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ABSTRACT 

The electronic properties of InAs/InP(113)B double-cap quantum dots (QDs) emitting around 

1.55 µm are investigated. The carrier dynamics in QDs is studied by non-resonant time-

resolved photoluminescence (tr-PL) experiments. This analysis reveals the QD electronic 

structure and the transient filling of the confined QD levels. Under low excitation densities, 

the spontaneous exciton lifetime is estimated and compared to previous time-resolved 

resonant and non-resonant experiments. Under high excitation density, a direct Auger 

recombination effect is identified. The temperature analysis enables us to distinguish Auger 

and phonon-assisted relaxation processes. 
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Carrier Relaxation and band filling effects have been widely discussed in recent years 

[1,2,3,4,5,6,7,8,9,10] due to their key role in the operation of optoelectronic devices such as, 

for example, quantum dot lasers. The detailed understanding of the relaxation processes from 

a more fundamental point of view is also a field of interest. Due to the quantum confinement, 

many electronic states are present inside the quantum dot (QD), and the carrier thermalization 

process has been studied. It has been shown that efficient thermalization can occur by 

multiphonon [11,12] or Coulomb interaction process [13]. State-filling effect has also been 

analyzed in many systems. The excited states photoluminescence (PL) signal has been clearly 

evidenced at high excitation density [14,15,16,17,18,19]. Auger relaxation effects have also 

been investigated. It has been shown it is the dominant effect under high excitation density 

[20,21]. Theoretical studies pointed out that Auger transfer is extremely fast for example in 

InAs/GaAs QDs [22,23].  

Despite all these analyses, informations about the carrier dynamics in InAs/InP QDs 

are still lacking. These QDs are more suitable for telecom applications since they emit in the 

1.55 µm wavelength region. An original growth method has been proposed to obtain 

InAs/InP(113)B quantum dots with a tunable emission energy [24,29]. These structures, 

named double-cap quantum dots (DC-QDs), have been analyzed both theoretically [25,26] 

and experimentally [27,28,29], and yield a laser emission at 1.55 µm [29,30]. Confined 

electronic states have been identified, but informations on the dynamic properties of these 

levels are scarce. In this paper, we present a systematic study of the optical and electronic 

properties of the DC-QDs by using tr-PL spectroscopy. We deduce the exciton radiative 

lifetime of the confined levels and identify the relaxation processes.  

The QDs are obtained by the spontaneous Stranski-Krastanow growth mode after the 

deposition of 2.1 InAs monolayers (ML) at 480°C on InP(311)B substrate with a gas source 

molecular beam epitaxy system. The double-cap (DC) growth method [27] is then used to 
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control the QD maximum height. The maximum height of the QDs we analyze here is of 2 nm 

[27], and the average QD diameter if of about 35 nm. The surface density is of about 1010 cm-

2 [28]. Samples are characterized by time-resolved photoluminescence spectroscopy (tr-PL) at 

low temperature. The experiments are performed at 10 K using a 790 nm mode-locked Ti-

Sapphire laser (excitation in the InP barrier) producing 1.2 ps-long light pulses with a 

repetition rate of about 82 MHz. The tr-PL of the ensemble of QDs is then recorded by using 

either a streak camera or up-converting the luminescence signal in a nonlinear crystal with a 

time resolution of 20 ps and 1.2 ps respectively [28,34]. The luminescence peak of the chosen 

2 nm DC QD excitonic ground state (QD0) is located at 0.94 eV (1.32 µm) at T=10 K. For 

this emission energy, the performances of the detectors are better than for DC QD with a 

maximum height equal to 3 nm emitting at 0.85 eV (1.55 µm at room temperature). 

Tr-PL spectra obtained by the up-conversion set-up for various times after excitation 

are shown on figure 1. The spectra are fitted with three peaks at energy positions 

corresponding to the excitonic states recorded in our previous studies [27] : the QD excitonic 

ground state (QD0) at 0.94 eV, the QD first excited excitonic state (QD1) at 0.99 eV and the 

wetting layer excitonic ground state (WL at 1.05 eV). We can notice that at short times (t~10 

ps), the emission of the WL state is the most important one. The QD0 ground state emission is 

however also observed, due to the possible direct carrier injection channels from the barrier to 

the QD0 state. For longer times, the carrier population in high energy states diminish either by 

light emission or by relaxation to the ground state QD0. A systematic study was performed 

with the streak camera. Spectra obtained at 10 K with various optical excitation densities for a 

long time (1650 ps) after excitation are reported in Fig. 2-a. These spectra are very similar 

whatever the excitation density is. They are equivalent to the one obtained at short times after 

excitation with a low incident optical power (figure 2-b). In this case indeed (150 ps, 16 

