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Abstract

This paper presents a symbolic algorithm for computing the ODE systems which describe the

evolution of the moments associated to a chemical reaction system, considered from a stochastic

point of view. The algorithm, which is formulated in the Weyl algebra, seems more efficient than the

corresponding method, based on partial derivatives. In particular, an efficient method for handling

conservation laws is presented. The output of the algorithm can be used for a further investigation of

the system behaviour, by numerical methods. Relevant examples are carried out.

1 Introduction

This paper is concerned by the modeling of gene regulatory networks by chemical reaction systems,

from a stochastic point of view. To such systems, one associates a time varying random variable, which

counts the numbers of molecules of the various chemical species. It is well-known that the evolution,

over the time t, of the moments (mean, variance, covariance) of this random variable, may be described

by a system of ordinary differential equations (ODE), at least for first order chemical reaction systems.

See [9] for an introduction to these topics. These systems of ODE can be built from the probability

generating function associated to a given chemical reaction system, by performing, essentially, the three

following steps:

1. compute a Schrödinger equation analog [2, Eq. (5.60)] for the probability generating function

φ(t,z), where t denotes the time and z denote a vector of formal variables ;

2. compute iterated derivatives of this equation, with respect to t ;

3. evaluate the differentiated equation at z = 1.

This paper shows how to build these ODE systems by using Weyl algebra methods. The idea consists

in formulating the Schrödinger equation analog using Euler derivation operators (of the form z∂/∂ z)

instead of more traditional partial derivatives (of the form ∂/∂ z). As far as we know, this use of Weyl

algebra leads to a new algorithm which seems more efficient than the equivalent method, based on the

use of partial derivatives. This claim is not proved in this paper. It was suggested to us by the following

observations:

(i) the formulation in the Weyl algebra permits to “combine in one step” steps 2 and 3 above, and

thereby reduce the expression swell produced by step 2 (Formula (14) in Proposition 2) ;

1

samuel.vidal@math.univ-lille1.fr
michel.petitot@lifl.fr
francois.boulier@lifl.fr
francois.lemaire@lifl.fr
celine.kuttler@lifl.fr


Models of Stochastic Gene Expression and Weyl Algebra Vidal et al.

(ii) it is possible to encode, in the Schrödinger equation analog, the linear conservation laws of the

system (Algorithm of Section 5.1), and thereby take advantage of them at the very first step of the

method.

A software prototype has been developed by the second author in the MAPLE computer algebra software.

It is available, for MAPLE 12, at http://www2.lifl.fr/~petitot/publis/AB2010.zip.

The paper is organized as follows. In Section 2, one recalls the classical theory. The material can

essentially be found (often piecewise) in many texts such as [2, chapter 5] or [5]. We feel the need to

recall it in order to avoid confusions, since, depending on slight variants on the underlying assumptions,

or slight variants of notations, one may be led to different formula. Our presentation is based on stochastic

Petri nets [10, 12]. In Section 3, one introduces Weyl algebra, Euler operators, and one reformulates

the Schrödinger equation analog in this setting. In Section 4, the construction of the ODE system for

the moments, from the differential operators, is explained (Proposition 1) and the algorithm is stated.

In Section 5, the method for simplifying the Schrödinger equation analog using the conservation laws is

provided. Section 6 provides a, new, combined formula for steps 1 and 2 (Formula (14) in Proposition 2).

Some properties of the algorithm, which depend on the order of the chemical reaction system under study

are explored in Section 7. In particular, one recovers some well-known results (related to compartmental

models), from the Weyl algebra theory. Some examples are carried out in Section 8. The problem of

the “infinite cascade” is studied for order two systems. Many parts of this article can be found in [11,

Annexe A].

2 The Classical Theory

2.1 Chemical Reactions Systems

Definition 1. A chemical reaction system is given by a set of chemical species (R1,R2, . . . ,Rn), and, a

set of chemical reactions, of the following form, where α = (α1,α2, . . . ,αn), β = (β1,β2, . . . ,βn) are

multi-indices of nonnegative integers and c is a positive real valued kinetic constant1.

α1R1 + · · ·+αnRn
c
−→ β1R1 + · · ·+βnRn (1)

Such a system, denoted R, involves several reactions in general ; therefore it is a finite set of triples

(c,α,β )∈R>0×N
n×N

n. The state of the system ν = (ν1,ν2, . . . ,νn)∈N
n is the number of molecules of

the n chemical species at a given time. When reaction (1) occurs, the state vector instantaneously changes

from the current value ν to the new value ν ′ = ν −α + β . The vector α indicates the quantities of the

various species being consumed by the reaction while the vector β indicates the produced quantities. For

a reaction to occur one needs α ≤ ν , i.e. αi ≤ νi for i = 1 . . .n. An example is provided by the following

system, which is encoded by R =
{(

λ ,(2,1,0,0),(0,0,1,0)
)

,
(

µ,(0,0,1,0),(0,0,0,3)
)}

.

2R1 +R2
λ
−→ R3 , R3

µ
−→ 3R4 . (2)

2.2 Stochastic Petri Nets

Definition 2. A Petri net is a finite directed bipartite graph. Its nodes represent transitions (i.e. events

that may occur, represented by boxes) and places (i.e. conditions for the events, represented by circles).

Denote P = {p1, p2, . . . , pn} the set of places and T = {t1, t2, . . . , tm} the set of transitions. At every

instant, the place pk, (1 ≤ k ≤ n) is suposed to contain νk indistinguishable tokens. The state vector

1Called stochastic reaction constant in [4].
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ν = (ν1,ν2, . . . ,νn) ∈ N
n is the number of tokens a at given instant in the places. One denotes C− and

C+ the integer matrices where C−i, j is the number of arrows going from place p j to transition ti, and C+
i, j

is the number of arrows going from transition ti to place p j. The incidence matrix is C = C+− C−.

Definition 3. A stochastic Petri net is a Petri net enriched by a function ρ : T −→ R>0.

