
HAL Id: hal-00492398
https://hal.science/hal-00492398v2

Submitted on 21 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Self-Stabilizing Minimum Spanning Tree
Construction

Lélia Blin, Shlomi Dolev, Maria Potop-Butucaru, Stephane Rovedakis

To cite this version:
Lélia Blin, Shlomi Dolev, Maria Potop-Butucaru, Stephane Rovedakis. Fast Self-Stabilizing Minimum
Spanning Tree Construction. DISC 2010 - 24th International Symposium on Distributed Comput-
ing, Sep 2010, Cambridge, MA, United States. pp.480-494, �10.1007/978-3-642-15763-9_46�. �hal-
00492398v2�

https://hal.science/hal-00492398v2
https://hal.archives-ouvertes.fr

Fast Self-Stabilizing Minimum Spanning Tree Construction
Using Compact Nearest Common Ancestor Labeling Scheme

Lélia Blin1,3 Shlomi Dolev4 Maria Gradinariu Potop-Butucaru2,3,5

Stephane Rovedakis1,6

July 21, 2010

Abstract

We present a novel self-stabilizing algorithm for minimum spanning tree (MST) con-
struction. The space complexity of our solution is O(log2 n) bits and it converges in O(n2)
rounds. Thus, this algorithm improves the convergence time of all previously known self-
stabilizing asynchronous MST algorithms by a multiplicative factor Θ(n), to the price of
increasing the best known space complexity by a factor O(log n). The main ingredient used
in our algorithm is the design, for the first time in self-stabilizing settings, of a labeling
scheme for computing the nearest common ancestor with only O(log2 n) bits.

1 Introduction

Since its introduction in a centralized context [15, 14], the minimum spanning tree (or MST)
problem gained a benchmark status in distributed computing thanks to the seminal work of
Gallager, Humblet and Spira [9].

The emergence of large scale and dynamic systems, often subject to transient faults, revives
the study of scalable and self-stabilizing algorithms. A scalable algorithm does not rely on any
global parameter of the system (e.g. upper bound on the number of nodes or the diameter).
Self-stabilization introduced first by Dijkstra in [6] and later publicized by several books [7, 8]
deals with the ability of a system to recover from catastrophic situation (i.e., the global state
may be arbitrarily far from a legal state) without external (e.g. human) intervention in finite
time.

Although there already exists self-stabilizing solutions for the MST construction, none of
them considered the extension of the Gallager, Humblet and Spira algorithm (GHS) to self-
stabilizing settings. Interestingly, this algorithm unifies the best properties for designing large
scale MSTs: it is fast and totally decentralized and it does not rely on any global parameter
of the system. Our work proposes an extension of this algorithm to self-stabilizing settings.
Our extension uses only logarithmic memory and preserves all the good characteristics of the
original solution in terms of convergence time and scalability.

Gupta and Srimani presented in [13] the first self-stabilizing algorithm for the MST problem.
The MST construction is based on the computation of all shortest paths (for a certain cost
function) between all pairs of nodes. While executing the algorithm, every node stores the cost

1Université d’Evry-Val d’Essonne, 91000 Evry, France.
2Université Pierre & Marie Curie - Paris 6, 75005 Paris, France.
3LIP6-CNRS UMR 7606, France. {lelia.blin,maria.gradinariu}@lip6.fr
4Department of Computer Science, Ben-Gurion University of the Negev,

Beer-Sheva, 84105, Israel. dolev@cs.bgu.ac.il
5INRIA REGAL, France.
6Laboratoire IBISC-EA 4526, 91000 Evry, France. stephane.rovedakis@ibisc.fr

1

of all paths from it to all the other nodes. To implement this algorithm, the authors assume
that every node knows the number n of nodes in the network, and that the identifiers of the
nodes are in {1, . . . , n}. Every node u stores the weight of the edge eu,v placed in the MST
for each node v 6= u. Therefore the algorithm requires Ω(

∑

v 6=u logw(eu,v)) bits of memory at
node u. Since all the weights are distinct integers, the memory requirement at each node is
Ω(n log n) bits. The main drawback of this solution is its lack of scalability since each node
has to know and maintain information for all the nodes in the system. Note also that the
time complexity announced by the authors, O(n) stays only in the particular synchronous
settings considered by the authors. In asynchronous setting the complexity is Ω(n2) rounds.
A different approach for the message-passing model, was proposed by Higham and Liang [11].
The algorithm performs roughly as follows: every edge checks whether it eventually belongs to
the MST or not. To this end, every non tree-edge e floods the network to find a potential cycle,
and when e receives its own message back along a cycle, it uses the information collected by
this message (i.e., the maximum edge weight of the traversed cycle) to decide whether e could
potentially be in the MST or not. If the edge e has not received its message back after the
time-out interval, it decides to become tree edge. The memory used by each node is O(log n)
bits, but the information exchanged between neighboring nodes is of size O(n log n) bits, thus
only slightly improving that of [13]. This solution also assume that each node has access to
a global parameter of the system: the diameter. Its computation is expensive in large scale
systems and becomes even harder in dynamic settings. The time complexity of this approach
is O(mD) rounds where m and D are the number of edges and the diameter of the network
respectively, i.e., O(n3) rounds in the worst case.

In [2] we proposed a self-stabilizing loop-free algorithm for the MST problem. Contrary
to previous self-stabilizing MST protocols, this algorithm does not make any assumption on
the network size (including upper bounds) or the unicity of the edge weights. The proposed
solution improves on the memory space usage since each participant needs only O(log n) bits
while preserving the same time complexity as the algorithm in [11].

Clearly, in the self-stabilizing implementation of the MST algorithms there is a trade-off be-
tween the memory complexity and their time complexity (see Table 1, where a boldface denotes
the most useful (or efficient) feature for a particular criterium). The challenge we address in this
paper is to design fast and scalable self-stabilizing MST with little memory. Our approach brings
together two worlds: the time efficient MST constructions and the memory compact informative
labeling schemes. Therefore, we extend the GHS algorithm to self-stabilizing settings and keep
compact its memory space by using a self-stabilizing extension of the nearest common ancestor
labeling scheme of [1]. Note that labeling schemes have already been used in order to infer a
broad set of information such as vertex adjacency, distance, tree ancestry or tree routing [5],
however none of these schemes have been studied in self-stabilizing settings (except the last one).

Our contribution is therefore twofold. We propose for the first time in self-stabilizing settings
a O(log2n) bits scheme for computing the nearest common ancestor. Furthermore, based on
this scheme, we describe a new self-stabilizing algorithm for the MST problem. Our algorithm
does not make any assumption on the network size (including upper bounds) or the existence
of an a priori known root. Moreover, our solution is the best space/time compromise over the
existing self-stabilizing MST solutions. The convergence time is O(n2) asynchronous rounds and
the memory space per node is O(log2 n) bits. Interestingly, our work is the first to prove the
effectiveness of an informative labeling scheme in self-stabilizing settings and therefore opens a
wide research path in this direction.

