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We study the magnetic induction in a confined swirling flow of liquid sodium, at integral magnetic
Reynolds numbers up to 50. More precisely, we measure in situ the magnetic field induced by the
flow motion in the presence of a weak external field. Because of the very small value of the
magnetic Prandtl number of all liquid metals, flows with even modest R, are strongly turbulent.
Large mean induction effects are observed over a fluctuating background. As expected from the von
Karman flow geometry, the induction is strongly anisotropic. The main contributions are the
generation of an azimuthal induced field when the applied field is in the axial direction (an € effect)
and the generation of axial induced field when the applied field is the transverse direction (as in a
large scale « effect). Strong fluctuations of the induced field, due to the flow nonstationarity, occur
over time scales slower than the flow forcing frequency. In the spectral domain, they display a £~
spectral slope. At smaller scales (and larger frequencies) the turbulent fluctuations are in agreement
with a Kolmogorov modeling of passive vector dynamics. © 2002 American Institute of Physics.
[DOLI: 10.1063/1.1497376]

I. INTRODUCTION

Jdu v Vp A curl B <B
: . . . . —+(wV)u=— —+ +
The motion of an incompressible electrically conducting ot (u-V)u p v PR '
fluid in the presence of an applied magnetic field is gov- ) (1)
erned, respectively, by the fluid and induction equations: divu=0,
JB 1
YPresent address: Departemento de Fisica y Matematica Aplicada, Univer- T curl(uXB) + o0 AB,
sided de Navarra, E-31080 Pamplona, Spain.
® Author to whom all correspondence should be addressed. Electronic mail: (2)
pinton@ens-lyon.fr divB=0,

1070-6631/2002/14(9)/3046/13/$19.00 3046

© 2002 American Institute of Physics



Phys. Fluids, Vol. 14, No. 9, September 2002

where p, v, 0, u are, respectively, the fluid’s density, kine-
matic viscosity, electrical conductivity, and magnetic perme-
ability. These equations must be supplemented by boundary
conditions: no-slip for the velocity field, continuity of the
electromagnetic field at the flow wall, and electrical conduc-
tivity and geometry of the outer medium." For a chosen flow
geometry and wall conductivity, the control parameters of
the system are the magnetic Reynolds number R, , the ki-
netic Reynolds number Re, and the interaction parameter N:

dfmagnetic stretching )
= ~upuoUL=27u,ocR*Q, (3)

™ magnetic diffusivity

defhonlinear advection UL 2wR*Q
e=— — =, (4)
viscous dissipation v v

oBiL

N pressure force N pU

defT orentz force

, (5)

where U, L are characteristic values for the flow velocity and
size and B, is the applied magnetic field. In the cylindrical
geometry used in this study—see Sec. [I—the characteristic
size is the cylinder radius R and the characteristic velocity is
the driving disk speed U=2mR(), where () is the rotation
rate. The ratio of the magnetic to kinematic Reynolds num-
ber is the magnetic Prandtl number
R

P,=pov= R_:' (6)
It is very small (less than ~10~>) for all liquid metals. Note
that once the nature of the conducting fluid is chosen, Eq. (6)
gives a fixed relationship between the kinetic and magnetic
Reynolds numbers which can no longer be set independently.

There have been numerous studies of the influence of a
strong magnetic field on weak flows of an electrically con-
ducting fluid, i.e., in the parameter range N>1, R,,<1.%> In
this case, one effect of the Lorentz force is to produce an
enhanced diffusion of velocity gradients in the direction of
the applied field.>~> We consider here the opposite limit, i.e.,
N<1, R,>1, where the interaction parameter is small and
the magnetic Reynolds number is large (at least moderate).
This is the case where one is primarily interested in the dy-
namics of the magnetic field under a prescribed flow. This
regime is achieved in a liquid metal when one applies a weak
magnetic field to a very high Reynolds number flow. Re has
to be quite high because of the smallness of the magnetic
Prandtl number of all molten metals. One then expects that
the dynamics of the magnetic field results from the action of
both the mean flow structure and the turbulent fluctuations.
At low interaction parameter, the magnetic field does not
modify the velocity field at all and the problem is that of a
“passively advected” vector: the magnetic field acts as a
“vector” tracer which probes the velocity gradients. In the
realm of turbulence, this is believed to be at an intermediate
complexity level between the “passive scalar’ problem and
the full dynamics of the vorticity field (the governing equa-
tions for the scalar gradient, magnetic field, and vorticity
have a very similar structure'). However, due to the very
large magnetic diffusivity of metals, the dynamics of the
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magnetic field is mostly dominated by the large scales of the
flow motion. Above a critical magnetic Reynolds number
R;, . the stretching and twisting of field lines may overcome
the Joule dissipation and generate a self-sustained magnetic
field: this is the dynamo effect, believed to be responsible for
the magnetic field of planets and stars. The idea that a part of
the kinetic energy of motion of a conducting fluid can be
converted into magnetic energy was first put forward by
Larmor.® It has been demonstrated experimentally in con-
strained model flows in recent experiments in Riga’® (Pono-
marenko flow’) and Karlsruhe'™!" (Roberts flow'?). A dem-
onstration in the case of an unconstrained, turbulent flow is
still lacking.