The category of the stochastic Petri nets is strictly equivalent to the category of chemical reaction

systems. To each transition ti ∈T , one associates a chemical reaction like (1) coded by a triple (c,α,β )∈
R>0×N

n×N
n with α = (C−i j ) j=1...n, β = (C+

i j ) j=1...n and c = ρ(ti). The incidence matrix C is then the

transpose of the stoichiometry matrix of the chemical reaction system. The correspondence holds:

token ←→ chemical molecule

place ←→ chemical species

transition ←→ chemical reaction

The chemical reaction system (2) corresponds to the Petri net of Figure 1 with associated matrices

C− =

(

2 1 0 0

0 0 1 0

)

C+ =

(

0 0 1 0

0 0 0 3

)

C =

(

−2 −1 1 0

0 0 −1 3

)

R1

R2

R3 R4! µ

Figure 1: Petri net of Example (2)

2.3 Markov Chain of the Temporisation and Master Equation

One gives the “standard temporisation” of a stochastic Petri net by associating to it a continuous time

Markov chain {N(t); t ∈ R≥0} where the vector valued random variable N(t) counts, at time t, the

number of tokens in the places of the network. Let πν(t) be the probability that the process be in state

N(t) = ν at time t. The master-equation [3] of a Markov chain is a linear differential system governing

the evolution, over time, of the row vector π(t) = (πν(t);ν ∈ N
n). It is written as follows:

d

dt
π(t) = π(t)A . (3)

For each couple of multi-indices (α,ν) ∈ N
n×N

n, one defines the product of binomial coefficients

(

ν

α

)

=

(

ν1

α1

)(

ν2

α2

)

· · ·

(

νn

αn

)

. (4)

The Markov chain {N(t); t ∈ R≥0} associated to the stochastic Petri net R, is defined on the discrete

state space N
n. For each triple (c,α,β ) ∈R and for each state ν ≥ α one builds an arrow going from ν

to ν ′ = ν−α +β , labeled by the transition rate c
(

ν
α

)

. Schematically, this writes

(ν +α−β )
c(ν+α−β

α )
−−−−−→ (ν)

c(ν
α)

−−−−→ (ν−α +β ).
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Assume that the system is in state ν ∈ N
n at time t. The probability that the chemical reaction (c,α,β )

occurs over the time range [t, t + ε[ is ε c
(

ν
α

)

+o(ε). Then the master-equation (3) takes the form

d

dt
πν(t) = ∑

(c,α,β )∈R

c

(

ν +α−β

α

)

πν+α−β (t)− c

(

ν

α

)

πν(t) (5)

According to Definition (4), the first term of the sum is zero whenever β > ν and the second is zero

whenever α > ν . That differential system involves an infinite number of unknowns πν(t) constrained by

an infinite linear differential system. See Example (8).

2.4 The Schrödinger Equation Analog

For investigating models analytically one introduces the probability generating function [2, sect. 5.3]

φ(t,z) = ∑
ν≥0

πν(t)zν . (6)

Note that φ(t,z) also equals EzN(t)
(

i.e. the mean value of zN(t)
)

since EzN(t) = ∑ν≥0 prob(zν = zN(t))zν .

Given any chemical reaction system, it is possible to compute a general equation for φ [2, Eq. (5.60)].

This general equation is a Schrödinger equation analog. The differential operator H is a Hamiltonian.

∂

∂ t
φ(z, t) = H φ(z, t) where H = ∑

(c,α,β )∈R

c

α!

(

zβ − zα
)

(

∂

∂ z

)α

. (7)

The Hamiltonian of Example (2) is

H =
1

2
λ (z3− z2

1z2)
∂ 2

∂ z2
1

∂

∂ z2

+ µ (z3
4− z3)

∂

∂ z3

·

By differentiating the probability generating function (6) and evaluating it at z = 1 i.e. at z1 = · · · =
zn = 1, one obtains formulas which bind φ , the means and the variances of the number of molecules

of the chemical species. Here are a few examples. By a mere evaluation, one gets: φ(t,z) |z=1= 1.

Differentiate (6) with respect to any zi and evaluate at z = 1, one gets the expected value of the number

of molecules of species Ri, i.e. ENi(t)

(

∂

∂ zi

φ(z, t)

)

|z=1

= ∑νi πν(t) = ENi(t) .

Differentiate (6) twice with respect to some fixed zi and evaluate at z = 1, one gets a formula featuring the

expected value of the square of the number of molecules of Ri, denoted ENi(t)
2, together with ENi(t):

(

∂

∂ zi

∂

∂ zi

φ(z, t)

)

|z=1

= ∑νi (νi−1)πν(t) = ∑ν2
i πν(t)−νi πν(t) = ENi(t)

2−ENi(t) .

The variance of the number of molecules of Ri satisfies the well-known formula: VarNi(t) = ENi(t)
2−

(ENi(t))
2. The above formula can then be restated using ENi(t) and VarNi(t) only. Then, from the

arguments above and the Schrödinger equation analog (7), one can compute an ODE system for the

means and the variances ENi(t) and VarNi(t). The method is illustrated over the following example.

/0
λ
−→ R R

µ
−→ /0 . (8)

4



Models of Stochastic Gene Expression and Weyl Algebra Vidal et al.

30

µ2 µ4

1 2

3µ
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µ
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" "+1"#1

"µ ("+1)µ

Figure 2: The Markov chain associated to System (8)

It corresponds to the creation and degradation of mRNA by a unregulated gene. It also corresponds to

the M/M/∞ client-server system [3]. The set of triples R =
{(

λ ,(0),(1)
)

,
(

µ,(1),(0)
)}

provides a

description of that system. The Markov chain is described by the transition rates λ
(

ν
0

)

= λ and µ
(

ν
1

)

=
µν for all ν ∈ N. Using the convention π−1(t) = 0, the master-equation (5) of that Markov chain is:

d

dt
πν(t) = λ

[

πν−1(t)−πν(t)
]

+ µ
[

(ν +1)πν+1(t)−νπν(t)
]

(ν ≥ 0) , (9)

The Schrödinger equation analog (7) is:

∂

∂ t
φ(t,z) =

[

λ (z−1)+ µ(1− z)
∂

∂ z

]

φ(t,z) = λ (z−1)φ(t,z)+ µ (1− z)φz(t,z) .

