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Introduction

Since its introduction in a centralized context [START_REF] Prim | Shortest connection networks and some generalizations[END_REF][START_REF] Kruskal | On the shortest spanning subtree of a graph and the travelling salesman problem[END_REF], the minimum spanning tree (or MST) problem gained a benchmark status in distributed computing thanks to the seminal work of Gallager, Humblet and Spira [START_REF] Gallager | A distributed algorithm for minimum-weight spanning trees[END_REF].

The emergence of large scale and dynamic systems, often subject to transient faults, revives the study of scalable and self-stabilizing algorithms. A scalable algorithm does not rely on any global parameter of the system (e.g. upper bound on the number of nodes or the diameter). Self-stabilization introduced first by Dijkstra in [START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF] and later publicized by several books [START_REF] Dolev | Self-Stabilization[END_REF][START_REF] Tel | Introduction to distributed algorithm[END_REF] deals with the ability of a system to recover from catastrophic situation (i.e., the global state may be arbitrarily far from a legal state) without external (e.g. human) intervention in finite time.

Although there already exists self-stabilizing solutions for the MST construction, none of them considered the extension of the Gallager, Humblet and Spira algorithm (GHS) to selfstabilizing settings. Interestingly, this algorithm unifies the best properties for designing large scale MSTs: it is fast and totally decentralized and it does not rely on any global parameter of the system. Our work proposes an extension of this algorithm to self-stabilizing settings. Our extension uses only logarithmic memory and preserves all the good characteristics of the original solution in terms of convergence time and scalability.

Gupta and Srimani presented in [START_REF] Sandeep | Self-stabilizing multicast protocols for ad hoc networks[END_REF] the first self-stabilizing algorithm for the MST problem. The MST construction is based on the computation of all shortest paths (for a certain cost function) between all pairs of nodes. While executing the algorithm, every node stores the cost of all paths from it to all the other nodes. To implement this algorithm, the authors assume that every node knows the number n of nodes in the network, and that the identifiers of the nodes are in {1, . . . , n}. Every node u stores the weight of the edge e u,v placed in the MST for each node v = u. Therefore the algorithm requires Ω( v =u log w(e u,v )) bits of memory at node u. Since all the weights are distinct integers, the memory requirement at each node is Ω(n log n) bits. The main drawback of this solution is its lack of scalability since each node has to know and maintain information for all the nodes in the system. Note also that the time complexity announced by the authors, O(n) stays only in the particular synchronous settings considered by the authors. In asynchronous setting the complexity is Ω(n 2 ) rounds. A different approach for the message-passing model, was proposed by Higham and Liang [START_REF] Higham | Self-stabilizing minimum spanning tree construction on message-passing networks[END_REF]. The algorithm performs roughly as follows: every edge checks whether it eventually belongs to the MST or not. To this end, every non tree-edge e floods the network to find a potential cycle, and when e receives its own message back along a cycle, it uses the information collected by this message (i.e., the maximum edge weight of the traversed cycle) to decide whether e could potentially be in the MST or not. If the edge e has not received its message back after the time-out interval, it decides to become tree edge. The memory used by each node is O(log n) bits, but the information exchanged between neighboring nodes is of size O(n log n) bits, thus only slightly improving that of [START_REF] Sandeep | Self-stabilizing multicast protocols for ad hoc networks[END_REF]. This solution also assume that each node has access to a global parameter of the system: the diameter. Its computation is expensive in large scale systems and becomes even harder in dynamic settings. The time complexity of this approach is O(mD) rounds where m and D are the number of edges and the diameter of the network respectively, i.e., O(n 3 ) rounds in the worst case.

In [START_REF] Blin | A New Selfstabilizing Minimum Spanning Tree Construction with Loop-Free Property[END_REF] we proposed a self-stabilizing loop-free algorithm for the MST problem. Contrary to previous self-stabilizing MST protocols, this algorithm does not make any assumption on the network size (including upper bounds) or the unicity of the edge weights. The proposed solution improves on the memory space usage since each participant needs only O(log n) bits while preserving the same time complexity as the algorithm in [START_REF] Higham | Self-stabilizing minimum spanning tree construction on message-passing networks[END_REF].

Clearly, in the self-stabilizing implementation of the MST algorithms there is a trade-off between the memory complexity and their time complexity (see Table 1, where a boldface denotes the most useful (or efficient) feature for a particular criterium). The challenge we address in this paper is to design fast and scalable self-stabilizing MST with little memory. Our approach brings together two worlds: the time efficient MST constructions and the memory compact informative labeling schemes. Therefore, we extend the GHS algorithm to self-stabilizing settings and keep compact its memory space by using a self-stabilizing extension of the nearest common ancestor labeling scheme of [START_REF] Stephen | Nearest common ancestors: a survey and a new algorithm for a distributed environment[END_REF]. Note that labeling schemes have already been used in order to infer a broad set of information such as vertex adjacency, distance, tree ancestry or tree routing [START_REF] Bein | Self-Stablizing Pivot Interval Routing in General Networks[END_REF], however none of these schemes have been studied in self-stabilizing settings (except the last one).

Our contribution is therefore twofold. We propose for the first time in self-stabilizing settings a O(log 2 n) bits scheme for computing the nearest common ancestor. Furthermore, based on this scheme, we describe a new self-stabilizing algorithm for the MST problem. Our algorithm does not make any assumption on the network size (including upper bounds) or the existence of an a priori known root. Moreover, our solution is the best space/time compromise over the existing self-stabilizing MST solutions. The convergence time is O(n 2 ) asynchronous rounds and the memory space per node is O(log 2 n) bits. Interestingly, our work is the first to prove the effectiveness of an informative labeling scheme in self-stabilizing settings and therefore opens a wide research path in this direction. a priori knowledge space complexity convergence time [START_REF] Sandeep | Self-stabilizing multicast protocols for ad hoc networks[END_REF] network size and O(n log n) Ω(n 2 ) the nodes in the network [START_REF] Higham | Self-stabilizing minimum spanning tree construction on message-passing networks[END_REF] upper bound on diameter 

O(log n) O(n 3 ) +messages of size O(n log n) [2] none O(log n) O(n 3 ) This paper none O(log 2 n) O(n 2 )

Model and notations

We consider an undirected weighted connected network G = (V, E, w) where V is the set of nodes, E is the set of edges and w : E → R + is a positive cost function. Nodes represent processors and edges represent bidirectional communication links. Additionally, we consider that G = (V, E, w) is a network in which the weight of the communication links may change value.

The processors asynchronously execute their programs consisting of a set of variables and a finite set of rules. The variables are part of the shared register which is used to communicate with the neighbors. A processor can read and write its own registers and can read the shared registers of its neighbors. Each processor executes a program consisting of a sequence of guarded rules. Each rule contains a guard (Boolean expression over the variables of a node and its neighborhood) and an action (update of the node variables only). Any rule whose guard is true is said to be enabled. A node with one or more enabled rules is said to be privileged and may make a move executing the action corresponding to the chosen enabled rule.