As a first step, we report here results on magnetic induc-
tion in such an homogeneous and turbulent flow. The work-
ing fluid is liquid sodium, chosen for its high electrical con-
ductivity and low density. The flow, belonging to the “von
Karman geometry,” is produced inside a cylinder in the gap
between counter-rotating disks. In this way, the velocity field
presents both differential rotation and helicity, two essential
ingredients in the induction mechanisms that favor dynamo
action. Such a mean flow structure has been shown numeri-
cally to lead to dynamo action in kinematic simulation stud-
ies in a sphere13 orin a cylinderm'15 and in direct numerical
simulations of the Taylor—Green geometry.'® Experimentally,
the possibility of dynamo action in similar flows in a sphere
has been investigated by Peffley et al.:'"!® using pulse-decay
measurements, they have proposed that dynamo generation
in these flows is a possibility, albeit at a quite high threshold
for the magnetic Reynolds number (over 200). The possibil-
ity of a transition to a dynamo via a ““blow-out” mechanism
(given the strong nonstationarity of this flow at high Rey-
nolds numbers) has also been investigated.'® Our aim is to
study in detail the induction mechanisms in the von Karman
geometry using internal magnetic three-dimensional (3-D)
measurements. The flow and facility are described in Sec. II.
We apply a weak external field and study the magnetic re-
sponse: modifications of the magnetic field topology and
fluctuations generated by the flow motion. Results are pre-
sented in Sec. III and discussed in Sec. IV.

Il. EXPERIMENTAL SETUP AND FLOW
CHARACTERISTICS

A. Sodium device and flow

A specific device has been built in order to operate a
sodium flow."> As shown in Fig. 1, it consists of a tank, an
argon gas regulation unit, and a sodium purification unit.
This unit is needed to keep the sodium as pure as possible to
be able to operate the flow at temperatures close to the melt-
ing temperature, where the electrical conductivity is highest.
In practice, the experiment is operated in the 130-170°C
range.

The flow itself is produced inside a cylindrical vessel
with diameter 2R =40 cm and equal length H=2R —see the
sketch in Fig. 2; it holds up to 70 1 of sodium. Two coaxial
counter-rotating impellers generate the flow; they are driven
by 2X75 kW motors at a rate adjustable in the range Q[0
—25] Hz. The maximum value is set by the maximum flow
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FIG. 1. Sodium experiment: (1) experimental platform, (2) sodium tank
(270 1), (3) motors, (4) flow vessel (70 1, detailed in (2), (5) sodium purifi-
cation unit, (6) control unit, (7) argon circuit command.

power consumption; at 25 Hz, the whole 150 kW are spent.
Two features have been designed for magneto hydrodynam-
ics purposes, as a result of extensive studies in a water pro-
totype coupled with kinematic dynamo simulations:'? the im-