In order to compute an ODE for the mean EN(t), one differentiates that relation with respect to z,

∂

∂ z

∂

∂ t
φ(t,z) = λ

[

φ(t,z)+(z−1)φz(t,z)
]

+ µ
[

−φz(t,z)+(1− z)φzz(t,z)
]

.

The partial derivatives ∂
∂ t

and ∂
∂ z

commute. At the point z = 1, this equation becomes,

∂

∂ t
φz(t,z)|z=1

= λ −µ φz(t,z)|z=1
,

d

dt
EN(t) = λ −µ EN(t) .

An ODE for EN(t) is obtained. Similar computations provide an ODE for VarN(t). The initial values

are easily obtained since, at t = 0, the expected value of N(t) is equal to the initial quantity n0 of the

chemical species and the variance of N(t) is zero. The analysis of that dynamics can be done numerically

or symbolically, depending on the instance of the problem.

Using this method, one can compute an ODE for any moment ENq(t) where q ∈N. In the particular

case of order 1 chemical reaction systems (definition 5), the ODE system is finite and one can compute

exact values of the means and the variances [2, sect. 5.3.3]. The above example has order 1.

In the general case, the ODE system is infinite, since for any q ∈N, the evolutions of the moments of

order q depend on moments of higher order (problem of the infinite cascade). It is sometimes possible to

compute exact values for the means and the variances by ad hoc arguments. Otherwise, the ODE system

needs to be truncated and one recovers a more or less usable approximation. The truncation, which is

obtained by assuming that random variables Ni(t) are independent, provides the classical deterministic

model, which is used when the number of molecules is large.

3 Reformulation in the Weyl Algebra

In this section, one introduces the properties of the Weyl algebra, which are needed to understand the

Algorithm of Section 4 and one reformulates the construction of the Hamiltonian (7).

The Weyl algebra WeylR(z1, . . . ,zn) = R[z1,z2, . . . ,zn] [∂z1
,∂z2

, . . . ,∂zn
] is the algebra of differential

operators defined on the affine algebraic manifold R
n. It is a non-commutative algebra generated by the

5
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symbols zk and ∂zk
for k = 1 . . .n constrained by the commutation relations [∂zi

, z j] = 1 is i = j else 0.

For all α,β ∈ N
n, denote zα = z

α1

1 z
α2

2 . . .zαn
n and ∂

β
z = ∂

β1
z1

∂
β2
z2

. . .∂
βn
zn

. For each element zα∂
β
z , define

the degree degzα∂
β
z as |α| − |β |, and the order ordzα∂

β
z as |β |, where |α| = α1 + α2 + · · ·+ αn and

|β |= β1 +β2 + · · ·+βn.

One now defines the evaluation of a differential operator. Any element D ∈WeylR(z1, . . . ,zn) can

be written in a unique way as a finite sum of terms fν ∂ ν
z where ν ∈ N

n, and where fν ∈ R[z1,z2, . . . ,zn]
defines a function R

n→ R. This allows to define the evaluation of D at a point p ∈ R
n:

D|p = ∑
ν

fν(p)∂ ν
z . (10)

The operator D|p : R[z1,z2, . . . ,zn]→R is defined in a coordinate free way by setting D|p(h) = D(h)|p for

any function h ∈ R[z1,z2, . . . ,zn]. The term D(h)|p denotes the real number obtained by evaluating the

function D(h) at p. The evaluation does not commute with the multiplication of the algebra WeylR(z).

One now reformulates the Schrödinger equation analog, using “falling powers” and Euler operators.

Falling powers are defined by xp = x(x−1)(x−2) · · ·(x− p + 1), where p ∈ N. Then, binomial coeffi-

cients can be reformulated as follows:
(

x
p

)

= (1/p!)xp . Euler operators are defined by θk = zk ∂/∂ zk.

For any α ∈ N
n, one defines θ α = θ

α1

1 θ
α2

2 · · ·θ
αn
n . The following lemma is well-known:

Lemma 1. For any α ∈ N
n, one has θ α = zα

(

∂

∂ z

)α

·

Given any chemical reaction system, the Schrödinger equation analog (7) which governs the prob-

ability generating function (6) can be formulated in the Weyl algebra as follows. The formula can be

justified by using Formula (7) and Lemma 1. The Hamiltonian H belongs to WeylR(z). It is a linear

operator acting on the formal series in the variables (z1,z2, . . . ,zn).

H = ∑
(c,α,β )∈R

c

α!

(

zβ−α −1
)

θ α . (11)

The Hamiltonian of Example (2) now writes:

H =
1

2
λ

(

z3

z2
1z2

−1

)

θ1(θ1−1)θ2 + µ

(

z3
4

z3

−1

)

θ3 .

4 The Algorithm

One first proves Proposition 1, which permits our algorithm to convert differential operators into ordinary

differential equations for the moments, hence for the desired means and variances. Then the algorithm is

stated.

As N(t) is a (time dependent) random variable taking values in N
n, one can consider any ran-

dom variable of the form f (N(t)) where f : N
n → R is a polynomial function coded by an element

f ∈R[θ1,θ2, . . . ,θn]. Observe that f is also an element of the algebra WeylR(z). For example, to the poly-

nomial f = θ 2
1 θ2 +3θ1 ∈R[θ1,θ2], one can associate: the operator f (θ) = θ 2

1 θ2 +3θ1 ∈WeylR(z1,z2) ;

the number f (ν) = ν2
1 ν2 + 3ν1 ∈ R ; the random variable f (N(t)) = N2

1 (t)N2(t) + 3N1(t) defined on

N
2 with value in R ; the commutator [ f (θ),H] = f (θ)H −H f (θ) ; and the evaluated commutator,

[ f (θ),H]|z1=z2=1
, which is a polynomial in R[θ1,θ2]. The mean value of the random variable f (N(t)) is,

by definition, E f (N(t)) = ∑ν f (ν)πν(t).