A local state of a node is the value of the local variables of the node and the state of its program counter. A configuration of the system G = (V, E) is the cross product of the local states of all nodes in the system. The transition from a configuration to the next one is produced by the execution of an action at a node. A computation of the system is defined as a weakly fair, maximal sequence of configurations, e = (c 0 , c 1 , . . . c i , . . .), where each configuration c i+1 follows from c i by the execution of a single action of at least one node. During an execution step, one or more processors execute an action and a processor may take at most one action. Weak fairness of the sequence means that if any action in G is continuously enabled along the sequence, it is eventually chosen for execution. Maximality means that the sequence is either infinite, or it is finite and no action of G is enabled in the final global state.

In the sequel we consider the system can start in any configuration. That is, the local state of a node can be corrupted. Note that we don't make any assumption on the bound of corrupted nodes. In the worst case all the nodes in the system may start in a corrupted configuration. In order to tackle these faults we use self-stabilization techniques.

Definition 1 (self-stabilization) Let L A be a non-empty legitimacy predicate1 of an algorithm A with respect to a specification predicate Spec such that every configuration satisfying L A satisfies Spec. Algorithm A is self-stabilizing with respect to Spec iff the following two conditions hold: (i) Every computation of A starting from a configuration satisfying L A preserves L A ( closure). (ii) Every computation of A starting from an arbitrary configuration contains a configuration that satisfies L A ( convergence).

Overview of our solution

We propose to extend the Gallager, Humblet and Spira (GHS) algorithm, [START_REF] Gallager | A distributed algorithm for minimum-weight spanning trees[END_REF], to self-stabilizing settings via a compact informative labeling scheme. Thus, the resulting solution presents several advantages appealing for large scale systems: it is compact since it uses only logarithmic memory in the size of the network, it scales well since it does not rely on any global parameter of the system, it is fast -its time complexity is the better known in self-stabilizing settings. Additionally, it self-recovers from any transient fault.

The central notion in the GHS approach is the notion of fragment. A fragment is a partial spanning tree of the graph, i.e., a fragment is a tree which spans a subset of nodes. Note that a fragment can be limited to a single node. An outgoing edge of a fragment F is an edge with a unique endpoint in F . The minimum-weight outgoing edge of a fragment F is denoted in the following as ME F . In the GHS construction, initially each node is a fragment. For each fragment F , the GHS algorithm in [START_REF] Gallager | A distributed algorithm for minimum-weight spanning trees[END_REF] identifies the ME F and merges the two fragments endpoints of ME F . Note that, with this scheme, more than two fragments may be merged concurrently. The merging process is recursively repeated until a single fragment remains. The result is a MST. The above approach is often called "blue rule" for MST construction.

This approach is particularly appealing when transient faults yield to a forest of fragments (which are sub-trees of a MST). The direct application of the blue rule allows the system to reconstruct a MST and to recover from faults which have divided the existing MST. However, when more severe faults hit the system the process variables may be corrupted leading to a configuration of the network where the set of fragments are not sub-trees of some MST. That is, it may be a spanning tree but not of minimum weight, or it can contain cycles. In this case, the application of the blue rule only is not sufficient to reconstruct a MST. To overcome this difficulty, we combine the blue rule with another method, referred in the literature as the "red rule". The red rule removes the heaviest edge from every cycle. The resulting configuration contains a MST. We use the red rule as follows: given a spanning tree T of G, every edge e of G that is not in T is added to T , thus creating a (unique) cycle in T ∪ {e}. This cycle is called a fundamental cycle, denoted by C e . If e is not the edge of maximum weight in C e , then, according to the red rule, there exists an edge f = e in C e with w(f ) > w(e). The edge of maximum weight can be removed since it is not part of any MST.

Our MST construction combines both the blue and red rules. The blue rule application needs that each node identifies its own fragment. The red rule requires that nodes identify the fundamental cycle corresponding to every adjacent non-tree-edge. In both cases, we use a self-stabilizing labeling scheme, called NCA-L, which provides at each node a distinct informative label such that the nearest common ancestor of two nodes can be identified based only on the labels of these nodes (see Section 3.1). Thus, the advantage of this labeling is twofold. First the labeling helps nodes to identify their fragments. Second, given any non-tree edge e = (u, v), the path in the tree going from u to the nearest common ancestor of u and v, then from there to v, and finally back to u by traversing e, constitute the fundamental cycle C e .

To summarize, our algorithm will use the blue rule to construct a spanning tree, and the red rule to recover from invalid configurations. In both cases, it uses our algorithm NCA-L to identify both fragments and fundamental cycles. Note that, in [START_REF] Park | Distributed Algorithms for Reconstructing MST after Topology Change[END_REF][START_REF] Park | Efficient distributed algorithm to solve updating minimum spanning tree problem[END_REF] distributed algorithms using the blue and red rules to construct a MST in a dynamic network are proposed, however these algorithms are not self-stabilizing.

Variables used by NCA-L and MST modules For any node v ∈ V (G), we denote by N (v) the set of all neighbors of v in G. We use the following notations:

• p v : the parent of v in the current spanning tree, an integer pointer to a neighbor;

• ℓ v : the label of v composed of a list of pairs of integers where each pair is an identifier and a distance (the size of ℓ v is bounded by O(log 2 n) bits);

• size v : a pair of variables, the first one is an integer the number of nodes in the sub-tree rooted at v and the second one is the identifier of the child u of v with the maximum number of nodes in the sub-tree rooted at u;

• mwe v : the minimum weighted edge composed by a pair of variables, the first one is an integer, the weight of the edge and the second one is the label of a node u stored in ℓ u .

Self-stabilizing Nearest Common Ancestor Labeling

Our labeling scheme, called in the following NCA-L, uses the notions of heavy and light edges introduced in [START_REF] Harel | Fast algorithms for finding nearest common ancestors[END_REF]. In a tree, a heavy edge is an edge between a node u and one of its children v of maximum number of nodes in its sub-tree. The other edges between u and its other children are tagged as light edges. We extend this edge designation to the nodes, a node v is called heavy node if the edge between v and its parent is a heavy edge, otherwise v is called light node.

Moreover, the root of a tree is a heavy node. The idea of the scheme is as follows. A tree is recursively divided into disjoint paths: the heavy and the light paths which contain only heavy and light edges respectively.