2

a priori knowledge space complexity convergence time

[13] network size and O(n log n) Ω(n2)
the nodes in the network

[11] upper bound on diameter O(log n) O(n3)
+messages of size O(n log n)

[2] none O(logn) O(n3)

This paper none O(log2 n) O(n2)

Table 1: Distributed Self-Stabilizing algorithms for the MST problem

2 Model and notations

We consider an undirected weighted connected network G = (V,E,w) where V is the set of
nodes, E is the set of edges and w : E → R

+ is a positive cost function. Nodes represent
processors and edges represent bidirectional communication links. Additionally, we consider
that G = (V,E,w) is a network in which the weight of the communication links may change
value.

The processors asynchronously execute their programs consisting of a set of variables and a
finite set of rules. The variables are part of the shared register which is used to communicate
with the neighbors. A processor can read and write its own registers and can read the shared
registers of its neighbors. Each processor executes a program consisting of a sequence of guarded
rules. Each rule contains a guard (Boolean expression over the variables of a node and its
neighborhood) and an action (update of the node variables only). Any rule whose guard is true
is said to be enabled. A node with one or more enabled rules is said to be privileged and may
make a move executing the action corresponding to the chosen enabled rule.

A local state of a node is the value of the local variables of the node and the state of its
program counter. A configuration of the system G = (V,E) is the cross product of the local
states of all nodes in the system. The transition from a configuration to the next one is produced
by the execution of an action at a node. A computation of the system is defined as a weakly
fair, maximal sequence of configurations, e = (c0, c1, . . . ci, . . .), where each configuration ci+1

follows from ci by the execution of a single action of at least one node. During an execution
step, one or more processors execute an action and a processor may take at most one action.
Weak fairness of the sequence means that if any action in G is continuously enabled along the
sequence, it is eventually chosen for execution. Maximality means that the sequence is either
infinite, or it is finite and no action of G is enabled in the final global state.

In the sequel we consider the system can start in any configuration. That is, the local state
of a node can be corrupted. Note that we don’t make any assumption on the bound of corrupted
nodes. In the worst case all the nodes in the system may start in a corrupted configuration. In
order to tackle these faults we use self-stabilization techniques.

Definition 1 (self-stabilization) Let LA be a non-empty legitimacy predicate1 of an algo-
rithm A with respect to a specification predicate Spec such that every configuration satisfying
LA satisfies Spec. Algorithm A is self-stabilizing with respect to Spec iff the following two
conditions hold:
(i) Every computation of A starting from a configuration satisfying LA preserves LA (closure).
(ii) Every computation of A starting from an arbitrary configuration contains a configuration
that satisfies LA (convergence).

1A legitimacy predicate is defined over the configurations of a system and is an indicator of its correct behavior.

3

3 Overview of our solution

We propose to extend the Gallager, Humblet and Spira (GHS) algorithm, [9], to self-stabilizing
settings via a compact informative labeling scheme. Thus, the resulting solution presents several
advantages appealing for large scale systems: it is compact since it uses only logarithmic memory
in the size of the network, it scales well since it does not rely on any global parameter of
the system, it is fast — its time complexity is the better known in self-stabilizing settings.
Additionally, it self-recovers from any transient fault.

The central notion in the GHS approach is the notion of fragment. A fragment is a partial
spanning tree of the graph, i.e., a fragment is a tree which spans a subset of nodes. Note that
a fragment can be limited to a single node. An outgoing edge of a fragment F is an edge with
a unique endpoint in F . The minimum-weight outgoing edge of a fragment F is denoted in the
following as MEF . In the GHS construction, initially each node is a fragment. For each fragment
F , the GHS algorithm in [9] identifies the MEF and merges the two fragments endpoints of
MEF . Note that, with this scheme, more than two fragments may be merged concurrently. The
merging process is recursively repeated until a single fragment remains. The result is a MST.
The above approach is often called “blue rule” for MST construction.

This approach is particularly appealing when transient faults yield to a forest of fragments
(which are sub-trees of a MST). The direct application of the blue rule allows the system to
reconstruct a MST and to recover from faults which have divided the existing MST. However,
when more severe faults hit the system the process variables may be corrupted leading to a
configuration of the network where the set of fragments are not sub-trees of some MST. That
is, it may be a spanning tree but not of minimum weight, or it can contain cycles. In this case,
the application of the blue rule only is not sufficient to reconstruct a MST. To overcome this
difficulty, we combine the blue rule with another method, referred in the literature as the “red
rule”. The red rule removes the heaviest edge from every cycle. The resulting configuration
contains a MST. We use the red rule as follows: given a spanning tree T of G, every edge e
of G that is not in T is added to T , thus creating a (unique) cycle in T ∪ {e}. This cycle is
called a fundamental cycle, denoted by Ce. If e is not the edge of maximum weight in Ce, then,
according to the red rule, there exists an edge f 6= e in Ce with w(f) > w(e). The edge of
maximum weight can be removed since it is not part of any MST.

Our MST construction combines both the blue and red rules. The blue rule application
needs that each node identifies its own fragment. The red rule requires that nodes identify
the fundamental cycle corresponding to every adjacent non-tree-edge. In both cases, we use a
self-stabilizing labeling scheme, called NCA-L, which provides at each node a distinct informative
label such that the nearest common ancestor of two nodes can be identified based only on the
labels of these nodes (see Section 3.1). Thus, the advantage of this labeling is twofold. First
the labeling helps nodes to identify their fragments. Second, given any non-tree edge e = (u, v),
the path in the tree going from u to the nearest common ancestor of u and v, then from there
to v, and finally back to u by traversing e, constitute the fundamental cycle Ce.

To summarize, our algorithm will use the blue rule to construct a spanning tree, and the
red rule to recover from invalid configurations. In both cases, it uses our algorithm NCA-L to
identify both fragments and fundamental cycles. Note that, in [3, 4] distributed algorithms
using the blue and red rules to construct a MST in a dynamic network are proposed, however
these algorithms are not self-stabilizing.

Variables used by NCA-L and MST modules For any node v ∈ V (G), we denote by N(v)
the set of all neighbors of v in G. We use the following notations:

• pv: the parent of v in the current spanning tree, an integer pointer to a neighbor;

4

• ℓv: the label of v composed of a list of pairs of integers where each pair is an identifier and
a distance (the size of ℓv is bounded by O(log2 n) bits);

• sizev: a pair of variables, the first one is an integer the number of nodes in the sub-tree
rooted at v and the second one is the identifier of the child u of v with the maximum
number of nodes in the sub-tree rooted at u;

• mwev: the minimum weighted edge composed by a pair of variables, the first one is an
integer, the weight of the edge and the second one is the label of a node u stored in ℓu.

3.1 Self-stabilizing Nearest Common Ancestor Labeling

Our labeling scheme, called in the following NCA-L, uses the notions of heavy and light edges
introduced in [10]. In a tree, a heavy edge is an edge between a node u and one of its children v
of maximum number of nodes in its sub-tree. The other edges between u and its other children
are tagged as light edges. We extend this edge designation to the nodes, a node v is called
heavy node if the edge between v and its parent is a heavy edge, otherwise v is called light node.
Moreover, the root of a tree is a heavy node. The idea of the scheme is as follows. A tree is
recursively divided into disjoint paths: the heavy and the light paths which contain only heavy
and light edges respectively.