N

Cu shell

FIG. 2. Experimental setup. (a) Two pairs of induction coils have their axis
(horizontal) aligned either parallel to the rotation axis or perpendicular to it.
They can produce an applied field of about 20 G inside the flow. The mag-
netic field is measured locally inside the flow using a Hall probe. The
(x,y,z) coordinate system has its origin in the median plane, on the axis of
the cylinder. It gives the local orientation of the field components measured
by the magnetic probe (located at x=0, at an adjustable distance z to the
axis). The piezoelectric pressure probe is located in the mid-plane of the
cylinder and mounted flush to the wall. (b) Details of inner copper wall and
impellers. They are counter-rotated in the counter clockwise direction with
respect to the above-mentioned picture.
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FIG. 3. Mean velocity field in the water experiment: (a) toroidal and (b)
poloidal component of the velocity in the meridian plane. The abscissa
corresponds to the normalized axial direction with the disks located at x/R
= =1, and the ordinate corresponds to the normalized radial direction (with
z/R=0 at the center of the disks). In this measurement, the rotation rate of
the disks is (0=5 Hz.

pellers shape is designed to generate poloidal and toroidal
velocities of the same order of magnitude (P/7T=0.8) and
the stainless steel vessel has an inner copper wall (I cm
thick) in order to ensure electrically conducting boundary
conditions. These modifications have the effect to decrease
the numerically expected threshold for dynamo onset and to
increase the hydrodynamic efficiency, i.e., the maximum R,
achievable for a given power input.'

B. Flow characteristics

Flows generated between two coaxial rotating disks have
been called “von Karman swirling flows.” When the flow is
confined inside cylindrical walls, mean velocity profiles have
been measured since the late 1950s—cf. Zandbergen and
Dijkstra®® and references therein. In the counter-rotating ge-
ometry, a time average of the velocity field shows the exis-
tence of differential rotation and meridional recirculation
loops. As a result, the time averaged flow has both helicity
and differential azimuthal rotation which are known to play a
major role for large scale induction mechanisms.! The aver-
aged profiles have been measured in a water experiment at
half-scale—at 50 °C, the viscosity of water is close to that of
sodium at 120 °C. The mean velocity is obtained from laser
Doppler velocimetry and pulsed Doppler ultrasonic
velocimetry.'® It is displayed in Fig. 3 where both the differ-
ential rotation and the poloidal circulation are shown in a
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FIG. 4. Local velocity fluctuations in the water experiment, for a rotation
rate equal to 5 Hz, measured from laser Doppler anemometry 5 cm into the
flow, at 1/3 of the gap between the disks.

00—

meridian plane. Note that axisymmetry and incompressibility
are assumed in the extraction of the velocity profile from the
measured data.

In addition, at the rotation rates used in the experiment,
the von Karman flow is strongly turbulent.>'~>* Velocity fluc-
tuations of the order of magnitude of the mean velocity are
observed at any given point, as can be seen in Fig. 4 which
shows a LDV signal in the water prototype. As a result, care
must be taken in interpreting Fig. 3: the flow shown is a time
averaged pattern (and not a solution of Navier—Stokes equa-
tions) that does not reflect the instantaneous turbulent flow
structure.

C. Hydrodynamic measurements in sodium

Pressure fluctuations are recorded using a Kistler piezo-
electric transducer located in the median plane and mounted
flush with the cylindrical wall. Figure 5(a) shows an example
of pressure fluctuations in time. The sudden drops are as-
cribed to vortex filaments*>** that have been visualized using
water seeded with air bubbles;25 their core size has been
measured acoustically26 and found to be of the order of the
Taylor microscale. The rms intensity of the pressure fluctua-
tions varies as the square of the rotation rates of the disks, as
shown in Fig. 5(b). This yields a measurement of the inten-

sity of the rms velocity fluctuations in the flow:**!

Prms™ 3PUs- (7)

This, in turn, gives an estimate of the intensity of turbulence
in the flow, evaluated as the ratio of the rms velocity fluc-
tuation to the disk rim speed:

:MNO 42 (8)
27RQ) T

urms

u=
Urim

in good agreement with the water measurements.

We have also studied the scaling of the power consump-
tion of the flow as a function of the disks’ rotation rate. A
dimensional argument in the limit of very large kinetic Rey-
nolds numbers yields?!

P=KppRQ’, )
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FIG. 5. (a) Time variation of the pressure measured at the flow wall (=17
Hz); (b) evolution with the disks’ rotation rate of the rms amplitude of the
pressure fluctuations. The dashed line corresponds to the quadratic law
Prons/Q?=3.2X1073 [bar/Hz?].

where Kp is a dimensionless factor that depends on the ge-
ometry of the cell and of the shape of the driving disks. To
obtain P, we monitor the current and voltage in the driving
motors or we record the temperature drift inside the flow
when the external cooling is turned off. Both methods are in
good agreement and follow a P=Q? law—cf. Fig. 6. They
yield K p=34, in agreement with measurements in the water
prototype with identical impellers where K p=31 is obtained.