-

Child ≡ {u ∈ N (v) : p u = Id v } -SizeC(v) ≡ Leaf(v) ∨ (size v = (1 + u∈Child(v) size u , arg max{size u : u ∈ Child(v)})) -Leaf(v) ≡ ( ∃u ∈ N (v), p u = Id v ) ∧ size v = (1, ⊥) -Label(v) ≡ Label R (v) ∨ Label N d (v) -Label R (v) ≡ (p v = ∅ ∧ ℓ v = (Id v , 0)) -Label N d (v) ≡ p v ∈ N (v) ∧ (Heavy(v) ∨ Light(v)) -Heavy(v) ≡ size p v [1] = Id v ∧ size v [0] < size p v [0] ∧ last(ℓ p v )[1] + 1 = last(ℓ v )[1] -Light(v) ≡ size p v [1] = Id v ∧ size v [0] ≤ size p v [0]/2 ∧ ℓ v = ℓ p v .(Id v , 0) -nca(u, v) ≡            ℓ.(a 0 , a 1 ) s.t. ℓ u ∩ ℓ v = ℓ, ℓ u = ℓ.(a 0 , a 1 ).ℓ ′ u if (a 0 = b 0 ∨ ℓ = ∅) and ℓ v = ℓ.(b 0 , b 1 ).ℓ ′ v ∧ℓ u ≺ ℓ v ℓ.(b 0 , b 1 ) s.t. ℓ u ∩ ℓ v = ℓ, ℓ u = ℓ.(a 0 , a 1 ).ℓ ′ u if (a 0 = b 0 ∨ ℓ = ∅) and ℓ v = ℓ.(b 0 , b 1 ).ℓ ′ v ∧ℓ v ≺ ℓ u ∅ otherwise -Cycle(v) ≡ ℓ v ⊂ ℓ p v ∨ ℓ v ≺ ℓ p v -MinEnabled(v) ≡ Enabled(v) ∧ (∀u ∈ N (v), Enabled(u) ∧ Id v < Id u )
Figure 1: Predicates used by the algorithm NCA-L for the labeling procedure.

To label the nodes in a tree T , the size of each subtree rooted at each node of T is needed to identify heavy edges leading the heaviest subtrees at each level of T . To this end, each node v maintains a variable named size v which is a pair of integers. The first integer is the local estimation of the number of nodes in the subtree rooted at v. The second integer is the identifier of a child of v with maximum number of nodes. That is, it indicates the heavy edge. The computation of size v is processed from the leaves to the root (see Predicate SizeC(v) in Figure 1). A leaf has no child, therefore size v = (1, ⊥) for a leaf node v (see Predicate Leaf(v) in Figure 1 and Rule R ℓ ).

Based on the heavy and light nodes in a tree T indicated by variable size v at each node v ∈ T , each node of T can compute its label. The label of a node v stored in ℓ v is a list of pair of integers. Each pair of the list contains the identifier of a node and a distance to the root of the heavy path (i.e., a path including only heavy edges). For the root v of a fragment, the label ℓ v is the following pair (Id v , 0), respectively the identifier of v and the distance to itself, i.e., zero (see Rule R ⊙ ). When a node u is tagged by its parent as a heavy node (i.e., size p v [1] = Id u ), then the node u takes the label of its parent but it increases by one the distance of the last pair of the parent label. Examples of theses cases are given in Figure 2, where integers inside the nodes are node identifiers and lists of pairs of values are node labels. When a node u is tagged by its parent v as a light node (i.e., size p v [1] = Id u ), then the node u becomes the root of a heavy path and it takes the label of its parent to which it adds a pair of integers composed of its identifier and a zero distance (see Figure 2).

Non tree edge:

Heavy tree edge: Light tree edge: This labeling scheme is used in second part of this article in MST algorithm to find the minimum weighted edges, but it is also used to detect and destroy cycles since the initial configuration may not be a spanning tree. To this end, we define an order ≺ on the labels of nodes. Let a and b be two nodes and ℓ a and ℓ b be their respective labels such that ℓ a = ℓ.(a 0 , a 1 ).ℓ ′ a and ℓ

b = ℓ.(b 0 , b 1 ).ℓ ′ b with ℓ a ∩ ℓ b = ℓ. The label of a node a is lower than the label of node b, noted ℓ a ≺ ℓ b , if (1) (a 0 , a 1 ).ℓ ′ a = ∅ and (b 0 , b 1 ).ℓ ′ b = ∅, or (2) a 0 < b 0 or (3) a 0 = b 0 and a 1 < b 1 .
A node u can detect the presence of a cycle by only comparing its label with the label of its parent. That is, if its label is contained in the label of its parent, or it is inferior to the one of its parent then u is part of a cycle (see Predicate Cycle(v) in Figure 1). In this case, the node u becomes the root of its fragment in order to break the cycle (see below Rule R ⊙ ).

Algorithm NCA-L is composed of two rules. Rule R ⊙ creates a root or breaks cycles while rule R ℓ produces a proper labeling. Note that the last predicates in rules R ⊙ and R ℓ (the part in gray) are used only for insuring the exclusivity of rules execution when the labeling scheme works together with the MST scheme.

A node v with an incoherent parent (which is not one of its neighbors) or present in a cycle executes R ⊙ . Following the execution of this rule node v becomes a root node, it sets its parent to void and its label to (Id v , 0). Rule R ℓ helps a node v to compute the number of nodes in its sub-tree (stored in variable size v ) and provides to v a coherent label.

R ⊙ : [ Root creation ] If p v ∈ N (v) ∨ (p v = ∅ ∧ ℓ v = (Id v , 0) ∨ (Cycle(v) ∧¬NeedReorientation(v)) Then p v := ∅; ℓ v = (Id v , 0); R ℓ : [ Label correction ] If ¬Cycle(v) ∧ (¬SizeC(v) ∨ ¬Label(v)) ∧MinEnabled(v) ∧ ¬TreeMerg(v) Then If Leaf(v) then size v = (1, ⊥) Else size v := (1 + u∈Child(v) size u , arg max{size u : u ∈ Child(v)}); If size p v [1] = Id v then ℓ v := ℓ p v ; last(ℓ v )[1] := last(ℓ v )[1] + 1; Else ℓ v = ℓ p v .(Id v , 0)

Self-stabilizing MST

In this section we describe our self-stabilizing MST algorithm. The algorithm executes two phases: the MST correction and the MST fragments merging. Recall that our algorithm uses the blue rule to construct a spanning tree and the red rule to recover from invalid configurations. In both cases, it uses the nearest-common ancestor labeling scheme to identify fragments and fundamental cycles. We assume in the following that the merging operations have a higher priority than the recovering operations. That is, the system recovers from an invalid configuration if and only if no merging operation is possible. In the worst case, after a failure hit the system, a merging phase will be followed by a recovering phase and finally by a final merging phase.

The minimum weighted edge and MST correction

Note that the scope of our labeling scheme is twofold. First, it allows a node to identify the neighbors that share the same fragment and consequently to select the outgoing edges of a fragment. Second, the labeling scheme may be used to identify cycles and to repair the tree. To this end, the algorithm uses the nearest common ancestor predicate nca depicted in Figure 1. For two nodes u and v with e = (u, v) a non tree edge (i.e., p u = v and p v = u), if the nearest common ancestor does not exist then u and v are in two distinct fragments (i.e., if we have nca(u, v) = ∅).