W.cm-2), the luminescence of the QD excitonic ground state (QD0, 0.94 eV), and the wetting 
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layer (WL, 1.05 eV) are observed. When the excitation density increases, from 45 to 57 

W.cm-2, a luminescence signal appears at about 0.99 eV. It corresponds to the luminescence 

of the QD first excited state (QD1) also identified in ref. 27. Then, when the excitation density 

is further increased, we observe a stabilization of the careers in the WL and the QD1 states, 

and then an corresponding intense luminescence. This behavior reveals the progressive filling 

of the QD1 and the QD0  levels. This analysis shows that the state filling plays an important 

role in the QD dynamics and emission properties. It can, for instance, explain the slight shift 

to high energies of the QD0 peak that can be observed in Fig. 2-a at long times after excitation 

for high exciation densiy. We have performed an estimation of the average number of 

excitons per QD produced by the optical excitation. It can be estimated with : 
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with excP  the average excitation density, νh  the energy of incident photons, f  the laser 

repetition rate, α  the absorption coefficient of the InP barrier (~ 104 cm-1), L the InP barrier 

thickness (30 nm) and transT  the air/InP interface transmission coefficient. The filling of the 

QD1 level observed at an optical density of 45 W.cm-2 corresponds here to an average exciton 

number per dot of 3. It shows that the filling of the QD1 level is associated mainly to a 

saturation of the QD0 level after formation of the biexciton ground state. 

We have also performed an analysis of the QD0 level radiative lifetime. Many studies 

have already been done yet in quantum wires [31] and quantum dots [32,33]. A direct 

experimental method is to use resonant excitation [34, 35]. In a pump-probe experiment, we 

have already studied DC-QD but emitting at 0.8eV at room temperature [35]. In the present 

work, we study the QD0 radiative lifetime of our DC-QD with non-resonant excitation 

measurements. In addition to the radiative process, relaxations from higher energy states and 

saturation of the ground state must be taken into account in these conditions. As the capture 



 5 

process to the QD0 state depends on the excitation density, we analyzed the QD0 decay time 

under low excitation density. The measured QD0 decay times are reported in Fig. 3 as a 

function of the excitation density and of the calculated number of exciton per QD. Under low 

excitation density, when the average number of carriers per dot is about 1, the decay time is 

constant, of about τ∼1150 ps. Under this regime, the QD0 level is not saturated (the average 

population per dot is smaller than 1), and we assume then that the exciton recombines with a 

characteristic time close to the radiative lifetime. This value has been compared to theory. In 

the strong confinement regime, the spontaneous emission rate is given by the Einstein’s 

coefficient : 
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This coefficient can be written by considering only a transition between the electron and the 

heavy-hole [34,36]: 
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The envelope wave function overlapping coefficient 
2

VC FF  is calculated using a model 

described elsewhere [28]. We find 
2

VC FF = 0.92 for the fundamental transition. The use of 

the Kane’s energy 1.21=pE eV and the InAs optical index 9.3=opn  leads to the 1se-1sh 

radiative lifetime values of 1200 ps for QD with a height of 2 nm and a diameter of 35 nm. 

This calculated value is in very good agreement with the measured one. 

 The different rise and decay times measured at energies corresponding to the WL, 

QD0, and QD1 levels suggest the presence of cascade relaxation path. Moreover, we observed 

variations of rise and decay times measured under different temperature and excitation 
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regime. This could be interpreted as the coexistence of two relaxation processes : Auger and 

phonon relaxation processes. To check this point, a detailed study has been done by 

measuring the tr-PL rise times 0QD
rτ  (Fig. 4-a) and 1QD

rτ  (Fig. 4-b) of QD0 and QD1 levels 

respectively as a function of both excitation density and temperature. Under high excitation 

density, the measured rise times of both levels are independent of temperature (τ~30 ps) ; it is 

probably limited by the time-resolution of the Streak camera set-up. The Auger relaxation 

process is dominant in this regime, yielding a very fast relaxation process. On the contrary, 

under weak excitation density, the rise times decrease with temperature. This reveals a strong 

influence of the phonon relaxation which is the dominating process in this regime. This 

behavior has been observed in InAs/GaAs quantum dots [2]. It has been shown that 

multiphononic relaxation process is strongly temperature dependent ; different types of 

phonons are present in this last system, leading to a reinforcement of the effective electron-

phonons coupling [37,38] and the possibility of multiphononic relaxation [39]. Theoretical 

studies have shown that the Huang-Rhys factor, representing the strength of the electron-

phonon coupling, increases with the size of the dot. Experimental results also confirm that this 

factor is enhanced by a factor 5 in InAs/GaAs quantum dots in comparison with bulk InAs 