- Child ≡ {u ∈ N(v) : pu = Idv}

- SizeC(v) ≡ Leaf(v) ∨ (sizev = (1 +
∑

u∈Child(v) sizeu, argmax{sizeu : u ∈ Child(v)}))

- Leaf(v) ≡ (6 ∃u ∈ N(v), pu = Idv) ∧ sizev = (1,⊥)

- Label(v) ≡ LabelR(v) ∨ LabelNd(v)

- LabelR(v) ≡ (pv = ∅ ∧ ℓv = (Idv, 0))

- LabelNd(v) ≡ pv ∈ N(v) ∧ (Heavy(v) ∨ Light(v))

- Heavy(v) ≡ sizep
v
[1] = Idv ∧ sizev[0] < sizep

v
[0] ∧ last(ℓp

v
)[1] + 1 = last(ℓv)[1]

- Light(v) ≡ sizepv
[1] 6= Idv ∧ sizev[0] ≤ sizepv

[0]/2 ∧ ℓv = ℓpv
.(Idv, 0)

- nca(u, v) ≡























ℓ.(a0, a1) s.t. ℓu ∩ ℓv = ℓ, ℓu = ℓ.(a0, a1).ℓ
′
u if (a0 = b0 ∨ ℓ 6= ∅)

and ℓv = ℓ.(b0, b1).ℓ
′
v ∧ℓu ≺ ℓv

ℓ.(b0, b1) s.t. ℓu ∩ ℓv = ℓ, ℓu = ℓ.(a0, a1).ℓ
′
u if (a0 = b0 ∨ ℓ 6= ∅)

and ℓv = ℓ.(b0, b1).ℓ
′
v ∧ℓv ≺ ℓu

∅ otherwise

- Cycle(v) ≡ ℓv ⊂ ℓp
v
∨ ℓv ≺ ℓp

v

- MinEnabled(v) ≡ Enabled(v) ∧ (∀u ∈ N(v),Enabled(u) ∧ Idv < Idu)

Figure 1: Predicates used by the algorithm NCA-L for the labeling procedure.

To label the nodes in a tree T , the size of each subtree rooted at each node of T is needed
to identify heavy edges leading the heaviest subtrees at each level of T . To this end, each
node v maintains a variable named sizev which is a pair of integers. The first integer is the
local estimation of the number of nodes in the subtree rooted at v. The second integer is the

5

identifier of a child of v with maximum number of nodes. That is, it indicates the heavy edge.
The computation of sizev is processed from the leaves to the root (see Predicate SizeC(v) in
Figure 1). A leaf has no child, therefore sizev = (1,⊥) for a leaf node v (see Predicate Leaf(v)
in Figure 1 and Rule Rℓ).

Based on the heavy and light nodes in a tree T indicated by variable sizev at each node
v ∈ T , each node of T can compute its label. The label of a node v stored in ℓv is a list of pair of
integers. Each pair of the list contains the identifier of a node and a distance to the root of the
heavy path (i.e., a path including only heavy edges). For the root v of a fragment, the label ℓv
is the following pair (Idv, 0), respectively the identifier of v and the distance to itself, i.e., zero
(see Rule R⊙). When a node u is tagged by its parent as a heavy node (i.e., sizepv

[1] = Idu),
then the node u takes the label of its parent but it increases by one the distance of the last pair
of the parent label. Examples of theses cases are given in Figure 2, where integers inside the
nodes are node identifiers and lists of pairs of values are node labels. When a node u is tagged
by its parent v as a light node (i.e., sizep

v
[1] 6= Idu), then the node u becomes the root of a

heavy path and it takes the label of its parent to which it adds a pair of integers composed of
its identifier and a zero distance (see Figure 2).

Non tree edge: Heavy tree edge: Light tree edge:

Figure 2: Labeling scheme

This labeling scheme is used in second part of this article in MST algorithm to find the
minimum weighted edges, but it is also used to detect and destroy cycles since the initial con-
figuration may not be a spanning tree. To this end, we define an order ≺ on the labels of nodes.
Let a and b be two nodes and ℓa and ℓb be their respective labels such that ℓa = ℓ.(a0, a1).ℓ

′
a

and ℓb = ℓ.(b0, b1).ℓ
′
b with ℓa ∩ ℓb = ℓ. The label of a node a is lower than the label of node

b, noted ℓa ≺ ℓb, if (1) (a0, a1).ℓ
′
a = ∅ and (b0, b1).ℓ

′
b 6= ∅, or (2) a0 < b0 or (3) a0 = b0 and a1 < b1.

A node u can detect the presence of a cycle by only comparing its label with the label of its
parent. That is, if its label is contained in the label of its parent, or it is inferior to the one of
its parent then u is part of a cycle (see Predicate Cycle(v) in Figure 1). In this case, the node
u becomes the root of its fragment in order to break the cycle (see below Rule R⊙).

Algorithm NCA-L is composed of two rules. Rule R⊙ creates a root or breaks cycles while
rule Rℓ produces a proper labeling. Note that the last predicates in rules R⊙ and Rℓ (the part
in gray) are used only for insuring the exclusivity of rules execution when the labeling scheme
works together with the MST scheme.

6

A node v with an incoherent parent (which is not one of its neighbors) or present in a cycle
executes R⊙. Following the execution of this rule node v becomes a root node, it sets its parent
to void and its label to (Idv, 0).

Rule Rℓ helps a node v to compute the number of nodes in its sub-tree (stored in variable
sizev) and provides to v a coherent label.

R⊙: [Root creation]
If pv 6∈ N(v) ∨ (pv = ∅ ∧ ℓv 6= (Idv, 0) ∨ (Cycle(v) ∧¬NeedReorientation(v))
Then pv := ∅; ℓv = (Idv, 0);

Rℓ: [Label correction]
If ¬Cycle(v) ∧ (¬SizeC(v) ∨ ¬Label(v)) ∧MinEnabled(v) ∧ ¬TreeMerg(v)
Then If Leaf(v) then sizev = (1,⊥)

Else sizev := (1 +
∑

u∈Child(v) sizeu, argmax{sizeu : u ∈ Child(v)});

If sizep
v
[1] = Idv then ℓv := ℓp

v
; last(ℓv)[1] := last(ℓv)[1] + 1;

Else ℓv = ℓp
v
.(Idv, 0)

3.2 Self-stabilizing MST

In this section we describe our self-stabilizing MST algorithm. The algorithm executes two phases:
the MST correction and the MST fragments merging. Recall that our algorithm uses the blue
rule to construct a spanning tree and the red rule to recover from invalid configurations. In
both cases, it uses the nearest-common ancestor labeling scheme to identify fragments and fun-
damental cycles. We assume in the following that the merging operations have a higher priority
than the recovering operations. That is, the system recovers from an invalid configuration if
and only if no merging operation is possible. In the worst case, after a failure hit the system, a
merging phase will be followed by a recovering phase and finally by a final merging phase.