Otherwise u and v are in the same fragment F and the addition of e to F generates a cycle. Let path(x, y) be the set of edges on the unique path between x and y in F , with x, y ∈ F . The fundamental cycle C e is the following:

C e = path(u, nca(u, v)) ∪ path(nca(u, v), v) ∪ e.
Consider the example depicted on Figure 2 Predicate MinEdge(v) (see Figure 3) computes both the minimum weight outgoing edge used in a merging phase and the internal edges used in a recovering phase. Our algorithm gives priority to the computation of minimum outgoing edges via Predicate MinEdge(v). A recovering phase is initiated if there exists a unique tree or if a sub-tree of one fragment has no outgoing edge.

-MergeChild(v) ≡ min{mwe u : u ∈ Child(v) ∧ mwe u [1] = ∅} -MergeAdj(v) ≡ (min{w(u, v) : u ∈ N (v) \ Child(v) \ {p v } ∧ nca(u, v) = ∅}, ∅) -MergeEdge(v) ≡ min{MergeChild(v), MergeAdj(v)} -FarLcaChild(v) ≡ arg min ≺ {mwe u [1] : u ∈ Child(v) ∧ mwe u [1] ℓ v } -RecoverChild(v) ≡ mwe u such that FarLcaChild(v) = u -FarLca(v) ≡ arg min ≺ {nca(u, v) : u ∈ N (v) \ Child(v) \ {p v } ∧ mwe v [1] = ∅∧ nca(u, v) ≻ mwe v [1]∧nca(u, v) = ∅} -RecoverAdj(v) ≡        (w(u, v), nca(u, v)) s.t. FarLca(v) = u if FarLca(v) = ∅ (w(u, v), nca(u, v)) otherwise s.t. u = arg min ≺ {nca(u, v) : u ∈ N (v) \ Child(v) \ {p v } ∧ nca(u, v) = ∅} -RecoverEdge(v) ≡ RecoverChild(v) if RecoverAdj(v)[1] ≺ RecoverChild(v) RecoverAdj(v) otherwise -MinEdge(v) ≡ MergeEdge(v) if MergeEdge(v) = ∅ RecoverEdge(v) otherwise -NeedReorientation(v) ≡ Label R (v) ∨ (ℓ p v = (⊥, ⊥) ∧ p p v = Id v ) -EndReorientation(v) ≡ ℓ p v = (∅, ∅) ∧ (ℓ v = (⊥, ⊥) ∨ ℓ v = (∅, ∅)) -TreeMerg(v) ≡ NeedReorientation(v) ∨ EndReorientation(v) -NewFrag(v) ≡ mwe v = mwe p v ∧ mwe v [1] = Id v ∧ w(v, p v ) > mwe v [0]
The computation of the minimum weight outgoing edge is done in a fragment F u if and only an adjacent fragment F v is detected by F u , i.e., if we have Predicate MergeEdge(v) = ∅. In this case, using Rule R M in each node collects from the leaves to the root the outgoing edges leading to an adjacent fragment F v . At each level in a fragment, a node selects the outgoing edge of minimum weight among the outgoing edges selected by its children and its adjacent outgoing edges. Thus, this allows to the root of a fragment to select the minimum outgoing edge e of the fragment leading to an adjacent fragment. Then, the edge e can be used to perform a merging between two adjacent fragments using an edge belonging to a MST.

Let us explain Rule R which allows to correct a tree (or a fragment). In this case, the information about the non-tree edges are sent to the root as follows. Among all its non-tree edges, a node u sends the edge e = (u, v) with the nca(u, v) nearest to the root (see Figure 4(a)). The information about the edge e is stored in variable mwe u . If the parent x of the node u has the same information and the weight of the edge w(u, x) > w(e) then the edge (u, v) is removed from the tree (see Figure 4(a-b) for the nodes 6 and 10). We use the red rule in an intensive way, because we remove all the edges with a weight upper than w(e) in fundamental cycle of e. This interpretation of the red rule allows to insure that after a recovering phase the remaining edges belong to a MST.

Non tree edge:

Heavy tree edge: Light tree edge: 

mwe v . R M in : [ Minimum computation ] If ¬Cycle(v) ∧ Label(v) ∧ [(mwe v = MinEdge(v) ∧ MergeEdge(v) = ∅) ∨ (mwe p v = mwe v ∧ MergeEdge(v) = ∅)] Then mwe v := MinEdge(v); R : [ MST Correction ] If ¬Cycle(v) ∧ Label(v) ∧ NewFrag(v) Then p v := ∅; ℓ v := (Id v , 0);
To summarize, in this section we explained how to compute the outgoing-edges and the fundamental cycles (Rule R M in ), and how to recover from a false tree (Rule R ). The next section addresses the fragments merging operation (Rules R ⊲⊳ and R ).

Fragments merging

In this phase two rules are executed: R ⊲⊳ and R . Note that Rule R M in (described in the previous section) computes from the leaves to the root the minimum outgoing edge e = (u, v) of the fragment F u , with u ∈ F u . The information about e are stored in the variable mwe, i.e., the weight of the edge and a common ancestor equal to ∞ to indicate that these information concern an outgoing edge. When a root r of F u has stabilized its variable mwe r , it starts a merging phase (Rule R ⊲⊳ ). To this end, the nodes in the path between r and u are reoriented from r to v. During this reorientation the labels are locked. That is, each node x on the path between r and u (including r and excluding v) changes its label to: ℓ v := (⊥, ⊥). When a node u becomes the root of the fragment F u it can merge with the fragment F v . After the addition of the outgoing edge e, the labeling process is re-started (see Rule R ). The merging phase is repeated until a single fragment is obtained.

R ⊲⊳ : [ Merging ] If NeedReorientation(v) ∧ mwe v = MergeEdge(v) Then If (∃u ∈ N (v)\Child(v)\{p v }, w(u, v) = MergeEdge(v) ∧ Id v > Id u ) Then p v := min{Id u : u ∈ N (v)\Child(v)\{p v } ∧ w(u, v) = MergeEdge(v)}; ℓ v := (∅, ∅); If (∃u ∈ N (v)\Child(v)\{p v }, w(u, v) = MergeEdge(v) ∧ Id v < Id u ∧ p u = Id v ) Then ℓ v := (∅, ∅); Else p v := min{Id u : u ∈ Child(v) ∧ mwe v = MergeEdge(v)}; ℓ v := (⊥, ⊥); R : [ End Merging ] If ¬NeedReorientation(v) ∧ EndReorientation(v)
Then ℓ v := (∅, ∅);

Correctness proof

Lemma 1 Let C a configuration where the set of variables p v , v ∈ V, form at least one cycle in the network. In a finite time, Algorithm NCA-L removes all the cycles from the network.

Proof. If a node v has a parent which is not in its neighborhood or if v has no parent then the parent and the label variable of v is modified to ∅ and (Id v , 0) respectively with Rule R ⊙ .

