC fJ06 0.030 0.021 0.022 0.79 0.84 0.83 0.99 0.69 0.61

D2=D2’ fG98 0.030 0.022 0.023 0.79 0.83 0.81 1.0 0.66 0.59

& fH88 0.031 0.021 0.022 0.78 0.83 0.81 1.0 0.67 0.59

uniform θC fJ06 0.032 0.021 0.022 0.78 0.83 0.82 1.1 0.68 0.60

D1 fG98 0.019 0.017 0.021 0.88 0.90 0.83 0.90 0.79 0.66

& fH88 0.020 0.016 0.021 0.87 0.90 0.84 0.90 0.80 0.68

varying θC fJ06 0.020 0.016 0.020 0.87 0.91 0.85 0.91 0.81 0.69

D1’ fG98 0.018 0.017 0.021 0.88 0.90 0.85 0.89 0.78 0.64

& fH88 0.019 0.016 0.020 0.88 0.90 0.85 0.89 0.79 0.66

varying θC fJ06 0.019 0.016 0.020 0.89 0.91 0.86 0.89 0.80 0.67

D2 fG98 0.021 0.017 0.022 0.87 0.89 0.82 0.96 0.78 0.65

& fH88 0.022 0.017 0.021 0.86 0.90 0.84 0.96 0.79 0.67

varying θC fJ06 0.023 0.016 0.021 0.86 0.90 0.84 0.97 0.80 0.68

D2’ fG98 0.018 0.017 0.021 0.89 0.89 0.83 0.93 0.76 0.62

& fH88 0.019 0.017 0.021 0.89 0.90 0.84 0.93 0.77 0.63

varying θC fJ06 0.019 0.017 0.021 0.89 0.90 0.84 0.94 0.78 0.64

34



Table 2: Root mean square difference (RMSD), correlation coefficient (R) and slope be-

tween MODIS-disaggregated and PLMR-derived soil moisture. The results are for K03

and J06 combination and are evaluated for 9 November Terra and Aqua composited data

(and as the average of the statistical results obtained for Terra and Aqua data separately).

RMSD (vol./vol.) R (-) Slope (-)

D1 = D1’ 0.022 (0.024) 0.77 (0.74) 0.94 (0.87)

D2 = D2’ 0.023 (0.025) 0.78 (0.76) 1.0 (0.96)

D1 0.015 (0.018) 0.84 (0.78) 0.75 (0.72)

D2 0.016 (0.019) 0.84 (0.80) 0.86 (0.80)

D1’ 0.013 (0.017) 0.88 (0.80) 0.71 (0.67)

D2’ 0.012 (0.016) 0.90 (0.83) 0.77 (0.72)
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Figure 1: Scatterplot of the fractional vegetation cover f derived from the formulation

of Huete (1988) and Jiang et al. (2006) versus the formulation of Gutman and Ignatov

(1998).
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Figure 2: Soil evaporative efficiency βmod simulated using the model from Komatsu (2003),

Noilhan and Planton (1989) and Lee and Pielke (1992) for a range of soil moisture values.
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Figure 3: Soil parameter θC retrieved using fH88 and fJ06 against soil parameter retrieved

using fG98. Scatteplots are presented for the soil evaporative efficiency model K03 (top),

NP89 (middle) and LP92 (bottom).
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Figure 4: Image of the fractional vegetation cover f derived from G98, and of the soil parameter θC retrieved by inverting

models K03, NP89 and LP92.
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Figure 5: MODIS-disaggregated versus PLMR-derived soil moisture for downscaling rela-

tionship D1 (left) and D2 (right) for each of the three soil evaporative efficiency models

K03 (top), NP89 (middle) and LP92 (bottom). In the case where soil parameter θC is

uniform, D1 is identical to D1’ and D2 is identical to D2’.
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Figure 6: MODIS-disaggregated versus PLMR-derived soil moisture for downscaling rela-

tionship D1 (left) and D1’ (right) for each of the three soil evaporative efficiency models

K03 (top), NP89 (middle) and LP92 (bottom).
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Figure 7: MODIS-disaggregated versus PLMR-derived soil moisture for downscaling rela-

tionship D2 (left) and D2’ (right) for each of the three soil evaporative efficiency models

K03 (top), NP89 (middle) and LP92 (bottom).
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Figure 8: MODIS-disaggregated versus PLMR-derived soil moisture for 9 November Terra

and Aqua composited data and downscaling relationship D1=D1’ (a), D2=D2’ (b), D1

(c), D2 (d), D1’ (e) and D2’ (f).
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Figure 9: Image of the soil moisture disaggregated using D1=D1’ and D2’ for 9 November Terra and Aqua composited data,

as compared with the image of PLMR-derived soil moisture.
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