6
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Lemma 2. For any polynomial f ∈ R[θ1,θ2, . . . ,θn], interpreted as a differential operator acting on the

generating series φ(t,z), one has: E f (N(t)) = f (θ) EzN(t)
|z=1

.

Proof. One checks that for any ν ∈ N
n, one has f (θ)zν = f (ν)zν . It follows that f (θ)φ(t,z) =

∑ν f (ν)πν(t)zν . Evaluating at z = 1, one gets: f (θ) EzN(t)
|z=1

= ∑ν f (ν)πν(t) = E f (N(t).

Proposition 1. Given any polynomial f ∈ R[θ1,θ2, . . . ,θn], denote fH(θ) = [ f (θ),H]z=1. Then

d

dt
E f (N(t)) = E fH(N(t)) .

Proof. One starts from the Schrödinger equation analog ∂
∂ t

φ(t,z) = H φ(t,z). The partial derivation ∂/∂ t

commutes with the operator f (θ) and the evaluation at z = 1. Thus ∂/∂ t f (θ)φ(t,z)|z=1
= f (θ)H φ(t,z)|z=1

.

The first member is equal to d/dt E f (N(t)) according to Lemma 2. In the second member, one can re-

place the product f (θ)H by the commutator [ f (θ),H] since, according to Formula (11), the Hamiltonian

H is zero at z = 1. The second member is equal to E fH(N(t)) by Lemma 2.

The Algorithm

Input: A stochastic Petri net R and a maximum order q ∈ N.

Output: A linear differential system characterizing the time evolution of moments, up to degree q.

(i) Compute the Hamiltonian H of R using formula (11).

(ii) For all multi-indices κ ∈ N
n such that |κ| ≤ q, compute the commutator evaluated at z = 1

fκ = [θ κ , H]z=1, ( fκ ∈ R[θ1, . . . ,θn]) , (12)

Then generate the linear differential equation
d

dt
ENκ(t) = E fκ(N(t)), using Proposition 1.

The polynomial fκ in Formula (12) can be computed in different ways. It can be computed by using a

smart computation of the Lie bracket (which avoids the expansion of the Lie bracket by computing θ κH

and then substracting H θ κ ) and a specialization to z = 1. Otherwise, one can compute fκ = θ κ H|z=1

since the term Hθ κ
|z=1

cancels. An even better formula is given in Section 6, which avoids Weyl algebra

and only relies on basic operations on commutative polynomials in θ .

The returned ODE system is truncated. Thus, some ODE may, in general, depend on moments of

order higher than q, for which no ODE is generated. This problem does not occur in Example (8). The

Hamiltonian is

H = λ (z−1)+ µ

(

1

z
−1

)

θ with θ = z
∂

∂ z
.

The algorithm computes the brackets

[θ ,H]z=1 = λ −µθ , [θ 2,H]z=1 = λ +(2λ + µ)θ −2µθ 2 .

and returns the differential system

d

dt
EN(t) = λ −µ EN(t) ,

d

dt
EN2(t) = λ +(2λ + µ)EN(t)−2µ EN2(t) .

The variance is computed using VarN(t) = EN2(t)−(EN(t))2. The dynamics of the mean x(t) = EN(t)
and the variance v(t) = VarN(t) follows immediately.

d

dt
x(t) = λ −µx(t) ,

d

dt
v(t) = λ + µx(t)−2µv(t) .

7
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5 Model Reduction, Model Restriction and Conservation Laws

Definition 4. Let λ be a n-dimensional vector of integers. A conservation law Iλ is a linear combination

of the following form, with integer coefficients, which is conserved by each transition of the considered

Petri net.

Iλ (ν) = λ1ν1 +λ2ν2 + · · ·+λnνn, (ν ∈ N
n, λ ∈ Z

n)

This notion is independent of the temporisation, hence of the kinetic constants associated to chemical

reactions. Recall that the incidence matrix of a Petri net is the transpose of the stoichiometry matrix of a

chemical reaction system. The next lemma is then well-known [6].

Lemma 3. Let R be a Petri net. The column vector λ = (λ1,λ2, . . . ,λn) ∈ Z
n defines a conservation law

iff Cλ = 0 where C = C+−C− is the incidence matrix of R.

5.1 Model Reduction

A conservation law Iλ induces a graduation wλ of wλ (zk) = λk and wλ (∂/∂ zk) =−λk for all k = 1 . . .n.

One moreover defines wλ (zν) = ∑k λkνk, that is Iλ (ν), for all ν ∈ N
n.

Lemma 4. Assume that a conservation law Iλ holds. Then, φ(t,z) is a formal power series, homoge-

neous for wλ , with weight wλ (φ(t,z)) = Iλ (ν0), where ν0 ∈ N
n denotes the initial state at t = 0.

Proof. As Iλ (ν) is independent of the time t, the fact that Iλ (ν) 6= Iλ (ν0) implies that πν(t) = 0 for any

t ≥ 0. The series φ(t,z) = ∑ν πν(t)zν is thus wλ -homogeneous of weight wλ (zν0).

One sets C0 = Iλ (ν0). It is an element of Z. Then the operator Iλ (θ)−C0 = ∑k λkθk−C0 vanishes

on the generating series φ(t,z) because, according to Lemma 4, one has Iλ (θ)φ(t,z) = C0φ(t,z). Every

operator of the left ideal generated in WeylR(z) by Iλ (θ)−C0 has therefore a null action on φ(t,z).

The Model Reduction Algorithm

Input: A Hamiltonian H ∈WeylR(z1, . . . ,zn) describing the evolution of N(t) = (N1(t), . . . ,Nn(t)) and a

conservation law Iλ . To simplify the exposition, λn is assumed nonzero.