A node v identifies a cycle with Predicate Cycle(v) which uses v's label and the label of its parent. In a legitimate configuration, v's label is smaller than the label of its parent and is constructed using the label of its parent, i.e., the label of the parent of v is included to v's label. Thus, if the label of v is included or is smaller than the label of its parent then a cycle is detected and Predicate Cycle(v) is true. In this case, v reinitiates its parent and label variable using Rule R ⊙ .

In order to detect a cycle the label computation process must cross a part or all the nodes of the cycle. However, since we consider a distributed scheduler then all the nodes in a cycle can be activated and we can have a rotation of the labels of the nodes in the cycle. This may lead to a new configuration in which the labels cannot be used to detect a cycle, because the label of one node is not used to compute some other labels and to detect a cycle. To break this symmetry, we use the node identifiers with Predicate MinEnabled(v). This predicate allows to activate the node v iff v has no neighbor u such that u is activated and u's identifier is lower than v. Therefore, there is at least a node x in the cycle which is not activated and when the label of x is used by some other nodes to compute their labels then Predicate Cycle(x) is true and x breaks the cycle using Rule R ⊙ .

According to Lemma 1, if the system starts from a configuration which contains at least one cycle then all the cycles are removed from the network in a finite time. Therefore, in the following we consider only configurations containing no cycle.

Definition 2 (Legitimate state of NCA-L) Let C a configuration with no cycle in the network, i.e., which contains a forest of trees T = (V T ⊆ V, E T ⊆ E). The configuration C is legitimate for Algorithm NCA-L iff each node v ∈ V T satisfies one of the following conditions:

1. the label ℓ v of v is equal to ℓ p v .(Id v , 0), if the edge between v and v's parent in T is a light edge or v is the root of the tree;

2. the label ℓ v of v is equal to ℓ p v and last(ℓ v ) [START_REF] Stephen | Nearest common ancestors: a survey and a new algorithm for a distributed environment[END_REF] = last(ℓ parent )[1] + 1, if the edge between v and v's parent in T is a heavy edge.

Lemma 2 (Convergence for NCA-L) Starting from an illegitimate configuration for Algorithm NCA-L, eventually Algorithm NCA-L reaches in a finite time a legitimate configuration.

Proof. To compute correct node labels, heavy and light edges in each tree T = (V T , E T ) of the forest in the network must be identified. To this end, each node v ∈ V T maintains in the variable size v two information: the size of its subtree in T and the identifier of the child with the subtree of maximum number of nodes. Based on the first information given by its children u ∈ V T stored in variable size u , each node v compute the size of its subtree in T and informs its child u if the edge (u, v) ∈ E T is a light or heavy edge. The edge (u, v) ∈ E T is a heavy edge if the second information stored in size v is equal to Id u the identifier of u, a light edge otherwise. Therefore, each node v ∈ V T can detect if its label is correct according to its parent label. Note that Predicate MinEnabled(v) is used at node v ∈ V to help to break cycle if we are in the case of a configuration described in proof of Lemma 1. Moreover, since we use the labeling scheme with minimum spanning tree computation rules Predicate TreeMerg(v) is used to forbid the label correction when it has been modified by Rule R , R ⊲⊳ and R .

The computation of the information stored in the variable size v at each node v ∈ V T is done via bottom-up fashion in the tree T . According to Predicate SizeC(v), if the variable size v is not equal to (1, ⊥) at a leaf node v in T then Predicate SizeC(v) = f alse and v can execute Rule R ℓ to correct its variable size v . Otherwise according to Predicate SizeC(v), for any internal node v ∈ V T the first information of size v must be equal to one plus the sum of the size of the children subtrees and the second one to the identifier of its child with the maximum subtree size. Thus, if variable size v is not correct (i.e., Predicate SizeC(v) = f alse) then v can execute Rule R ℓ to correct its variable size v . Using the same argument, one can show by induction that for any internal node v ∈ V T we have size

v = (1 + u∈Child(v) size u , arg max{size u : u ∈ Child(v)}).
The computation of the node labels in a tree T is done via top-down fashion starting from the root of T . For convenience, a path is called heavy (resp. light) if it contains only heavy (resp. light) edges. Moreover, a node is called heavy (resp. light) if the edge between its parent and itself is a heavy (resp. light) edge. v is informed by its parent with size p v if v is a heavy (i.e., size p v [START_REF] Stephen | Nearest common ancestors: a survey and a new algorithm for a distributed environment[END_REF] = Id v ) or light (i.e., size p v [START_REF] Stephen | Nearest common ancestors: a survey and a new algorithm for a distributed environment[END_REF] = Id v ) node. The root node v of T is also the root of a heavy path and its label must be equal to (Id v , 0). According to Predicate Label(v) and Label R (v), v can execute Rule R ℓ to correct its label. Otherwise, we have two cases: heavy or light nodes. When the root have a correct label then all its children can compute their correct label. If a heavy (resp. light) node has a label different from ℓ p v and last(ℓ v ) [START_REF] Stephen | Nearest common ancestors: a survey and a new algorithm for a distributed environment[END_REF] = last(ℓ parent ) [START_REF] Stephen | Nearest common ancestors: a survey and a new algorithm for a distributed environment[END_REF] + 1 (resp. ℓ p v .(Id v , 0)) then we have Predicate Heavy(v) = f alse (resp. Light(v) = f alse), Label N d (v) = f alse and Label(v) = f alse. Therefore, v can execute Rule R ℓ to correct its label ℓ v accordingly with its parent. Using the same argument, one can show by induction that for any internal node v ∈ V T we have ℓ p v and last(ℓ v ) [START_REF] Stephen | Nearest common ancestors: a survey and a new algorithm for a distributed environment[END_REF] = last(ℓ parent ) [START_REF] Stephen | Nearest common ancestors: a survey and a new algorithm for a distributed environment[END_REF] + 1 (resp. ℓ p v .(Id v , 0)) for heavy (resp. light) nodes.

Lemma 3 (Closure for NCA-L) The set of legitimate configurations for NCA-L is closed.

Proof. According to Algorithm NCA-L, the labeling procedure is done using only Rule R ℓ . In any legitimate configuration for Algorithm NCA-L, for any node v ∈ V Predicate SizeC(v) and Label(v) are true and Rule R ℓ cannot be executed by a node v. So, starting from a legitimate configuration for Algorithm NCA-L the system remains in a legitimate configuration. Definition 3 (Legitimate state of MST) A configuration is legitimate for Algorithm MST iff each node v ∈ V satisfies the following conditions:

1. a tree T spanning the set of nodes in V is constructed;

T is of minimum weight among all spanning trees.

Lemma 4 Let T i = (V T i , E T i ) a tree (or fragment). Eventually for each node v ∈ V T i the variable mwe v contains a pair of values: the weight of the minimum outgoing edge (u, v) of the fragment T i and ∅, if a merging is possible between two fragments T j and T i , (j = i).