I1l. MAGNETIC INDUCTION
A. Measurement scheme

Induction coils are placed with their axis aligned either
along the motors rotation axis or perpendicular to it—cf. Fig.
2(a). One can apply to the flow a steady magnetic field B,
with strength in the range 1-20 G. It is distorted by the flow
motion so that an induced field b results. We measure the
three components of the local magnetic field inside the flow
using a temperature calibrated three-dimensional (3D) Hall
probe (EW. Bell). The probe is placed in the axial-vertical
plane (xOz) at the same distance from both disks (x=0)
and its distance z from the rotation axis is adjustable. The
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Hall sensor dynamical range is 65 dB and its time resolution
2.5 ms (in dc mode). The signal is digitized using a 16-bit
data acquisition card and stored on a PC.

In the fully turbulent flow under consideration, one ex-
pects the magnetic induction to be quite fluctuating. In this
section, we first describe the average value of the induced
magnetic field and then discuss the statistical characteristics
of the fluctuations. One should however bear in mind that
averaged and fluctuating components are not independent

[cf. Eq. (11)].

B. Variation of the mean induced field with the
applied field

We define the mean magnetic induction, measured at a
fixed point in space, as the average over time of the mea-
sured data:

14000

16000

_ 1 (T
b=;f0 b(t)dt, (10)

where T is the total time length of the measurement, b is the
magnetic induction b=B—B,,. Let us begin with the varia-
tion of b with the applied magnetic field B,. At low ampli-
tudes, By should not modify the hydrodynamic flow. One
way to quantify its effect is to evaluate the interaction pa-
rameter; here N~ 1077 so that any effect of the applied field
is bound to be quite small. When the velocity and magnetic
fields are separated into mean and fluctuating parts, the
steady state induction equation reads

- . 1 -
curl(uXBy) + curl(uXb) + curl(u’ Xb') + E Ab=0,
(11)
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FIG. 7. Mean and standard deviations of the induced field as a function of the applied one, for counter-rotating disks at 0=8 Hz (R,,=20). (Left-hand side)
B, is applied along the axis of rotation; (right-hand side) B, perpendicular to the axis of rotation. (O) Axial component b, of the induced field, ((J) transverse
component b, , (+) vertical component b, . The measurement probe is located near the midplane, 10 cm from the axis of rotation. The dashed lines show a

first-order linear variation, to serve as a guide to the eye.

where the primes denote the fluctuating part of the fields. If
one only considers the effects due to the averaged fields u
and b, then the equation predicts a linear behavior for b(Bj).

Figure 7 shows the variations of the time averaged mag-
netic induction with the external field, applied either along
the axis of rotation x or directly perpendicular to it, along y.
The 3-D measurement probe is located 10 cm inside the flow,
midway between the driving disks. The rotation rate is mod-
erate (=8 Hz. As can be observed, the behavior is mostly
linear (b;*B() both for the evolution of the mean magnetic
field components and for their standard deviations. This is
what would be expected from Eq. (11) if one assumes that
the velocity field does not depend on B. However, for the
largest values of the applied field, there are deviations from
this simple linear behavior. The magnitude of the induced
field (and of its rms intensity) tends to saturate. This effect is
not fully understood at present. From Eq. (11), a departure
from linearity in b(B) can be caused by a modification of
the velocity field by the magnetic field.

Another observation of the curves shown in Fig. 7 is the
anisotropy of the magnetic induction: there are preferred di-

rections for the induced field, depending on the direction of
the applied field. For example when B is along the axis x,
the main induced component is in the azimuthal direction
(i.e., the y direction at the probe location). This effect, al-
ready observed in the gallium measurements,”’ is attributed
to the twisting of the axial magnetic field lines by the differ-
ential rotation of the flow—the () effect.! Its strength, mea-
sured by the slope of the linear variation of the azimuthal
induced field with the magnitude of the applied axial field,
yields a definition of an intrinsic magnetic Reynolds number

[cf. Eq. (11)]:

" db,
™ 9By’