3.2.1 The minimum weighted edge and MST correction

Note that the scope of our labeling scheme is twofold. First, it allows a node to identify the
neighbors that share the same fragment and consequently to select the outgoing edges of a
fragment. Second, the labeling scheme may be used to identify cycles and to repair the tree. To
this end, the algorithm uses the nearest common ancestor predicate nca depicted in Figure 1. For
two nodes u and v with e = (u, v) a non tree edge (i.e., pu 6= v and pv 6= u), if the nearest common
ancestor does not exist then u and v are in two distinct fragments (i.e., if we have nca(u, v) = ∅).
Otherwise u and v are in the same fragment F and the addition of e to F generates a cycle.
Let path(x, y) be the set of edges on the unique path between x and y in F , with x, y ∈ F .
The fundamental cycle Ce is the following: Ce = path(u, nca(u, v)) ∪ path(nca(u, v), v) ∪ e.
Consider the example depicted on Figure 2(b). The labels of nodes 10 and 6 are respectively
ℓ10 = (2, 3) and ℓ6 = (3, 1). In this case nca(10, 6) = ∅ so the edge (10, 6) is an outgoing edge
because the nodes 10 and 6 are in two distinct fragments and they have no common ancestor.
If the edge (10, 6) is of minimum weight then (10, 6) can be used for a merging between the
fragment rooted in 2 and the fragment rooted in 3. For the case of nodes 10 and 9 the labels
are ℓ10 = (2, 3) and ℓ9 = (2, 1)(9, 0) and nca(10, 9) = (2, 1). Consequently, 10 and 9 are in the
same fragment. The fundamental cycle Ce with e = (9, 10) goes through the node with the
label nca(10, 9), in other word the node 5 in Figure 2(b).

Predicate MinEdge(v) (see Figure 3) computes both the minimum weight outgoing edge
used in a merging phase and the internal edges used in a recovering phase. Our algorithm

7

- MergeChild(v) ≡ min{mweu : u ∈ Child(v) ∧mweu[1] = ∅}

- MergeAdj(v) ≡ (min{w(u, v) : u ∈ N(v) \ Child(v) \ {pv} ∧ nca(u, v) = ∅}, ∅)

- MergeEdge(v) ≡ min{MergeChild(v),MergeAdj(v)}

- FarLcaChild(v) ≡ argmin≺{mweu[1] : u ∈ Child(v) ∧mweu[1] � ℓv}

- RecoverChild(v) ≡ mweu such that FarLcaChild(v) = u

- FarLca(v) ≡ argmin≺{nca(u, v) : u ∈ N(v) \ Child(v) \ {pv} ∧mwev[1] 6= ∅∧
nca(u, v) ≻ mwev[1]∧nca(u, v) 6= ∅}

- RecoverAdj(v) ≡















(w(u, v), nca(u, v)) s.t. FarLca(v) = u if FarLca(v) 6= ∅
(w(u, v), nca(u, v)) otherwise
s.t. u = argmin≺{nca(u, v) :
u ∈ N(v) \ Child(v) \ {pv} ∧ nca(u, v) 6= ∅}

- RecoverEdge(v) ≡

{

RecoverChild(v) if RecoverAdj(v)[1] ≺ RecoverChild(v)
RecoverAdj(v) otherwise

- MinEdge(v) ≡

{

MergeEdge(v) if MergeEdge(v) 6= ∅
RecoverEdge(v) otherwise

- NeedReorientation(v) ≡ LabelR(v) ∨ (ℓpv
= (⊥,⊥) ∧ pp

v
= Idv)

- EndReorientation(v) ≡ ℓpv
= (∅, ∅) ∧ (ℓv = (⊥,⊥) ∨ ℓv 6= (∅, ∅))

- TreeMerg(v) ≡ NeedReorientation(v) ∨ EndReorientation(v)

- NewFrag(v) ≡ mwev = mwepv
∧mwev[1] 6= Idv ∧ w(v, pv) > mwev[0]

Figure 3: Predicates used by the MST for the tree correction or the fusion fragments.

gives priority to the computation of minimum outgoing edges via Predicate MinEdge(v). A
recovering phase is initiated if there exists a unique tree or if a sub-tree of one fragment has no
outgoing edge.

The computation of the minimum weight outgoing edge is done in a fragment Fu if and only
an adjacent fragment Fv is detected by Fu, i.e., if we have Predicate MergeEdge(v) 6= ∅. In this
case, using Rule RMin each node collects from the leaves to the root the outgoing edges leading
to an adjacent fragment Fv. At each level in a fragment, a node selects the outgoing edge of
minimum weight among the outgoing edges selected by its children and its adjacent outgoing
edges. Thus, this allows to the root of a fragment to select the minimum outgoing edge e of the
fragment leading to an adjacent fragment. Then, the edge e can be used to perform a merging
between two adjacent fragments using an edge belonging to a MST.

Let us explain Rule R which allows to correct a tree (or a fragment). In this case, the
information about the non-tree edges are sent to the root as follows. Among all its non-tree
edges, a node u sends the edge e = (u, v) with the nca(u, v) nearest to the root (see Figure 4(a)).
The information about the edge e is stored in variable mweu. If the parent x of the node u has
the same information and the weight of the edge w(u, x) > w(e) then the edge (u, v) is removed
from the tree (see Figure 4(a-b) for the nodes 6 and 10). We use the red rule in an intensive
way, because we remove all the edges with a weight upper than w(e) in fundamental cycle of e.

8

This interpretation of the red rule allows to insure that after a recovering phase the remaining
edges belong to a MST.

Non tree edge: Heavy tree edge: Light tree edge:

Figure 4: Minimum weighted edge computation and Tree correction. The bubble at each node
v corresponds to the weight and the label of the common ancestor of the edge stored on variable
mwev.

RMin: [Minimum computation]
If ¬Cycle(v)∧Label(v)∧ [(mwev 6= MinEdge(v)∧MergeEdge(v) 6= ∅)∨ (mwepv

= mwev ∧
MergeEdge(v) = ∅)]
Then mwev := MinEdge(v);

R : [MST Correction]
If ¬Cycle(v) ∧ Label(v) ∧NewFrag(v)
Then pv := ∅; ℓv := (Idv, 0);

To summarize, in this section we explained how to compute the outgoing-edges and the
fundamental cycles (Rule RMin), and how to recover from a false tree (Rule R). The next
section addresses the fragments merging operation (Rules R⊲⊳ and R7).

3.2.2 Fragments merging

In this phase two rules are executed: R⊲⊳ and R7. Note that Rule RMin (described in the
previous section) computes from the leaves to the root the minimum outgoing edge e = (u, v)
of the fragment Fu, with u ∈ Fu. The information about e are stored in the variable mwe, i.e.,
the weight of the edge and a common ancestor equal to ∞ to indicate that these information
concern an outgoing edge. When a root r of Fu has stabilized its variable mwer, it starts a
merging phase (Rule R⊲⊳). To this end, the nodes in the path between r and u are reoriented
from r to v. During this reorientation the labels are locked. That is, each node x on the path
between r and u (including r and excluding v) changes its label to: ℓv := (⊥,⊥). When a node
u becomes the root of the fragment Fu it can merge with the fragment Fv. After the addition
of the outgoing edge e, the labeling process is re-started (see Rule R7). The merging phase is
repeated until a single fragment is obtained.