Proof. We assume that T i and T j , (j = i) are two distinct coherent trees (i.e., different root and correct labels, otherwise Rule R ⊙ and R ℓ are used to correct the trees) in the network and that a merging is possible between T i and T j . The computation of the minimum outgoing edge of T i (resp. T j ) is done in a bottom-up fashion. We consider the tree T i but the computation in T j is done in a same way. A leaf node v can compute and store in its variable mwe v its local adjacent minimum outgoing edge leading to another tree. Macro MinEdge(v) returns the local minimum outgoing edge if Macro MergeEdge(v) = ∅. To this end, if there is an adjacent outgoing edge (u, v) leading to another tree T j (i.e., MergeAdj(v) = ∅ and MergeEdge(v) = ∅) and we have mwe v = MinEdge(v) then v can execute Rule R M in to compute its local outgoing edge stored in the variable mwe v . A internal node v must use the local outgoing edges computed by its children and selects the edge of minimum weight among these edges, then it compares this value with the weight of its adjacent local outgoing edge and again it holds the edge of minimum weight. The selection of its children minimum outgoing edge is done by Macro MergeChild(v) and the computation of its local outgoing edge is done by Macro MergeAdj(v) as for a leaf node. Thus, if there is an outgoing edge which can be used to make a merging with another tree (i.e., MergeEdge(v) = ∅) and we have mwe v = MinEdge(v) for a internal node v, then v can execute Rule R M in to compute in the variable mwe v its local minimum outgoing edge. Using the same argument, one can show by induction that for any internal node v ∈ V T i we have mwe v = MergeEdge. Therefore, the local outgoing edge computed by the root node v is the minimum outgoing edge of T i .

Lemma 5 Let T i = (V T i , E T i ) a tree (or fragment). Eventually for each node v ∈ V T i the variable mwe v contains a pair of values: the weight of an edge (u, v) ∈ E T i and the label of the nearest common ancestor of u ∈ V T i and v. Moreover, eventually all local internal edges of v are computed.

Proof. We assume that T i = (V T i , E T i ) is a coherent tree, otherwise Rule R ⊙ and R ℓ are used to break the cycles and to correct the labels. Each node v ∈ V T i starts to compute local internal edges (i.e., edges (x, y) such that x, y ∈ V T i and x = v or x or y is in the subtree of v) when it has no local outgoing edge (adjacent outgoing edge or outgoing edge given by a child) leading to another tree. In this case, a node v informs its parent of its local internal edges using its variable mwe v . Macro RecoverEdge(v) returns the local internal edge of v which has the common ancestor nearest from the root among the internal edges that were not taken into account by its parent using the node labels. Each node v ∈ V T i which is in a recover phase sends all its local internal edges. To this end, v compute its next local internal edge when its parent has taken into account v's current local internal edge (i.e., mwe p v = mwe v ). Thus, the information of internal edges are put back up in the tree until reaching the nearest common ancestor and v do not wait an acknowledgement from the nearest common ancestor to send its next internal edge. Moreover, Macro FarLca(v) compute the next internal edge adjacent to v such that the label of the nearest common ancestor associated to (u, v) with u ∈ N (v) is greater (according to operator > ℓ ) than mwe v [START_REF] Stephen | Nearest common ancestors: a survey and a new algorithm for a distributed environment[END_REF] which is used to define an order on the internal edges. Otherwise, if FarLca(v) = ∅ then according to Macro RecoverAdj(v) the node v reset the computation of its adjacent internal edge to assure that every internal edge is taken into account. The recover phase is started at node v if v has no local outgoing edge (i.e., MergeEdge(v) = ∅) and v's parent has taken into account the information associated to its current internal edge and stored in variable mwe v (i.e., mwe p v = mwe v ). In this case, the guard of Rule R M in is satisfied and v can execute Rule R M in to update its variable mwe v with the information of its next local internal edge. The information given by a child are stopped at the nearest common ancestor v of the corresponding internal edge since Macro FarLcaChild(v) selects only mwe u from a child u such that mwe u [START_REF] Stephen | Nearest common ancestors: a survey and a new algorithm for a distributed environment[END_REF] ≤ ℓ ℓ v .

Lemma 6 Let T = (V T , E T ) a tree and any edge (x, y) ∈ E T . Eventually, if (x, y) is not part of a minimum spanning tree of the network then (x, y) is removed from T .

Proof. We assume that T = (V T , E T ) is a coherent tree, otherwise Rule R ⊙ and R ℓ are used to break the cycles and to correct node labels. Let an edge (x, y) ∈ E T (w.l.o.g. p y = x) which is not part of a minimum spanning tree. As the network has a finite size then there is a time after which there exists no merging between two trees in the network. Thus according to Lemma 5 each internal edge e of T is put back up in T until reaching the nearest common ancestor associated to e. Since (x, y) is not in a minimum spanning tree, there is an edge (u, v) such that w(u, v) < w(x, y) and (x, y) is on the path between u and nca(u, v) or between v and nca(u, v). So, there is a time such that mwe y = (w(u, v), nca(u, v)) and mwe x = (w(u, v), nca(u, v)) according to Lemma 5. Then Predicate NewFrag(y) returns true because we have mwe y = mwe x , mwe y [1] = Id y and w(x, y) > w(u, v). Therefore, y can execute Rule R to create a new tree rooted at y and as a consequence the edge (x, y) is removed from T .

Lemma 7 Let two distinct trees

T i = (V T i , E T i ) and T j = (V T j , E T j ) with i = j.
Let an edge (x, y) such that (x, y) is part of a minimum spanning tree and x ∈ T j and y ∈ T i . Eventually (x, y) is used to merge the trees T i and T j .

Proof. We assume that T i = (V T i , E T i ) and T j = (V T j , E T j ) are coherent trees, otherwise Rule R ⊙ and R ℓ are used to break the cycles and to correct node labels. According to Lemma 4, the merging edge (x, y) is computed by the root and it starts the merging phase since only the root can choose the edge of minimum weight leading to another tree to use in order to make a merging. In the remainder, we focus on tree T i but the same arguments are also true for T j .

When the root v has finished to compute its minimum outgoing edge from its fragment (i.e., we have mwe v = MergeEdge(v)) then v can execute Rule R ⊲⊳ because Predicate NeedReorientation(v) is satisfied since v has a coherent label. Note that we permit the creation of cycles of length two only if at least one node has a label equal to (⊥, ⊥). Indeed, during the merging phase the orientation is reversed on the path between the root of T i and the node adjacent to the edge used for the merging, that is why a cycle is detected in Rule R ⊙ if Predicate NeedReorientation(v) is not satisfied. Thus, v can change its variables p v and ℓ v as following. If there is an edge (x, y) adjacent to v such that w(x, y) = mwe v [0] and y = v then v selects x as its new parent (only if Id v > Id x ) and v changes its label to (∅, ∅) to informs its subtree that the merging is done. Otherwise, v selects its child u such that mwe u = mwe v as its new parent and v changes its label to (⊥, ⊥) to inform u that a merging is started. Any other node v on the path between the root and the node adjacent to the merging edge take part in the merging phase when its parent has selected v as its new parent (i.e., p p v = Id v ) and v's parent label is equal to (⊥, ⊥). Thus, Predicate NeedReorientation(v) is satisfied and v can execute Rule R ⊲⊳ since mwe v = MergeEdge(v) (otherwise Rule R M in is executed to update its variable mwe v ). So, v changes its variables p v and ℓ v as described above for the root. Since the merging phase is done on a path, using the same argument one can show by induction that for any internal node v ∈ V T i on the path between the root and the node y adjacent to the merging edge (except for y) we have p v = min{Id u : u ∈ Child(v) ∧ mwe v = MergeEdge(v)} and ℓ v = (⊥, ⊥) and for the node y we have p y = x and ℓ y = (∅, ∅).