Output: A reduced Hamiltonian H ′ ∈WeylR(z1, . . . ,zn−1) describing the evolution of (N1(t), . . . ,Nn−1(t)).
The new Hamiltonian H ′ is obtained from H by the following substitution

θn 7→
1

λn

[

C0− (λ1θ1 +λ2θ2 + · · ·+λn−1θn−1)
]

, zn 7→ 1 .

5.2 Model Restriction

The presence of conservation laws often enables us to bound some random variables of the model. Those

bounds in general depend on the initial state ν0 ∈ N
n. In this situation, it is possible to restrict the model

by taking a quotient of the Weyl algebra WeylR(z1, . . . ,zn) by a left ideal. The method is presented over

the following system of chemical reactions

R1 +R2
λ
−→ R3 , R3

µ
−→ R1 +R2 ,

together with initial conditions ν0 = (a,b,0) for a,b ∈ N. The Petri net R admits two conservation laws

ν1 +ν3 = a and ν2 +ν3 = b. One can therefore consider the random variable N3(t) only, with the bound

0≤ N3(t)≤min(a,b). Our software computes the Hamiltonian:

H = λ

(

z3

z1z2

−1

)

θ1θ2 + µ

(

z1z2

z3

−1

)

θ3

8
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Performing the substitutions θ1 7→ a− θ3, θ2 7→ b− θ3, z1 7→ 1 and z2 7→ 1, one gets, in WeylR(z3),
the reduced Hamiltonian H ′ = λ (z3− 1)(b−θ3)(b−θ3)+ µ (z3

−1− 1)θ3. The bound N3(t) ≤ m with

m = min(a,b) implies that the function f (ν3) = ν3(ν3−1) · · ·(ν3−m) is zero at all time t. One then gets

f (θ3) φ(t,z3) = ∑
0≤ν3≤m

πν3
(t) f (ν3)z

ν3

3 = 0, ∀t ∈ R≥0 .

The operator f (θ3) vanishes on the generating series φ(t,z3). All computations can therefore be done in

the quotient of the algebra WeylR(z3) by the left ideal generated by f (θ3). From an algorithmic point of

view, this can be achieved by Gröbner basis techniques on commutative polynomials in θ .

6 A combined formula for differentiating and evaluating

In this section, the explicit Formula (14) is given for computing fκ (Formula (12)) which are commutators

evaluated at z = 1. We believe that this formula has several advantages. First, this combined formula pro-

vides an improvement of the algorithm of Section 4. Indeed, Formula (14) can be implemented only with

basic operations on commutative polynomials in θ . Moreover, Formula (14) does not need any special-

ization z = 1. Second, all computations in the Weyl algebra can be avoided, which makes the algorithm

easier to implement since no library for computing in Weyl algebras is needed. Third, Formula (14)

might help to find interesting formulas (as in Lemma 9). Fourth, the computation of Formula (14) can be

easily mixed with the reductions detailed in section 5 by using modular exponentiations.

Lemma 5. Let A and B be two elements of WeylR(z1, . . . ,zn). Define adA(B) = [A,B]. Then

AkB =
k

∑
i=0

(

k

i

)

adi
A(B)Ak−i , (13)

where adi
A denotes the adA function composed i times.

Proof. Let t be an indeterminate. The classical identity exp(tA)B exp(−tA) = exp(t adA)(B) between

formal series in t holds (adjoint representation of a Lie group over its Lie algebra). This formula can

be rewritten as exp(tA)B = exp(t adA)(B) exp(tA) and developed with a Taylor expansion. The result is

proved by identifying the coefficients of tk in each side of

∑
k≥0

tk

k!
AkB = ∑

i, j≥0

t i+ j

i! j!
adi

A(B)A j .

Lemma 6. For all m ∈ Z and any k ∈ N, one has θ kzm = zm(m+θ)k with θ = z ∂
∂ z

.

Proof. One has adθ (zm) = [θ ,zm] = mzm. Thus, one has adi
θ (zm) = mizm for any i≥ 0. The lemma then

follows from Lemma 5 by taking A = θ and B = zm.

Let ν ∈Z
n and κ ∈N

n be two multi-indices. Denote (ν +θ)κ = (ν1 +θ1)
κ1(ν2 +θ2)

κ2 · · ·(νn +θn)
κn .

Lemma 7. The commutation relation between θ κ and zν , in WeylR(z1,z2, . . . ,zn), writes

θ κzν = zν (ν +θ)κ .

9
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Proof. The proof relies on Lemma 6. One only gives it for n = 3.

θ κ zν = (θ κ1

1 θ κ2

2 θ κ3

3 )(zν1

1 z
ν2

2 z
ν3

3 ) = (θ κ1

1 z
ν1

1 )(θ κ2

2 z
ν2

2 )(θ κ3

3 z
ν3

3 )
= z

ν1

1 (ν1 +θ1)
κ1 z

ν2

2 (ν2 +θ2)
κ2 z

ν3

3 (ν3 +θ3)
κ3

= (zν1

1 z
ν2

2 z
ν3

3 )(ν1 +θ1)
κ1(ν2 +θ2)

κ2(ν3 +θ3)
κ3 = zν (ν +θ)κ .

Proposition 2. Let R be a stochastic Petri net, the Hamiltonian of which is H. Then

[θ κ ,H]z=1 = ∑
(c,α,β )∈R

c

α!

[

(

β −α +θ
)κ
−θ κ

]

θ α , (κ ∈ N
n) . (14)

Proof. The evaluated commutator [θ κ ,H]z=1 is linear in H. One assumes, for simplicity, that a single

chemical reaction is involved, so that H = (zβ−α − 1)θ α . The proof reduces to the computation of

[θ κ , (zβ−α −1)θ α ]z=1. Lemma 7 is used to make the terms θ κ and zβ−α −1 commute. Computations

give the following formula

θ κ (zβ−α −1) = θ κ zβ−α −θ κ = zβ−α
(

β −α +θ
)κ
−θ κ .