R⊲⊳: [Merging]
If NeedReorientation(v) ∧mwev = MergeEdge(v)

9

Then
If (∃u ∈ N(v)\Child(v)\{pv}, w(u, v) = MergeEdge(v) ∧ Idv > Idu)
Then

pv := min{Idu : u ∈ N(v)\Child(v)\{pv} ∧ w(u, v) = MergeEdge(v)};
ℓv := (∅, ∅);

If (∃u ∈ N(v)\Child(v)\{pv}, w(u, v) = MergeEdge(v) ∧ Idv < Idu ∧ pu = Idv)
Then ℓv := (∅, ∅);
Else pv := min{Idu : u ∈ Child(v) ∧mwev = MergeEdge(v)};

ℓv := (⊥,⊥);

R7: [End Merging]
If ¬NeedReorientation(v) ∧ EndReorientation(v)
Then ℓv := (∅, ∅);

4 Correctness proof

Lemma 1 Let C a configuration where the set of variables pv, v ∈ V, form at least one cycle in
the network. In a finite time, Algorithm NCA-L removes all the cycles from the network.

Proof. If a node v has a parent which is not in its neighborhood or if v has no parent then
the parent and the label variable of v is modified to ∅ and (Idv, 0) respectively with Rule R⊙.

A node v identifies a cycle with Predicate Cycle(v) which uses v’s label and the label of
its parent. In a legitimate configuration, v’s label is smaller than the label of its parent and
is constructed using the label of its parent, i.e., the label of the parent of v is included to v’s
label. Thus, if the label of v is included or is smaller than the label of its parent then a cycle is
detected and Predicate Cycle(v) is true. In this case, v reinitiates its parent and label variable
using Rule R⊙.

In order to detect a cycle the label computation process must cross a part or all the nodes
of the cycle. However, since we consider a distributed scheduler then all the nodes in a cycle
can be activated and we can have a rotation of the labels of the nodes in the cycle. This may
lead to a new configuration in which the labels cannot be used to detect a cycle, because the
label of one node is not used to compute some other labels and to detect a cycle. To break this
symmetry, we use the node identifiers with Predicate MinEnabled(v). This predicate allows to
activate the node v iff v has no neighbor u such that u is activated and u’s identifier is lower
than v. Therefore, there is at least a node x in the cycle which is not activated and when the
label of x is used by some other nodes to compute their labels then Predicate Cycle(x) is true
and x breaks the cycle using Rule R⊙. 2

According to Lemma 1, if the system starts from a configuration which contains at least one
cycle then all the cycles are removed from the network in a finite time. Therefore, in the
following we consider only configurations containing no cycle.

Definition 2 (Legitimate state of NCA-L) Let C a configuration with no cycle in the net-
work, i.e., which contains a forest of trees T = (VT ⊆ V,ET ⊆ E). The configuration C is
legitimate for Algorithm NCA-L iff each node v ∈ VT satisfies one of the following conditions:

1. the label ℓv of v is equal to ℓp
v
.(Idv, 0), if the edge between v and v’s parent in T is a light

edge or v is the root of the tree;

2. the label ℓv of v is equal to ℓpv
and last(ℓv)[1] = last(ℓparent)[1] + 1, if the edge between v

and v’s parent in T is a heavy edge.

10

Lemma 2 (Convergence for NCA-L) Starting from an illegitimate configuration for Algo-
rithm NCA-L, eventually Algorithm NCA-L reaches in a finite time a legitimate configuration.

Proof. To compute correct node labels, heavy and light edges in each tree T = (VT , ET) of
the forest in the network must be identified. To this end, each node v ∈ VT maintains in the
variable sizev two information: the size of its subtree in T and the identifier of the child with
the subtree of maximum number of nodes. Based on the first information given by its children
u ∈ VT stored in variable sizeu, each node v compute the size of its subtree in T and informs
its child u if the edge (u, v) ∈ ET is a light or heavy edge. The edge (u, v) ∈ ET is a heavy
edge if the second information stored in sizev is equal to Idu the identifier of u, a light edge
otherwise. Therefore, each node v ∈ VT can detect if its label is correct according to its parent
label. Note that Predicate MinEnabled(v) is used at node v ∈ V to help to break cycle if we
are in the case of a configuration described in proof of Lemma 1. Moreover, since we use the
labeling scheme with minimum spanning tree computation rules Predicate TreeMerg(v) is used
to forbid the label correction when it has been modified by Rule R ,R⊲⊳ and R7.

The computation of the information stored in the variable sizev at each node v ∈ VT is done
via bottom-up fashion in the tree T . According to Predicate SizeC(v), if the variable sizev is not
equal to (1,⊥) at a leaf node v in T then Predicate SizeC(v) = false and v can execute Rule Rℓ

to correct its variable sizev. Otherwise according to Predicate SizeC(v), for any internal node
v ∈ VT the first information of sizev must be equal to one plus the sum of the size of the children
subtrees and the second one to the identifier of its child with the maximum subtree size. Thus,
if variable sizev is not correct (i.e., Predicate SizeC(v) = false) then v can execute Rule Rℓ to
correct its variable sizev. Using the same argument, one can show by induction that for any
internal node v ∈ VT we have sizev = (1 +

∑

u∈Child(v) sizeu, argmax{sizeu : u ∈ Child(v)}).
The computation of the node labels in a tree T is done via top-down fashion starting

from the root of T . For convenience, a path is called heavy (resp. light) if it contains only
heavy (resp. light) edges. Moreover, a node is called heavy (resp. light) if the edge between
its parent and itself is a heavy (resp. light) edge. v is informed by its parent with sizepv

if v is a heavy (i.e., sizepv
[1] = Idv) or light (i.e., sizepv

[1] 6= Idv) node. The root node v
of T is also the root of a heavy path and its label must be equal to (Idv, 0). According to
Predicate Label(v) and LabelR(v), v can execute Rule Rℓ to correct its label. Otherwise, we
have two cases: heavy or light nodes. When the root have a correct label then all its children
can compute their correct label. If a heavy (resp. light) node has a label different from ℓp

v

and last(ℓv)[1] = last(ℓparent)[1] + 1 (resp. ℓp
v
.(Idv, 0)) then we have Predicate Heavy(v) =

false (resp. Light(v) = false), LabelNd(v) = false and Label(v) = false. Therefore, v can
execute Rule Rℓ to correct its label ℓv accordingly with its parent. Using the same argument,
one can show by induction that for any internal node v ∈ VT we have ℓpv

and last(ℓv)[1] =
last(ℓparent)[1] + 1 (resp. ℓpv

.(Idv, 0)) for heavy (resp. light) nodes. 2

Lemma 3 (Closure for NCA-L) The set of legitimate configurations for NCA-L is closed.

Proof. According to Algorithm NCA-L, the labeling procedure is done using only Rule Rℓ. In
any legitimate configuration for Algorithm NCA-L, for any node v ∈ V Predicate SizeC(v) and
Label(v) are true and Rule Rℓ cannot be executed by a node v. So, starting from a legitimate
configuration for Algorithm NCA-L the system remains in a legitimate configuration. 2

Definition 3 (Legitimate state of MST) A configuration is legitimate for Algorithm MST iff
each node v ∈ V satisfies the following conditions:

1. a tree T spanning the set of nodes in V is constructed;

11

2. T is of minimum weight among all spanning trees.

Lemma 4 Let Ti = (VTi
, ETi

) a tree (or fragment). Eventually for each node v ∈ VTi
the

variable mwev contains a pair of values: the weight of the minimum outgoing edge (u, v) of the
fragment Ti and ∅, if a merging is possible between two fragments Tj and Ti, (j 6= i).