Lemma 8 Eventually all the nodes have a correct label in the new fragment resulting from a merging phase.

Proof. According to Lemma 7, a merging phase is done using the minimum outgoing edge (x, y) between two distinct trees T i and T j if it is possible. Moreover, when the edge (x, y) is added by the extremity of minimum identifier, w.l.o.g. let y ∈, then y's label is equal to (∅, ∅) and the end of the merging phase is propagated in the resulting fragment T . In the reminder we focus on tree T i but the same arguments are true for tree T j .

Let the node v ∈ T i such that p v = y and ℓ v = (⊥, ⊥) (i.e., v is the child of y on the path between y and the old root of T i ). Predicate NeedReorientation(v) is false because v is not a root node and the label of its parent y is not equal to (⊥, ⊥). Moreover, Predicate EndReorientation(v) is true since y's label is equal to (∅, ∅) and v's label to (⊥, ⊥). Thus, v can execute Rule R to modify its label to (∅, ∅). Using the same argument, one can show by induction that every node v on the path between y and the old root of T i can execute Rule R , thus there is a time such that we have ℓ v = (∅, ∅). Now we show that the other nodes in T i can execute Rule R . Consider the node r ∈ V T i such that r is the old root of T i and ℓ z = (∅, ∅). Let a node v ∈ V T i such that p v = Id z . Predicate NeedReorientation(v) is false because v is not a root node and the label of its parent is not equal to (⊥, ⊥). Moreover, Predicate EndReorientation(v) is true because ℓ z = (∅, ∅) and v's label is not equal to (⊥, ⊥) since v is not on the path between y and the old root of T i , and v's label is different from (∅, ∅). Note that since the start of the merging phase, Predicate TreeMerg(v) is true because Predicate NeedReorientation(v) or EndReorientation(v) is true. So, Rule R ℓ cannot be executed by v and v's label has not changed. Thus, v can execute Rule R to modify its label to (∅, ∅). Using the same argument, one can show by induction that every node v on the path between z and a leaf node can execute Rule R , thus there is a time such that we have ℓ v = (∅, ∅).

Every node v in the resulting fragment T can execute Rule R ℓ when the edge (x, y) is added in T and y's label has been modified from (∅, ∅) to its new label based on x's label. Indeed, in this case for every node v, with v = y and v ∈ V T i , Predicate TreeMerg(v) is false and v can execute Rule R ℓ . Therefore, there is a time such that every node v in T has a correct label.

Lemma 9 (Convergence for MST) Starting from an illegitimate configuration for Algorithm MST, eventually Algorithm MST reaches in a finite time a legitimate configuration.

Proof. We assume that there is a forest of trees T i , 1 ≤ i ≤ n, in the network, otherwise according to Lemma 1 Rule R ⊙ is executed to remove the cycle from the network. Moreover, we assume also that the node's label are correct in tree T i , otherwise according to Lemma 2 and 3 there is a time such that the node's label are corrected.

According to Lemma 5 and 6, if an edge (u, v) ∈ E T i and (u, v) is part of no minimum spanning tree of the network then (u, v) is removed from tree T i . Thus, there is a time such that the existing fragments in the network are part of a minimum spanning tree. According to Lemmas 4 and 7, eventually if there are at least two distinct fragments then a merging phase is started. Moreover, node labels are corrected after a merging phase according to Lemma 8. Since the size of the network is finite there is a finite number of merging. Therefore, in a finite time a spanning tree of minimum weight is computed by Algorithm MST.

Lemma 10 (Closure for MST) The set of legitimate configurations for MST is closed.

Proof. Let C a legitimate configuration such T = (V T , E T ) is a minimum spanning tree of the network and an edge (x, y) ∈ E T . To be illegitimate, the configuration C must contain an edge (x, y) such that it exists an edge e = (u, v) with w(u, v) < w(x, y) and (x, y) and (u, v) are included in the same fundamental cycle C e . Thus, this imply that the edge e is not used to verify if it is possible to replace an edge of C e with (u, v) which contradicts Lemmas 5 and 6. Moreover, since T is a spanning tree then no merging is done in the network. Therefore, starting from a legitimate configuration for Algorithm MST a legitimate configuration is preserved.

Complexity proofs

In the following we discuss the complexity issues of our solution.

Lemma 11 Algorithms NCA-L and MST have a space complexity of O(log 2 n) bits.

Proof. Algorithm NCA-L uses three variables : p v , ℓ v , size v . The first and the last one are respectively a pointer to a neighbor node and a pair of integers, each one needs O(log n) bits. However, the variable ℓ v is a list of pairs of integers. A new pair of integers is added to the list when a light edge is created in the tree. As noticed in [START_REF] Stephen | Nearest common ancestors: a survey and a new algorithm for a distributed environment[END_REF], there are at most log n light edges on the path from a leaf to the root, i.e., at most log n pairs of integers. Thus, the variable ℓ v uses log n × log n bits.

Algorithm MST uses an additional variable mwe v which is a pair composed of an integer and the label of a node. The label of a node is stored in variable ℓ v which uses log 2 n bits. Thus, the variable mwe v needs log 2 n bits.

Therefore, Algorithms NCA-L and MST use O(log 2 n) bits of memory at each node.

Lemma 12 Starting from any configuration, all cycles are removed from the network in at most O(n 2 ) rounds, with n the number of nodes in the network.

Proof. As explained in the proof of Lemma 1, to break a cycle C k a part of the nodes in C k must compute their new labels, that is a label computation must be initiated from one node and then this process must cross C k . Thus, the worst case is a configuration in which all the nodes in C k have to compute their new labels using Rule R ℓ to detect the presence of cycle C k . Therefore, at most O(n) rounds are needed to compute the new label of the nodes in C k based on the label of one node x in C k . According to Lemma 1, when this computation is done the cycle C k is detected and removed by the node x. At most O(n) additional rounds are needed to break the cycle C k .

Since there is at most n/2 cycles in a network, at most O(n 2 ) rounds are needed to remove all the cycles from the network.

Lemma 13 Starting from a configuration which contains a tree T , using Algorithm NCA-L any node v ∈ V T has a correct label in at most O(n) rounds.

Proof.