(12)
Defined in this way, the value of R', varies from 0.5 for a
rotation rates of the disks equal to 8 Hz (R,,=20), to 1 ata
rotation rate of 17 Hz (R,,=43). Thus, at high rotation rates,
a toroidal field of strength equal to that of the applied axial
field is generated. For comparison, the measurements in the
gallium experiment at scale 1/2 gave R, ~0.1.”® The tenfold
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increase in Rfﬂ is consistent with changes in the setup char-
acteristics: fluid electrical conductivity (on,~2.20G,), fluid
density (pna~0.16pg,), size of the experiment (Ly,
~2Lg,), and power output of the driving motors (Py,
~7P Ga)-

When the external field is applied in the transverse di-
rection, the largest induced field component is along the axis
of rotation, as seen in Fig. 7. At a disk rotation rate of 8§ Hz
(R,,=20), the magnitude of this induced component is one-
half of the magnitude of the applied field. Again, this ratio
reaches 1 at a rotation rate equal to 17 Hz (R,,=43). This
effect is very much increased compared to the gallium ex-
periment where the measured induction in the axial direction
for a transverse applied field was very small (R’ ~0.025, cf.
Ref. 27, Fig. 5). We believe this increase to be due to our
optimization of the sodium flow (propeller design) in which
the poloidal to toroidal velocity ratio has been enhanced to a
value of 0.8. One important observation is that when the
disks are counter-rotated in the opposite direction, the sign of
the axially induced component is reversed. Taking into ac-
count the symmetries of the mean flow, this means that the
axially induced field has opposite directions on each side of
a meridian plane (xOy) parallel to the transverse applied
field. Altogether, these observations are consistent with an
induction mechanism of the a-type due to the swirling mo-
tion in the center of the flow. In this large scale mechanism,
the toroidal velocity of the swirl motion generates an induced
component in the same plane and directly perpendicular to
the transverse applied field. This component is then modified
by the axial component of the swirl motion to generate an
induced current parallel to the applied field, j=—aB,,
where « is proportional to the local helicity (v-w). The mag-
netic field generated is parallel to the rotation axis and
changes sign on each side of a meridian plane containing the
applied field. Note that it is a two-step mechanism: both
poloidal and toroidal velocities contribute.

Finally, we observe that while the mean induction is
strongly anisotropic, the intensities of the fluctuations are
comparable for all three components of the induced field.
However they depend on the direction of the applied field; as
seen in Fig. 7, they are stronger when the applied field is in
the transverse direction.

C. Evolution with the magnetic Reynolds number

Experiments with a steady externally applied field have
been made for rotation frequencies of the impellers between
0 and 20 Hz, corresponding to magnetic Reynolds numbers
up to 50. The evolution of the mean and rms values of the
three components of the induced field (measured in the me-
dian plane) are shown in Fig. 8.

At low disk rotation speed, the behavior is linear: the
induced field is proportional to the magnetic Reynolds num-
ber. Such a linear behavior is expected at low R,, where the
dominant induction mechanism is due to the stretching of the
magnetic field lines by the mean flow velocity gradients. In
this ““quasistatic”” approximation, the induction equation re-
duces to

Bourgoin et al.
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As a result of our optimization procedure, the poloidal and
toroidal velocities contribute almost equally to the induction.
This can be observed in Fig. 8(a): the azimuthal (y-
component) and axial (x-component) induced fields are of
the same order (l;v~0.7l;x). They are due, respectively, to
the toroidal and péloidal part of the mean flow velocity, as
can be inferred from symmetry considerations.

When the external field is along the rotation axis— Fig.
8(a), the main effect is the generation of a toroidal induced
component via the () effect. An induced component along
the axis is also generated, as a linear mechanism, from the
stretching by the axial velocity gradients—note that u,,;,
changes direction in the median plane (yOz). The third (ra-
dial) component is almost null, in agreement with the sym-
metries of the mean flow.

When the external field is applied in the transverse di-
rection, the induction in the median plane is dominant in the
axial direction, at all rotation frequencies. In this case, the
contribution of the linear induction by the mean flow van-
ishes. Indeed, along the axis, Eq. (13) reduces to

! Ab B ou
po = Ty

X

(14)

In the median plane the axial velocity of the mean flow is
zero, and so are its derivatives along any direction in that
plane. The axial induction must thus originate from other
sources than such a local induction mechanism. As pointed
out previously, a possible source of induction is the helicity
in the central part of the flow where the poloidal and toroidal
velocity component can produce a macroscopic «a effect.
This would be consistent with the fact that, like the helicity,
the axial induced field is reversed if the disks are rotated in
opposite directions. However, in that case, we would expect
the magnitude of the axial induced field to vary quadratically
with the rotation rate of the discs. This is not observed in Fig.
8(b).