Proof. We assume that Ti and Tj, (j 6= i) are two distinct coherent trees (i.e., different root
and correct labels, otherwise Rule R⊙ and Rℓ are used to correct the trees) in the network and
that a merging is possible between Ti and Tj . The computation of the minimum outgoing edge
of Ti (resp. Tj) is done in a bottom-up fashion. We consider the tree Ti but the computation
in Tj is done in a same way. A leaf node v can compute and store in its variable mwev its
local adjacent minimum outgoing edge leading to another tree. Macro MinEdge(v) returns the
local minimum outgoing edge if Macro MergeEdge(v) 6= ∅. To this end, if there is an adjacent
outgoing edge (u, v) leading to another tree Tj (i.e., MergeAdj(v) 6= ∅ and MergeEdge(v) 6= ∅)
and we have mwev 6= MinEdge(v) then v can execute Rule RMin to compute its local outgoing
edge stored in the variable mwev. A internal node v must use the local outgoing edges computed
by its children and selects the edge of minimum weight among these edges, then it compares this
value with the weight of its adjacent local outgoing edge and again it holds the edge of minimum
weight. The selection of its children minimum outgoing edge is done by Macro MergeChild(v)
and the computation of its local outgoing edge is done by Macro MergeAdj(v) as for a leaf
node. Thus, if there is an outgoing edge which can be used to make a merging with another
tree (i.e., MergeEdge(v) 6= ∅) and we have mwev 6= MinEdge(v) for a internal node v, then
v can execute Rule RMin to compute in the variable mwev its local minimum outgoing edge.
Using the same argument, one can show by induction that for any internal node v ∈ VTi

we
have mwev = MergeEdge. Therefore, the local outgoing edge computed by the root node v is
the minimum outgoing edge of Ti. 2

Lemma 5 Let Ti = (VTi
, ETi

) a tree (or fragment). Eventually for each node v ∈ VTi
the

variable mwev contains a pair of values: the weight of an edge (u, v) 6∈ ETi
and the label of the

nearest common ancestor of u ∈ VTi
and v. Moreover, eventually all local internal edges of v

are computed.

Proof. We assume that Ti = (VTi
, ETi

) is a coherent tree, otherwise Rule R⊙ and Rℓ are
used to break the cycles and to correct the labels. Each node v ∈ VTi

starts to compute local
internal edges (i.e., edges (x, y) such that x, y ∈ VTi

and x = v or x or y is in the subtree of v)
when it has no local outgoing edge (adjacent outgoing edge or outgoing edge given by a child)
leading to another tree. In this case, a node v informs its parent of its local internal edges
using its variable mwev. Macro RecoverEdge(v) returns the local internal edge of v which has
the common ancestor nearest from the root among the internal edges that were not taken into
account by its parent using the node labels. Each node v ∈ VTi

which is in a recover phase sends
all its local internal edges. To this end, v compute its next local internal edge when its parent has
taken into account v’s current local internal edge (i.e., mwep

v
= mwev). Thus, the information

of internal edges are put back up in the tree until reaching the nearest common ancestor and
v do not wait an acknowledgement from the nearest common ancestor to send its next internal
edge. Moreover, Macro FarLca(v) compute the next internal edge adjacent to v such that the
label of the nearest common ancestor associated to (u, v) with u ∈ N(v) is greater (according
to operator >ℓ) than mwev[1] which is used to define an order on the internal edges. Otherwise,
if FarLca(v) = ∅ then according to Macro RecoverAdj(v) the node v reset the computation of
its adjacent internal edge to assure that every internal edge is taken into account. The recover
phase is started at node v if v has no local outgoing edge (i.e., MergeEdge(v) = ∅) and v’s

12

parent has taken into account the information associated to its current internal edge and stored
in variable mwev (i.e., mwep

v
= mwev). In this case, the guard of Rule RMin is satisfied and

v can execute Rule RMin to update its variable mwev with the information of its next local
internal edge. The information given by a child are stopped at the nearest common ancestor v
of the corresponding internal edge since Macro FarLcaChild(v) selects only mweu from a child
u such that mweu[1] ≤ℓ ℓv. 2

Lemma 6 Let T = (VT , ET) a tree and any edge (x, y) ∈ ET . Eventually, if (x, y) is not part
of a minimum spanning tree of the network then (x, y) is removed from T .

Proof. We assume that T = (VT , ET) is a coherent tree, otherwise Rule R⊙ and Rℓ are used to
break the cycles and to correct node labels. Let an edge (x, y) ∈ ET (w.l.o.g. py = x) which is
not part of a minimum spanning tree. As the network has a finite size then there is a time after
which there exists no merging between two trees in the network. Thus according to Lemma 5
each internal edge e of T is put back up in T until reaching the nearest common ancestor
associated to e. Since (x, y) is not in a minimum spanning tree, there is an edge (u, v) such that
w(u, v) < w(x, y) and (x, y) is on the path between u and nca(u, v) or between v and nca(u, v).
So, there is a time such that mwey = (w(u, v), nca(u, v)) and mwex = (w(u, v), nca(u, v))
according to Lemma 5. Then Predicate NewFrag(y) returns true because we have mwey =
mwex,mwey[1] 6= Idy and w(x, y) > w(u, v). Therefore, y can execute Rule R to create a new
tree rooted at y and as a consequence the edge (x, y) is removed from T . 2

Lemma 7 Let two distinct trees Ti = (VTi
, ETi

) and Tj = (VTj
, ETj

) with i 6= j. Let an edge
(x, y) such that (x, y) is part of a minimum spanning tree and x ∈ Tj and y ∈ Ti. Eventually
(x, y) is used to merge the trees Ti and Tj .

Proof. We assume that Ti = (VTi
, ETi

) and Tj = (VTj
, ETj

) are coherent trees, otherwise Rule
R⊙ and Rℓ are used to break the cycles and to correct node labels. According to Lemma 4,
the merging edge (x, y) is computed by the root and it starts the merging phase since only the
root can choose the edge of minimum weight leading to another tree to use in order to make a
merging. In the remainder, we focus on tree Ti but the same arguments are also true for Tj .

When the root v has finished to compute its minimum outgoing edge from its fragment (i.e.,
we havemwev = MergeEdge(v)) then v can execute Rule R⊲⊳ because Predicate NeedReorientation(v)
is satisfied since v has a coherent label. Note that we permit the creation of cycles of length
two only if at least one node has a label equal to (⊥,⊥). Indeed, during the merging phase the
orientation is reversed on the path between the root of Ti and the node adjacent to the edge used
for the merging, that is why a cycle is detected in Rule R⊙ if Predicate NeedReorientation(v) is
not satisfied. Thus, v can change its variables pv and ℓv as following. If there is an edge (x, y)
adjacent to v such that w(x, y) = mwev[0] and y = v then v selects x as its new parent (only
if Idv > Idx) and v changes its label to (∅, ∅) to informs its subtree that the merging is done.
Otherwise, v selects its child u such that mweu = mwev as its new parent and v changes its
label to (⊥,⊥) to inform u that a merging is started.
Any other node v on the path between the root and the node adjacent to the merging edge take
part in the merging phase when its parent has selected v as its new parent (i.e., pp

v
= Idv) and

v’s parent label is equal to (⊥,⊥). Thus, Predicate NeedReorientation(v) is satisfied and v can
execute Rule R⊲⊳ since mwev = MergeEdge(v) (otherwise Rule RMin is executed to update its
variable mwev). So, v changes its variables pv and ℓv as described above for the root. Since
the merging phase is done on a path, using the same argument one can show by induction that
for any internal node v ∈ VTi

on the path between the root and the node y adjacent to the
merging edge (except for y) we have pv = min{Idu : u ∈ Child(v)∧mwev = MergeEdge(v)} and
ℓv = (⊥,⊥) and for the node y we have py = x and ℓy = (∅, ∅). 2

13

Lemma 8 Eventually all the nodes have a correct label in the new fragment resulting from a
merging phase.