Evaluate it at z = 1 and apply the fact that H|z=1
= 0. The proposition is proved.

7 Order of a Chemical Reaction System

In this section, one recovers well-known results on order 1 systems from the Weyl algebra theory. See

[8] and [2, sect. 5.3.3]. First, one introduces some further theoretical developments on Weyl algebra.

The algebra WeylR(z) = WeylR(z1, . . . ,zn) is associative but noncommutative. It is graded by the

degree and filtered by the order (in the sense of differential operators). It is readily checked that the

product AB of two elements A,B ∈WeylR(z) homogeneous by degree, is also homogeneous of degree

deg(A)+deg(B). The component Fq ⊂WeylR(z), q ∈ N, of the growing filtration

F : F0 ⊂F1 ⊂F2 ⊂ ·· · (15)

is the R-vector space spanned by the elements zα∂
β
z of order at most q, i.e. such that |β | ≤ q. One checks

that FkFl ⊂Fk+l for all k, l ∈N. The graded algebra associated to the filtration F is commutative [1].

It is defined by

grWeylR(z) = F0⊕F1/F0⊕F2/F1⊕·· · (16)

Definition 5. A chemical reaction system R is said to be of order q ∈ N, if each reaction (c,α,β ) ∈R

satisfies |α| ≤ q (where |α|= α1 +α2 + · · ·+αn for any α ∈ N
n).

Thus, a chemical reaction system R is of order q if every reaction of R consumes at most q

molecules. The next lemma follows immediately from Formula (11).

Lemma 8. A chemical reaction system is of order q iff its Hamiltonian H belongs to the Fq component

of the Weyl algebra filtration defined by (15).

Any polynomial f ∈R[θ1,θ2, . . . ,θn], homogeneous of degree d, defines a degree d moment E f (N(t)).

Proposition 3. In a chemical reaction system of order q, the derivative with respect to the time of a

degree d moment, only depends on other moments of order at most q+d−1.

10
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Proof. Let H ∈WeylR(z1,z2, . . . ,zn) be an order q operator i.e. H ∈Fq. If f ∈ R[θ1,θ2, . . . ,θn] is an

homogeneous polynomial of degree d, then [ f (θ),H]∈Fq+d−1. Evaluation at z = 1 provides an element

[ f (θ),H]z=1 ∈ R[θ1,θ2, . . . ,θn] of degree at most q+d−1.

Corollary 1. In a chemical reaction system, the dynamics on the mean values ENk(t), k = 1 . . .n, (i.e.

first order moments) writes as follows (k ∈N, α,β ∈N
n). Moreover, the dynamics of a first order system

is linear in the variables ENk(t).

d

dt
ENk(t) = ∑

(c,α,β )∈R

c

α!
(βk−αk) EN(t)α

Proof. One deduces θkH = ∑(c,α,β )∈R
c

α!
(βk − αk)zβ−α θ α + c

α!
(zβ−α − 1)θk θ α from Formula (11).

Evaluating at z = 1, one finds θkH |z=1
= ∑(c,α,β )∈R

c
α!

(βk−αk)θ α . Applying Lemma 2 and Proposition 1,

the formula is proved. Whenever |α| ≤ 1, α! = 1 and N(t)α = N(t)α . Moreover N(t)α = 1 iff α = 0 and

N(t)α = N j(t) if α = (0, . . . ,0,1,0, . . . ,0), the “1” occuring in jth position.

One recovers the deterministic models classically used in chemical kinetics (mass action law). For

first order systems, the deterministic model corresponds to an unbiased averaging of the random variables

Nk(t). It does not apply to covariance matrices Cov(Ni(t),N j(t)), where i, j = 1 . . .n.

8 Examples

8.1 First Order Systems

This model of non-regulated gene [7] is interesting because it was verified experimentally and because it

shows the importance of random phenomena in gene expression. The transcription of the gene produces

messenger RNAs (mRNA) which are translated into proteins:






















DNA
kR−→ DNA+mRNA (transcription)

mRNA
kP−→ mRNA+protein (translation)

mRNA
γR
−→ /0 (mRNA degradation)

protein
γP
−→ /0 (protein degradation)

(17)

The three chemical species are numbered: R1 = DNA, R2 = mRNA and R3 = protein. It admits the

conservation law ν1 = 1, which means that there is only one gene involved in the network (at all time t).

The model is reduced by setting θ1 = 1 and z1 = 1. The reduced Hamiltonian is equal to

H = kR (z2−1)+ kP (z3−1)θ2 + γR

(

z2
−1−1

)

θ2 + γP

(

z3
−1−1

)

θ3

Only two state variables remain ν = (ν2,ν3) ∈ N
2, the number of mRNA and the number of proteins at

time t. Let N(t) = (N2(t),N3(t)), be the stochastic process associated to System (17). We are going to

compute the means x2(t) = EN2(t) et x3(t) = EN3(t) and the covariance matrix xi j(t) = Cov(Ni(t),N j(t))
for i, j = 2,3. According to the algorithm of Section 4, our software computes the commutators evaluated

at the point z2 = z3 = 1:

[θ2,H]z=1 = kR− γRθ2

[θ3,H]z=1 = kPθ2− γPθ3

[θ 2
2 ,H]z=1 = kR +(2kR + γR)θ2−2γRθ 2

2

[θ2θ3,H]z=1 = kRθ3 + kPθ 2
2 +(−γR− γP)θ2θ3

[θ 2
3 ,H]z=1 = kPθ2 + γPθ3 +2kPθ2θ3−2γPθ 2

3

11
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and generates the system which describes the time evolution of the means and the covariances:

d

dt
x2 (t) = kR− γR x2(t)

d

dt
x3(t) = kP x2 (t)− γP x3(t)

d

dt
x2,2(t) = γR x2 (t)+ kR−2γR x2,2(t)

d

dt
x2,3 (t) = (−γR− γP)x2,3 (t)+ kP x2,2 (t)

d

dt
x3,3(t) = kP x2(t)−2γP x3,3(t)+2kP x2,3(t)+ γP x3(t)