At higher rotation rates, we note a change in behavior:
despite the increase in the disks’ rotation rate, the amplitude
of the induced field seems to saturate. Several mechanisms
can be responsible for this behavior. First, but not very likely,
the increased induced field may become large enough to
modify the velocity gradients in the flow or, as discussed
previously, the correlations between the fluctuations of mag-
netic and velocity fields. The second and more plausible ef-
fect is that, as R,, increases, the induction becomes nonlin-
ear: the velocity distorts the applied field B, to generate an
induced field by, which in turn can be distorted to generate
b,, and so on. The expulsion of magnetic field lines by a
coherent vortex?® or the self-generation of a dynamo®~'* are
examples of the piling of such effects leading to a divergence
of the induced field.

Note that for these large R,, experiments, the magnitude
of the induced field overcomes the applied field. In Figs. 8(a)
and 8(b), b reaches almost 6 G, twice the magnitude of the
By=3 G applied field.
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FIG. 8. Mean and standard deviations of the induced field as a function of the magnetic Reynolds number of the flow. (Left-hand side) Axial B,=3 G, and
(right-hand side) transverse By=3 G. (O) Axial component b, of the induced field, (CJ) transverse component b, (+) vertical component b,. The
measurement probe is located near the midplane, 10 cm away from the axis of rotation.

Finally, we observe that the induction fluctuations are
isotropic at all rotation rates: all three components of the
induced field have comparable rms fluctuation level, defined
as the ratio of the standard deviation to the mean, ranging
from 20% to 50% of the mean. As the magnetic Reynolds
number increases, the intensity of the fluctuation becomes
independent of the direction of the applied field.

D. Fluctuations of the magnetic induction
1. Overview

The data shown in the previous section are averaged
over long periods of time. Due to the large value of the
kinetic Reynolds number, turbulence is quite developed, with
rms velocity fluctuations as high as 42% of the mean veloc-
ity (cf. Sec. II). As noted in Figs. 7 and 8, all magnetic field
components also display rms fluctuations of the same order
of magnitude. This section is devoted to the analysis of these
induction fluctuations.

Figure 9 actually gives two examples of the time varia-
tions of the axially induced field for a transverse B,
=12.3 G, at rotation rates equal to }=8 Hz and (=17 Hz.
At Q=8 Hz (R,,=20) the induced field fluctuates about a
value that is less than the amplitude of the applied field. On
the contrary, at )=17 Hz (R, =43) it fluctuates about a

value that is larger than that of the applied field. In both
cases, we observe that the fluctuations are distributed over a
Gaussian statistics whose variance varies as shown in Figs.
8(c) and 8(d). This is verified for all magnetic field compo-
nents and at all the rotation rates covered in this set of
experiments—all the probability density functions of the in-
duced magnetic field, and normalized to its standard devia-
tion, collapse onto the same Gaussian distribution.

Another specific feature of induction fluctuations is the
presence of two ranges of time scales in the time signal [Fig.
9(a)]: small-amplitude fast fluctuations are superimposed
over large-amplitude slow variations. As shown later in this
section, the fast fluctuations can be described by a Kolmog-
orov approach of the turbulent stretching of the magnetic
field lines. The slow dynamics (time scales of the order of
the disks’ rotation frequency and lower) plays a more impor-
tant role in the fluctuations of induction. It is responsible for
the overall amplitude of the rms fluctuation level: the rms
amplitude of the signal is nearly unchanged if it is low-pass
filtered below () —at all rotation rates, the contribution of the
modes at frequencies higher than () is equal to 10% of the
total rms intensity level. Such long time scales can be asso-
ciated with “global’ fluctuations of the mean flow which are
known to exist in this geometry.”>?*> That is, if one defines a
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lines mark the magnitude of the applied field.