Proof. According to Lemma 7, a merging phase is done using the minimum outgoing edge
(x, y) between two distinct trees Ti and Tj if it is possible. Moreover, when the edge (x, y) is
added by the extremity of minimum identifier, w.l.o.g. let y ∈, then y’s label is equal to (∅, ∅)
and the end of the merging phase is propagated in the resulting fragment T . In the reminder
we focus on tree Ti but the same arguments are true for tree Tj .

Let the node v ∈ Ti such that pv = y and ℓv = (⊥,⊥) (i.e., v is the child of y on the
path between y and the old root of Ti). Predicate NeedReorientation(v) is false because v
is not a root node and the label of its parent y is not equal to (⊥,⊥). Moreover, Predicate
EndReorientation(v) is true since y’s label is equal to (∅, ∅) and v’s label to (⊥,⊥). Thus, v
can execute Rule R7 to modify its label to (∅, ∅). Using the same argument, one can show by
induction that every node v on the path between y and the old root of Ti can execute Rule R7,
thus there is a time such that we have ℓv = (∅, ∅).
Now we show that the other nodes in Ti can execute Rule R7. Consider the node r ∈ VTi

such
that r is the old root of Ti and ℓz = (∅, ∅). Let a node v ∈ VTi

such that pv = Idz. Predicate
NeedReorientation(v) is false because v is not a root node and the label of its parent is not equal
to (⊥,⊥). Moreover, Predicate EndReorientation(v) is true because ℓz = (∅, ∅) and v’s label is
not equal to (⊥,⊥) since v is not on the path between y and the old root of Ti, and v’s label
is different from (∅, ∅). Note that since the start of the merging phase, Predicate TreeMerg(v)
is true because Predicate NeedReorientation(v) or EndReorientation(v) is true. So, Rule Rℓ

cannot be executed by v and v’s label has not changed. Thus, v can execute Rule R7 to modify
its label to (∅, ∅). Using the same argument, one can show by induction that every node v on
the path between z and a leaf node can execute Rule R7, thus there is a time such that we
have ℓv = (∅, ∅).

Every node v in the resulting fragment T can execute Rule Rℓ when the edge (x, y) is added
in T and y’s label has been modified from (∅, ∅) to its new label based on x’s label. Indeed, in
this case for every node v, with v 6= y and v ∈ VTi

, Predicate TreeMerg(v) is false and v can
execute Rule Rℓ. Therefore, there is a time such that every node v in T has a correct label. 2

Lemma 9 (Convergence for MST) Starting from an illegitimate configuration for Algorithm
MST, eventually Algorithm MST reaches in a finite time a legitimate configuration.

Proof. We assume that there is a forest of trees Ti, 1 ≤ i ≤ n, in the network, otherwise
according to Lemma 1 Rule R⊙ is executed to remove the cycle from the network. Moreover,
we assume also that the node’s label are correct in tree Ti, otherwise according to Lemma 2
and 3 there is a time such that the node’s label are corrected.

According to Lemma 5 and 6, if an edge (u, v) ∈ ETi
and (u, v) is part of no minimum

spanning tree of the network then (u, v) is removed from tree Ti. Thus, there is a time such
that the existing fragments in the network are part of a minimum spanning tree. According to
Lemmas 4 and 7, eventually if there are at least two distinct fragments then a merging phase
is started. Moreover, node labels are corrected after a merging phase according to Lemma 8.
Since the size of the network is finite there is a finite number of merging. Therefore, in a finite
time a spanning tree of minimum weight is computed by Algorithm MST. 2

Lemma 10 (Closure for MST) The set of legitimate configurations for MST is closed.

Proof. Let C a legitimate configuration such T = (VT , ET) is a minimum spanning tree of
the network and an edge (x, y) ∈ ET . To be illegitimate, the configuration C must contain an

14

edge (x, y) such that it exists an edge e = (u, v) with w(u, v) < w(x, y) and (x, y) and (u, v)
are included in the same fundamental cycle Ce. Thus, this imply that the edge e is not used to
verify if it is possible to replace an edge of Ce with (u, v) which contradicts Lemmas 5 and 6.
Moreover, since T is a spanning tree then no merging is done in the network. Therefore, starting
from a legitimate configuration for Algorithm MST a legitimate configuration is preserved. 2

5 Complexity proofs

In the following we discuss the complexity issues of our solution.

Lemma 11 Algorithms NCA-L and MST have a space complexity of O(log2 n) bits.

Proof. Algorithm NCA-L uses three variables : pv, ℓv, sizev. The first and the last one are
respectively a pointer to a neighbor node and a pair of integers, each one needs O(log n) bits.
However, the variable ℓv is a list of pairs of integers. A new pair of integers is added to the list
when a light edge is created in the tree. As noticed in [1], there are at most log n light edges
on the path from a leaf to the root, i.e., at most log n pairs of integers. Thus, the variable ℓv
uses log n× log n bits.

Algorithm MST uses an additional variable mwev which is a pair composed of an integer and
the label of a node. The label of a node is stored in variable ℓv which uses log2 n bits. Thus,
the variable mwev needs log2 n bits.

Therefore, Algorithms NCA-L and MST use O(log2 n) bits of memory at each node. 2

Lemma 12 Starting from any configuration, all cycles are removed from the network in at most
O(n2) rounds, with n the number of nodes in the network.

Proof. As explained in the proof of Lemma 1, to break a cycle Ck a part of the nodes in Ck

must compute their new labels, that is a label computation must be initiated from one node
and then this process must cross Ck. Thus, the worst case is a configuration in which all the
nodes in Ck have to compute their new labels using Rule Rℓ to detect the presence of cycle Ck.
Therefore, at most O(n) rounds are needed to compute the new label of the nodes in Ck based
on the label of one node x in Ck. According to Lemma 1, when this computation is done the
cycle Ck is detected and removed by the node x. At most O(n) additional rounds are needed
to break the cycle Ck.

Since there is at most n/2 cycles in a network, at most O(n2) rounds are needed to remove
all the cycles from the network. 2

Lemma 13 Starting from a configuration which contains a tree T , using Algorithm NCA-L any
node v ∈ VT has a correct label in at most O(n) rounds.

Proof. As described in proof of Lemma 2, the correction of node labels is done using a
bottom-up computation followed by a top-down computation in the tree T = (VT , ET).

The bottom-up computation is started by the leaves of T , when leaf nodes v ∈ VT have
corrected their variable sizev to (1,⊥) then internal nodes u ∈ VT can start to correct their
variable sizeu. An internal node v ∈ VT computes a correct value in its variable sizev using Rule
Rℓ when all its children u have a correct value in their variable sizeu. Since the computation
is done in a tree sub-graph then in at most O(n) rounds each node v ∈ VT has corrected its
variable sizev.