As described in proof of Lemma 2, the correction of node labels is done using a bottom-up computation followed by a top-down computation in the tree T = (V T , E T ).

The bottom-up computation is started by the leaves of T , when leaf nodes v ∈ V T have corrected their variable size v to (1, ⊥) then internal nodes u ∈ V T can start to correct their variable size u . An internal node v ∈ V T computes a correct value in its variable size v using Rule R ℓ when all its children u have a correct value in their variable size u . Since the computation is done in a tree sub-graph then in at most O(n) rounds each node v ∈ V T has corrected its variable size v .

The top-down computation is started by the root of the tree T . When the root v has a correct value in variable size v then the computation of correct labels can start. Thus, if the parent of a node v has a correct value in its variable size p v and ℓ p v then v can compute its correct label in ℓ v using Rule R ℓ . As for the bottom-up computation, the top-down computation is done in at most O(n) rounds since it is performed in a tree sub-graph.

Therefore, in at most O(n) rounds each node v in the tree T has a correct label stored in variable size v . Lemma 14 Starting from any configuration, Algorithm NCA-L reaches a legitimate configuration in at most O(n 2 ) rounds.

Proof. The initial configuration C could contain one or more cycles, so according to Lemma 12 in at most O(n 2 ) rounds the system reaches a new configuration C ′ which contains no cycle. Moreover according to Lemma 13, the nodes v in each tree T in the configuration C ′ have a correct label in at most O(n) rounds. Therefore, starting from an arbitrary configuration each node v ∈ V computes its correct label in at most O(n 2 ) rounds.

Lemma 15 Starting from any configuration, Algorithm MST reaches a legitimate configuration in at most O(n 2 ) rounds.

Proof. According to Lemma 12, starting from any configuration after at most O(n 2 ) rounds all the cycles are removed from the network, i.e., it remains a forest of trees after at most O(n 2 ) rounds. Moreover, according to Lemma 13 in at most O(n) additional rounds each node v ∈ V has a correct label since each node belongs to a unique tree.

According to the description of Algorithm MST, Macro MinEdge(v) and Lemma 5, when it is possible to make a merging between two distinct trees in the forest a merging phase is started. This merging phase is done in three steps: (1) information corresponding to the minimum outgoing edge is propagated in a bottom-up fashion in each tree, (2) the orientation is reversed from the root of a tree until reaching the node in the tree adjacent to the minimum outgoing edge, and (3) the node labels are changed to inform of the end of the merging phase, followed by a propagation of the new correct node labels in the new tree resulting from the merging phase.

The first step is a propagation of information in a bottom-up fashion in a tree which is done in at most O(n) rounds. The second step reverses and propagates new node labels on a part of the tree (between the root and the node adjacent to the minimum outgoing edge) which is done in at most O(n) rounds too. Step 3 modifies the label of the nodes which have changed their parent pointer in step 2, so this last step takes also at most O(n) rounds and the relabeling of the nodes in the new tree is done in at most O(n) rounds according to Lemma 13. Thus, a merging phase is accomplished in at most O(n) rounds and as there are in the worst case n trees then in at most O(n 2 ) rounds a spanning tree is constructed.

When there is no possible merging for a given fragment (or tree) T i in the forest then the correction phase concerning T i is started. In a tree T i , the internal edges (i.e., whose two endpoints are in T i ) are sent upward in T i in order to detect incorrect tree edges. The internal edges e are sent following an order on the distance between the common ancestor nca(e) and the root of T i , by sending first the edge e with the nearest common ancestor nca(e) from the root. Let h(T i ) be the height of tree T i and d(v) be the distance from v ∈ T i to the root of T i . Thus, an internal (resp. leaf) node has at most d(v) -2 (resp. d(v) -1) adjacent internal edges. Since a leaf node could have a lower priority (compared to its ancestors) to send all its adjacent internal edges, then the worst case to correct a tree is the case of a chain. Indeed, if the last internal edge of a leaf node x must be used to detect an incorrect tree edge then x may have to wait that all its ancestors in the chain have sent their internal edges of higher priority. Thus, starting from any configuration after at most O(h(T i ) 2 ) rounds T i contains no incorrect edges. Note that this is the worst case time to detect the farthest incorrect tree edge from the root of T i , otherwise the correction phase is stopped earlier for nearest incorrect tree edges because the merging phase has a higher priority than the correction phase. Moreover, after O(h(T i ) 2 ) rounds all the new edges used by T i for a merging are correct tree edges for T i . So, T i does not remove another tree edge in a new correction phase. Hence starting from any configuration, a correction phase deletes all the incorrect tree edges of a spanning tree after at most O(n 2 ) rounds and no new tree edges are removed by a correction phase.

Therefore, starting from an arbitrary configuration Algorithm MST constructs a minimum spanning tree in at most O(n 2 ) rounds.

Conclusion

We extended the Gallager, Humblet and Spira (GHS) algorithm, [START_REF] Gallager | A distributed algorithm for minimum-weight spanning trees[END_REF], to self-stabilizing settings via a compact informative labeling scheme. Thus, the resulting solution presents several advantages appealing for large scale systems: it is compact since it uses only logarithmic memory in the size of the network, it scales well since it does not rely on any global parameter of the system, it is fast -its time complexity is the better known in self-stabilizing settings. Additionally, it self-recovers from any transient fault. The time complexity is O(n 2 ) rounds and the space complexity is O(log 2 n).
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 2 Figure 2: Labeling scheme

  (b). The labels of nodes 10 and 6 are respectively ℓ 10 = (2, 3) and ℓ 6 = (3, 1). In this case nca(10, 6) = ∅ so the edge[START_REF] Harel | Fast algorithms for finding nearest common ancestors[END_REF][START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF] is an outgoing edge because the nodes 10 and 6 are in two distinct fragments and they have no common ancestor. If the edge[START_REF] Harel | Fast algorithms for finding nearest common ancestors[END_REF][START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF] is of minimum weight then[START_REF] Harel | Fast algorithms for finding nearest common ancestors[END_REF][START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF] can be used for a merging between the fragment rooted in 2 and the fragment rooted in 3. For the case of nodes 10 and 9 the labels are ℓ 10 = (2, 3) and ℓ 9 = (2, 1)(9, 0) and nca(10, 9) = (2, 1). Consequently, 10 and 9 are in the same fragment. The fundamental cycle C e with e = (9, 10) goes through the node with the label nca[START_REF] Harel | Fast algorithms for finding nearest common ancestors[END_REF][START_REF] Gallager | A distributed algorithm for minimum-weight spanning trees[END_REF], in other word the node 5 in Figure2(b).
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 3 Figure 3: Predicates used by the MST for the tree correction or the fusion fragments.

Figure 4 :

 4 Figure 4: Minimum weighted edge computation and Tree correction. The bubble at each node v corresponds to the weight and the label of the common ancestor of the edge stored on variable mwe v .
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A legitimacy predicate is defined over the configurations of a system and is an indicator of its correct behavior.