(18)

Since the chemical reaction system has order 1, one obtains a linear system and the phenomenon of

the infinite cascade does not occur. For simplification, one selects a time scale such that γR = 1. The

computation of the means and the variances at the stationary state give:

x2 = kR, x3 =
kPkR

γP

, x2,2 = kR, x2,3 =
kPkR

1+ γP

, x3,3 =
kPkR (γP + kP +1)

γP (1+ γP)

This result is exact. The same formulas appear in [7] and are proved by using Langevin’s technique: the

two first equations of (18) are viewed as a deterministic model (arising from the mass action law). Then,

one incorporates in the righthand sides, two white noises, of zero average. This method is difficult to

justify theoretically. By solving the equations (18), by, sat, a Laplace transform technique, one obtains

exact formulas for the means and the variances during the transient stage.

x2(t) = kR

(

−e−t +1
)

x3(t) =
kPkR (−1+ e−γPt + γP (−e−t +1))

γP (−1+ γP)

x2,2(t) = kR

(

−e−t +1
)

x2,3(t) =

(

−e−t (1+ γP)+ γP + e−(1+γP)t
)

kRkP

γP (1+ γP)

8.2 Second Order Systems

The dynamics on the degree d moments depends on moments of degree strictly greater than d: an infinite

cascade occurs. This is the main source of difficulty. In order to break an infinite cascade there are two

possible methods

1. One can operate an approximation assuming that the centered moments of degree d are zero for

d great enough. This is a legitimate approximation whenever the number of tokens in each places

(the number of chemical molecules of each chemical species) remains high at everytime t.

2. One has a relation expressing degree d +1 moments in function of moments of degree at most d.

This case occurs, in particular, whenever random variables only take a finite number of different

values.

12
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A

g gene

A
A

A

a
a

a

transcription

translation

inhibition

messegers RNAproteins

Figure 3: Autoregulated gene

8.2.1 Autoregulated Gene

The transcription of the gene produces messenger RNA, which in turn are translated in proteins. If a

protein binds itself to the gene at the initialization of the transcription, then it is blocked (see Figure 3).

gene
λ1−→ gene+mRNA

mRNA
λ2−→ mRNA+protein

mRNA
µ1
−→ /0

protein
µ2
−→ /0

gene+protein
c1−→ blocked gene

blocked gene
c2−→ gene+protein

The four chemical species are numbered: R1 = mRNA, R2 = gene, R3 = blocked gene, R4 = protein. That

system obeys the conservation law I(ν) = ν2 +ν3, which means that the total number of “molecules” of

type gene and blocked gene remains constant. In practice, only one gene is involved. Therefore the Petri

net gets initialized with the following assumption ν2 +ν3 = 1. Considering that at any time t, ν2 +ν3 = 1,

we choose to remove the state variable ν3 putting ν3 = 1−ν2. After model reduction, the Hamiltonian

becomes,

H = λ1 (z1−1)θ2 +λ2 (z4−1)θ1

+µ1

(

1

z1

−1

)

θ1 + µ2

(

1

z4

−1

)

θ4 + c1

(

1

z2z4

−1

)

θ2θ4 + c2 (z2z4−1)(1−θ2)

One introduces the means xi(t)= ENi(t) for i = 1,2,4 and the covariance matrix xi j(t)= Cov(Ni(t),N j(t))
for i, j = 1,2,4. The random variable N2(t) is boolean (ν2 = ν2

2 ), the model restriction algorithm can

therefore be applied. The algorithm computes the brackets [θ κ ,H] in the Weyl algebra quotiented by the

left ideal spanned by the relation θ2 = θ 2
2 . The evaluation at z = 1 is performed afterwards. one gets:

[θ1,H]z=1 = −µ1θ1 +λ1θ2

[θ2,H]z=1 = c2− c2θ2− c1θ2θ4

[θ4,H]z=1 = c2 +λ2θ1− c2θ2−µ2θ4− c1θ2θ4

[θ 2
1 ,H]z=1 = µ1θ1 +λ1θ2−2µ1θ 2

1 +2λ1θ1θ2

[θ2θ1,H]z=1 = c2θ1 +λ1θ2− (µ1 + c2)θ1θ2− c1θ1θ2θ4

An infinite cascade occurs because the dynamics on the degree 2 moments involves two degree three

moments, namely the moment coded by the following operators θ1θ2θ4 and θ2θ 2
4 . To break this cas-

cade, one can use as an approximation assumption that every centered moments of degree 3 is zero.

13
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Consider three random variables (X1,X2,X3) whose respective means are (x1,x2,x3). A routine compu-

tation gives the centered moment of order three E((X1−x1)(X2−x2)(X3−x3)) as E(X1X2X3)−x1x2x3−
x1 Cov(X2,X3)− x2 Cov(X3,X1)− x3 Cov(X1,X2). We have no proof that this approximation is best fit.

Our software computes the ordinary non-linear differential equation system:

d

dt
x1 (t) = −µ1x1 (t)+λ1x2 (t)

d

dt
x2 (t) = c2− c2x2 (t)− c1x4 (t)x2 (t)− c1x2,4 (t)

d

dt
x4 (t) = c2 +λ2x1 (t)− c2x2 (t)− c1x4 (t)x2 (t)

−µ2x4 (t)− c1x2,4 (t)

d

dt
x1,1 (t) = µ1x1 (t)+2λ1x1,2 (t)+λ1x2 (t)−2 µ1x1,1 (t)

d

dt
x1,2 (t) = λ1x2 (t)− c1x1,4 (t)x2 (t)− c1x4 (t)x1,2 (t)

−(µ1 + c2)x1,2 (t)−λ1x2 (t)2

The Figures 4, 5 and 6 show the results of the numerical simulations produced by our software. We used

the following values for the parameters λ1 = 30.0, λ2 = 10.0, µ1 = µ2 = 0.1, c1 = c2 = 1.0 and the initial

conditions x1(0) = 0 (mRNA), x2(0) = 1 (gene), x3(0) = 0 (protein).