“mean” flow as the average flow pattern over a time scale of
the order of the forcing time (e.g., the period of rotation of
the disks), then one observes that this pattern varies in time.
The geometry of the flow thus fluctuates about a configura-
tion such as shown in Fig. 3 and successive realizations may
lead to varying intensity induction. These variations are de-
tected by the local magnetic probe because the diffusive time
scale across the flow size is long. Dimensional analysis
yields 74= oo R>~0.5s, while pulse-decay measurements
in the spirit of Peffley er al.'” yield 744~0.155. For com-
parison, the advection time of any flow or magnetic field
structure past the measurement probe is much shorter: 7,4,
Ndprobe/urmSN 1 ms.

2. Correlations

The slow-scale/large-scale dynamics of the magnetic
field is further confirmed by correlation functions analysis. In
Fig. 10, we consider the induction in the case of an applied
field transverse to the rotation axis. The autocorrelation of
the magnetic field component in the axial direction (dashed
curves) decreases with a characteristic time of order Q™!

and is zero for time lags larger than about 10 Q ~!. This is
also the case for the autocorrelation function of the pressure
measured at the flow wall (dotted line in Fig. 10). The in-
duced field components are also cross-correlated with iden-
tical characteristic times.

The most significant evidence of the large scale nature of
the magnetic field dynamics is the existence of a correlation
Xp- s between the pressure measured at the flow wall and the
induced magnetic field measured internally by the Hall
probe. Indeed, as shown in Fig. 10 (solid lines), we observe

Xp—-b,~—0.2 at 1=0. (15)
This is a quite significant figure considering that the mea-
surements are made at points located some 15 cm away in a
flow with a Reynolds number larger than 10°. The charac-
teristic damping time of the pressure-induction cross-
correlation is again of the order of the flow forcing time scale
Q~!'; decorrelation is achieved for time lags longer than
10 Q™! Recalling that the fluctuation in time of the pressure
at a flow wall are related to the fluctuations in the distribu-
tion of the velocity gradients (the pressure obeys the Poisson



Phys. Fluids, Vol. 14, No. 9, September 2002

MHD measurements in the von Karman sodium experiment 3055

FIG. 10. Correlations in the case of a transverse applied
field. The measurement probe is located near the mid-
plane, 10 cm from the axis of rotation. The pressure

probe is mounted flush with the inner wall, at a distance
d=15cm from the magnetic probe. (Dashed line): au-
tocorrelation function of the axial component of the in-
duced field x(b,—b,); (dotted line): autocorrelation of

the pressure at the wall y(p—p); (dash-dotted line):
cross correlation of the axial and transverse induced
fields x(b,—b,); (solid line): cross correlation between
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Upper panel: disks’ rotation rate at 8 Hz (R,,=20) and
lower: disks’ rotation rate at 17 Hz (R, =43).

equation Ap=—pd;u;d;u;), the pressure-induction correla-
tion at large time shows the slow dynamics of the magnetic
field to be linked to corresponding slow changes in the flow
topology. These correlations of the fluctuating parts of the
magnetic and velocity fields play a major role in the dynam-
ics of induction.

3. Spectra and increments

The time spectra for each component of the induced field
are shown in Fig. 11. The curves are very similar for all three
components of the induced field. Three frequency regimes
are clearly identified.

a. High frequency range. For frequencies higher than
), the spectra decay algebraically with a slope close to
—11/3. This regime corresponds to the action of the turbulent
velocity fluctuations, in agreement with Kolmogorov K41

10

phenomenology,® provided a Taylor hypothesis can be ap-
plied to the fast magnetic field fluctuations. At low R, , this
spectral behavior results directly from Eq. (13) which yields

BRIk~ a2 (k) ~ k=113 (16)

in Fourier space, if a traditional u*(k)~k~>* Kolmogorov
spectrum is assumed for the velocity field at small scales.
This high-frequency scaling behavior was observed in our
previous gallium experiment.”’ We find here that it is also
valid at the significantly higher magnetic Reynolds numbers
reached in the sodium setup. It is consistent with other stud-
ies in sodium flows*""!” and with numerical studies of MHD
turbulence at high R,, . In addition, some simulations®* have

shown that the relationship b 2(k)yo<k™ 2% (k) between kinetic
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and magnetic energy subsists for a dynamo-generated mag-
netic field although both spectra are steeper due to the effect
of the Lorentz force.*>**

b. Intermediate frequency range. For frequencies be-
tween ()/10 and () we observe another power law behavior
with an exponent close to —1. This power law regime
b( f)o<f~! was not readily observed in the gallium setup. A
similar regime has been found in the Maryland experiment
from measurements made outside the flow volume but with
an exponent close to to —5/3.""® The same spectral regime
has been reported in the Karlsruhe experiment for the mag-
netic field fluctuations above dynamo threshold. We also note
that this type of spectral behavior is reminiscent of the low
frequency part of the velocity spectrum for turbulent flows
with strong shear, in which context it is attributed to the