The top-down computation is started by the root of the tree T . When the root v has a
correct value in variable sizev then the computation of correct labels can start. Thus, if the

15

parent of a node v has a correct value in its variable sizep
v
and ℓp

v
then v can compute its

correct label in ℓv using Rule Rℓ. As for the bottom-up computation, the top-down computation
is done in at most O(n) rounds since it is performed in a tree sub-graph.

Therefore, in at most O(n) rounds each node v in the tree T has a correct label stored in
variable sizev. 2

Lemma 14 Starting from any configuration, Algorithm NCA-L reaches a legitimate configura-
tion in at most O(n2) rounds.

Proof. The initial configuration C could contain one or more cycles, so according to Lemma 12
in at most O(n2) rounds the system reaches a new configuration C′ which contains no cycle.
Moreover according to Lemma 13, the nodes v in each tree T in the configuration C′ have a
correct label in at most O(n) rounds. Therefore, starting from an arbitrary configuration each
node v ∈ V computes its correct label in at most O(n2) rounds. 2

Lemma 15 Starting from any configuration, Algorithm MST reaches a legitimate configuration
in at most O(n2) rounds.

Proof. According to Lemma 12, starting from any configuration after at most O(n2) rounds
all the cycles are removed from the network, i.e., it remains a forest of trees after at most O(n2)
rounds. Moreover, according to Lemma 13 in at most O(n) additional rounds each node v ∈ V
has a correct label since each node belongs to a unique tree.

According to the description of Algorithm MST, Macro MinEdge(v) and Lemma 5, when it is
possible to make a merging between two distinct trees in the forest a merging phase is started.
This merging phase is done in three steps: (1) information corresponding to the minimum
outgoing edge is propagated in a bottom-up fashion in each tree, (2) the orientation is reversed
from the root of a tree until reaching the node in the tree adjacent to the minimum outgoing
edge, and (3) the node labels are changed to inform of the end of the merging phase, followed by
a propagation of the new correct node labels in the new tree resulting from the merging phase.

The first step is a propagation of information in a bottom-up fashion in a tree which is done
in at most O(n) rounds. The second step reverses and propagates new node labels on a part of
the tree (between the root and the node adjacent to the minimum outgoing edge) which is done
in at most O(n) rounds too. Step 3 modifies the label of the nodes which have changed their
parent pointer in step 2, so this last step takes also at most O(n) rounds and the relabeling
of the nodes in the new tree is done in at most O(n) rounds according to Lemma 13. Thus,
a merging phase is accomplished in at most O(n) rounds and as there are in the worst case n
trees then in at most O(n2) rounds a spanning tree is constructed.

When there is no possible merging for a given fragment (or tree) Ti in the forest then the
correction phase concerning Ti is started. In a tree Ti, the internal edges (i.e., whose two
endpoints are in Ti) are sent upward in Ti in order to detect incorrect tree edges. The internal
edges e are sent following an order on the distance between the common ancestor nca(e) and
the root of Ti, by sending first the edge e with the nearest common ancestor nca(e) from the
root. Let h(Ti) be the height of tree Ti and d(v) be the distance from v ∈ Ti to the root of Ti.
Thus, an internal (resp. leaf) node has at most d(v)−2 (resp. d(v)−1) adjacent internal edges.
Since a leaf node could have a lower priority (compared to its ancestors) to send all its adjacent
internal edges, then the worst case to correct a tree is the case of a chain. Indeed, if the last
internal edge of a leaf node x must be used to detect an incorrect tree edge then x may have to
wait that all its ancestors in the chain have sent their internal edges of higher priority. Thus,
starting from any configuration after at most O(h(Ti)

2) rounds Ti contains no incorrect edges.
Note that this is the worst case time to detect the farthest incorrect tree edge from the root

16

of Ti, otherwise the correction phase is stopped earlier for nearest incorrect tree edges because
the merging phase has a higher priority than the correction phase. Moreover, after O(h(Ti)

2)
rounds all the new edges used by Ti for a merging are correct tree edges for Ti. So, Ti does not
remove another tree edge in a new correction phase. Hence starting from any configuration,
a correction phase deletes all the incorrect tree edges of a spanning tree after at most O(n2)
rounds and no new tree edges are removed by a correction phase.

Therefore, starting from an arbitrary configuration Algorithm MST constructs a minimum
spanning tree in at most O(n2) rounds. 2

6 Conclusion

We extended the Gallager, Humblet and Spira (GHS) algorithm, [9], to self-stabilizing settings
via a compact informative labeling scheme. Thus, the resulting solution presents several ad-
vantages appealing for large scale systems: it is compact since it uses only logarithmic memory
in the size of the network, it scales well since it does not rely on any global parameter of the
system, it is fast — its time complexity is the better known in self-stabilizing settings. Addi-
tionally, it self-recovers from any transient fault. The time complexity is O(n2) rounds and the
space complexity is O(log2n).

References

[1] Alstrup Stephen and Gavoille Cyril and Kaplan Haim and Rauhe Theis. Nearest com-
mon ancestors: a survey and a new algorithm for a distributed environment. Theory of
Computing Systems, 37(3):441–456, 2004.

[2] Lélia Blin, Maria Potop-Butucaru, Stephane Rovedakis, Sébastien Tixeuil. A New Self-
stabilizing Minimum Spanning Tree Construction with Loop-Free Property. DISC, volume
5805 of Lecture Notes in Computer Science, pages 407–422. Springer 2009.

[3] Jungho Park, Toshimitsu Masuzawa, Kenichi Hagihara, Nobuki Tokura. Distributed Al-
gorithms for Reconstructing MST after Topology Change. 4th International Workshop on
Distributed Algorithms (WDAG), pages 122–132, 1990.

[4] Jungho Park, Toshimitsu Masuzawa, Ken’ichi Hagihara, Nobuki Tokura. Efficient dis-
tributed algorithm to solve updating minimum spanning tree problem. Systems and Com-
puters in Japan, 23(3):1–12, 1992.

[5] Doina Bein, Ajoy Kumar Datta, Vincent Villain. Self-Stablizing Pivot Interval Routing in
General Networks. ISPAN, pages 282–287, 2005.

[6] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17(11):643–644, 1974.

[7] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[8] Gerard Tel. Introduction to distributed algorithm. Cambridge University Press, Second
edition, 2000.

[9] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, 1983.

17

[10] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal Computing, 13(2):338-355, 1984.

[11] Lisa Higham and Zhiying Liang. Self-stabilizing minimum spanning tree construction on
message-passing networks. In DISC, pages 194–208, 2001.

[12] S Katz and KJ Perry. Self-stabilizing extensions for message-passing systems. Distributed
Computing, 7:17–26, 1993.

[13] Sandeep K. S. Gupta and Pradip K. Srimani. Self-stabilizing multicast protocols for ad
hoc networks. J. Parallel Distrib. Comput., 63(1):87–96, 2003.

[14] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the travelling salesman
problem. Proc. Amer. Math. Soc., 7:48–50, 1956.

[15] R.C. Prim. Shortest connection networks and some generalizations. Bell System Tech. J.,
pages 1389–1401, 1957.

18