(a) Average expression rate of the

gene

(b) Accuracy test on variance

Figure 4: Autoregulated gene (boolean variable). Simulations are consistent with the fact that any

boolean variable X satifies VarX = x(1− x), where x = EX .

8.2.2 Second Order Degradation

One considers the chemical reaction

2R
µ
−→ /0 (19)

Using a time dilatation, one can assume that µ = 1. The Hamiltonian is then, with θ = z∂/∂ z:

H =
1

2

(

1

z2
−1

)

θ(θ −1) =
1

2

(

1− z2
)

(

∂

∂ z

)2

.
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(a) Average number of mRNA and proteins (b) Relative standard deviation

Figure 5: Joint evolution of mRNA and Protein number. The relative standard deviation of a random

variable X is σ/x with σ2 := VarX and x := E(X).

(a) Gene-mRNA correlation (b) Gene-protein correlation (c) mRNA-proteine correlation

Figure 6: Evolution over time of correlation rates. The correlation rate c(X ,Y ) between two random

variables X and Y is defined by c(X ,Y ) := Cov(X ,Y )
σ(X)σ(Y ) .

On this example, the dynamics on the moments EN(t)k, k = 1 . . .4 is coded by

[θ ,H]|z=1
= −θ 2 +θ

[θ 2,H]|z=1
= −2θ 3 +4θ 2−2θ

[θ 3,H]|z=1
= −3θ 4 +9θ 3−10θ 2 +4θ

[θ 4,H]|z=1
= −4θ 5 +16θ 4−28θ 3 +24θ 2−8θ

(20)

Lemma 9. For all m ∈ N, formulas (20) take the following closed form:

[θ m,H]z=1 =
1

2

[

(−2+θ)m−θ m
]

θ(θ −1) (21)

Proof. Apply Formula 14 for (c,α,β ) := (1,(2),(0)).

Let x(t) denote the mean and v(t) the variance of N(t). The previously developped approximation,

obtained by killing centered order 3 moments, then gives

d

dt
x(t) = x(t)− v(t)− (x(t))2 ,

d

dt
v(t) =−2x(t)+4v(t)+2 (x(t))2−4v(t)x(t) .

15
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This approximation method behaves badly at instants t where EN(t) is close to 1 (see Figure 7). Unfor-

tunately the situation does not improve if one keeps the centered moment up to a higher order.

Figure 7: Evolution of the mean x(t) = EN(t) over time, starting with state n0 = 8. The approximation

gets worse after x(t) crosses the value 1 (around t = 1).

We show now how to get the exact dynamics on the moments of any order. Assume, as an example,

that the initial state is n0 = 8. The function f (ν) = ν(ν−2)(ν−4)(ν−6)(ν−8) is zero at any instant t.

According to Lemma 2 and Proposition 1, we have to quotient the algebra WeylR(z) by the left ideal

spanned by the relation f (θ) = 0. This gives f (θ) = θ (θ −2)(θ −4)(θ −6)(θ −8). This one more

relation added to System (20) enables us to get order 5 moments as functions of the moments of order

at most 4. This way, one gets the exact dynamics, a linear system, describing the time evolution of the

moments xk(t) = ENk(t), for k = 1 . . .4.

d

dt
x1 (t) = x1 (t)− x2 (t)

d

dt
x2 (t) = −2x1 (t)+4x2 (t)−2x3 (t)

d

dt
x3 (t) = 4x1 (t)−10x2 (t)+9x3 (t)−3x4 (t)

d

dt
x4 (t) = 1528x1 (t)−1576x2 (t)+532x3 (t)−64x4 (t)

with the initial conditions: x1(0) = 8, x2 (0) = 64, x3 (0) = 512, x4 (0) = 4096. These linear differential

equations get solved by means of the Laplace transform:

x1(t) =
8

3
e−t +

112

33
e−6 t +

64

39
e−15 t +

128

429
e−28 t

x2(t) =
16

3
e−t +

784

33
e−6 t +

1024

39
e−15 t +

3712

429
e−28 t

x3(t) = · · ·

(22)

The infinite cascade if thereby broken by an exact method (see the simulations showed in Figure 8)

9 Conclusion

The algorithm presented in this paper permits to investigate the study of genetic regulatory networks,

considered from a stochastic point of view. The symbolic part of the algorithm prepares further numerical
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(a) Mean x(t) (b) Variance v(t)

Figure 8: Simulation of System (19), starting with state n0 = 8.

simulations. The algorithm and its theory are formulated in the Weyl algebra. However, Proposition 2

shows how to replace computations in Weyl algebra by basic operations on commutative polynomials.

This seems to produce a more efficient algorithm which combines the differentiation and evaluation

steps of the straightforward approach. The issue of the infinite cascade, well-known is statistical physics,

reduces the usefulness of the overall method. Approximation technics, useful to break it, still need some

investigation.
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Université Lille I, France, 2010. (to be defended).

[12] Murata Tadao. Petri nets: properties, analysis and applications. Proceedings of the IEEE, 77(4):541–580,

1989.

17


	Introduction
	The Classical Theory
	Chemical Reactions Systems
	Stochastic Petri Nets
	Markov Chain of the Temporisation and Master Equation
	The Schrödinger Equation Analog

	Reformulation in the Weyl Algebra
	The Algorithm
	Model Reduction, Model Restriction and Conservation Laws
	Model Reduction
	Model Restriction

	A combined formula for differentiating and evaluating
	Order of a Chemical Reaction System
	Examples
	First Order Systems
	Second Order Systems
	Autoregulated Gene
	Second Order Degradation


	Conclusion