[37]. These interpretations could explain the strong influence of phonons in exciton relaxation 

in our system. In a study of InAs/GaAs QD combining quasi-resonant and non-resonant 

TRPL experiment, Ohnesorge et al [2] have dissociated the relaxation process (phonon and 

Auger) of carriers. They used a three level model involving the GaAs matrix and two 

confined states in the InAs QD. This model can be considered as equivalent to ours if we take 

into account three levels constituted by the WL and the two QD confined states QD0 and QD1. 

They showed that, under weak excitation density, the rise time of the fundamental 0QD
rτ  level 

can be written : 
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This equation corresponds, according to them, to a cascade relaxation of excitons between the 

three considered levels assisted by phonon emission. Ohnesorge et al. then analyzed the effect 

of optical excitation density. They evidenced that, under strong excitation regime, 

luminescence decay time of the barrier 1

1

QD
rQDBarrier ττ =→  is close to 0QD

rτ , the rise time of the 

fundamental level. Thus, they evidenced a direct Auger effect responsible for the direct 

capture from the barrier into the dot. The relation 10 QD
r

QD
r ττ →  implies then, according to 

equation (2), 0
01

→→QDQDτ  under strong excitation regime. Moreover, the decay time of the 

first excited level QD1 can be written : 

1
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Then, if the condition 0
01

→→QDQDτ  is realized, that is to say that a direct efficient Auger 

effect can occur, one can induce it yields a decrease of the QD1 photoluminescence level 

decay time. We can approximate our system as equivalent to the one described in Ref. 2: three 

levels corresponding to a WL level and two QD confined states. The QD1 decay times have 

been measured and the values reported in Fig. 4-c for different excitation powers. The spectra 

clearly show a reducing of the QD1 decay time. This behavior, if we rely on the results of 

Ohnesorge et al., evidence then in our three level system the presence of a direct Auger 

relaxation effect, where carriers directly relax from the WL into the QD0 level.  

 

Conclusion 

We analyzed the carrier relaxation processes in InAs/InP(113)B double-cap quantum dots. 

We showed the progressive filling of the identified confined levels QD0 and QD1 with the 

number of photo-generated carriers. The QD1 level starts filling with an average number of 

carriers per dot of about 3. We have also measured the QD fundamental level radiative 
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lifetime which is in agreement with the theoretical value. By varying both temperature and 

optical excitation density, we managed to dissociate the Auger relaxation process from 

phonon relaxation process in our three level system. The analysis of the QD1 

photoluminescence decay time with the excitation density has confirmed the presence of a 

direct Auger effect, responsible for the direct capture of carrier from the WL into the QD 

fundamental level.  
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Figure Caption 

Figure 1 : PL spectra recorded at 10 K with the up-conversion setup at different times after 

excitation (10, 600 and 1500 ps) for an excitation density of Iexc= 70 W.cm-2. 

 

Figure 2 : Tr-PL spectra of QD1 level extracted from the streak camera data at 10 K for 

different excitation densities at (a) long times (1650 ps) and (b) short times (150 ps) after 

excitation. The excitation densities are Iexc =16, 45, 57, 74, 155 and 230 W.cm-2  

 

Figure 3 : QD0 decay time reported as a function of the optical excitation density and the 

calculated average number of exciton per QD. The inset shows a typical kinetics from which 

the decay times are measured. T=10 K 

 

Figure 4 : Evolution of the rise times a) 0QD
rτ of the fundamental (QD0) and b) 1QD

rτ  of the first 

exited state (QD1) as a function of the temperature. The plotted data correspond to two 

excitation regimes: strong (200 W.cm-2) and weak excitation density (18 W.cm-2). Dashed 

lines are a guide for the eye. Time evolution spectra recorded at 10 K and at the energy of the 

first excited state (QD1) level for different excitation densities are reported in c). 

 

 

 