2.5

domination of the velocity gradient tensor by a large scale
shearing contribution: for time intervals larger than some
characteristic shearing time, vorticity stretching has reached
its maximum value. It is actually instructing to analyze this
1/f behavior in the time domain rather than in the frequency
domain, i.e., via the time increments of the induction:

Ob(7)=b(t+7)—b(1). (17)

The 1/f scaling domain could be explained by the saturation
of the increments for times larger than ()~ ! Indeed, 8b(7)
~ 7% would yield a 1;2( f)ecf~ ! behavior. This hypothesis can
be tested by computing the peak to peak value of the mag-
netic induction max(b)—min(b) and averaging this quantity
over varying Az time intervals. As shown in Fig. 12, we
observe a logarithmic behavior
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FIG. 12. Evolution of the peak to peak value of the magnitude of the
induced magnetic field [ b(Ar)=max(b)—min(b)] as the interval At over
which it is calculated increases. Two experiments are shown (O): disks
rotating at 8 Hz (R,,=20) and (< ): disks’ rotating at 17 Hz (R, =43). The
straight line corresponds to a logarithmic evolution 6b(Az)x<B log QAz.

(8b)a,={max[b(1)]—min[b(1)]};ca,~ By log(QA?),
(18)

for all time intervals larger than Az~ ~!. This time behav-
ior is consistent with the 1/f spectral variation, since a loga-
rithmic law can be viewed as the limit of an algebraic func-
tional form with a vanishing exponent.

c. Low frequency part. For frequencies lower than
about /10, the spectral content is flat. This behavior is char-
acteristic of uncorrelated magnetic fluctuations. It is consis-
tent with previous observations of velocity fluctuations in
this type of flow becoming uncorrelated for times larger than
20-50 disks rotation periods.?*

Altogether, our observations show that, in regards to the
fluctuations of induction, the turbulent velocity fluctuations
in the inertial range play a minor role. They occur at high
frequency and display a very steep decay so that their con-
tribution to b, is quite small. The main effect is due to slow
variations with characteristic times between 1 and 10 periods
of rotation of the driving disks. We attribute them to slow
changes of the flow topology. As the global structure of the
velocity gradients vary, so does the induction at all points.
We find that some geometries of the swirling flow are very
efficient magnetic field amplifiers: for certain realizations,
the peak induced field can be ten times larger than the ap-
plied field.

IV. CONCLUDING REMARKS

Using a specific sodium device, we have studied the
magnetic field dynamics in a von Karman flow at magnetic
Reynolds numbers in the range 5—50. High speed runs up to
R,,= 65 have also been performed. Due to the fast tempera-
ture increase (=1 K s_l), these runs were short and produced
few dispersed data. A cooling system is under construction in
order to produce high quality data at such high Reynolds
numbers.
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Our internal measurement of the induced 3D magnetic
field in the presence of an externally applied field shows
strong and anisotropic induction mechanisms. They are re-
lated to the two main features of the flow geometry: the
differential rotation, which drives an () effect, and the helic-
ity, which can produce a macroscopic « effect. These are two
major ingredients of dynamo action, although self-generation
has not been reached in this experiment so far. Another very
important feature of the induction is its very high level of
global fluctuations in time. As explained, this effect is related
to the flow nonstationarity. It has some strong implication for
the observation of dynamo action in unconstrained flows.
Indeed, even if some particular flow topology would be fa-
vorable to strong magnetic amplification, they may not last
long enough, or maintain a sufficient coherence in time, for a
self-sustained magnetic amplification to take place: we have
observed flow global variations to occur with characteristic
times of the order of the magnetic diffusive time. Further
experimental campaigns are under way to clarify this prob-
lem.
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