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F. Pétrélis,1 M. Bourgoin,2 L. Marié,3 J. Burguete,3,* A. Chiffaudel,3 F. Daviaud,3 S. Fauve,1 P. Odier,2 and J.-F. Pinton2

1Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, CNRS UMR 8550, 24 Rue Lhomond,
75231 Paris Cedex 05, France

2Laboratoire de Physique de l’Ecole Normale Supérieure de Lyon, CNRS UMR 5672, 47 allée d’Italie,
69364 Lyon Cedex 07, France
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We report an experimental study of the magnetic field ~BB induced by a turbulent swirling flow of
liquid sodium submitted to a transverse magnetic field ~BB0. We show that the induced field can behave
nonlinearly as a function of the magnetic Reynolds number, Rm. At low Rm, the induced mean field
along the axis of the flow, hBxi, and the one parallel to ~BB0, hByi, first behave like R2

m, whereas the third
component, hBzi, is linear in Rm. The sign of hBxi is determined by the flow helicity. At higher Rm, ~BB
strongly depends on the local geometry of the mean flow: hBxi decreases to zero in the core of the
swirling flow but remains finite outside. We compare the experimental results with the computed
magnetic induction due to the mean flow alone.
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FIG. 1. Geometry of the experimental setup. The flow is
generated by rotating only one disk either at position (1) or
by rotating one of the two disks of radius R located at (2). The magnetic field is measured at position S.
Transport and amplification of a magnetic field by a
flow of an electrically conducting fluid is a fundamental
process in astrophysics at the planetary, stellar, and ga-
lactic scales [1], as well as in laboratory plasmas, where it
has been observed for a long time that a toroidal magnetic
field can be sustained by applying a toroidal electric field
[2]. Induced magnetic fields orthogonal to the applied
ones have also been observed in flows of liquid metals:
generation of a toroidal field from an axial one by differ-
ential rotation (the ‘‘! effect’’) [3–5], and generation of
an electric current parallel to the applied magnetic field
(the ‘‘	 effect’’) [6]. These induction effects are the key
mechanisms of most astrophysical and geophysical dy-
namo models [7–10], as well as in the recent experimental
observations of self-generation of a magnetic field by a
flow of liquid sodium [11]. These experiments involve
flows with geometrical constraints that are chosen in
order to maximize the efficiency of the dynamo effect.
Several groups are also trying to achieve self-generation
of a magnetic field in turbulent flows without, or with
fewer, geometrical constraints, in order to study situ-
ations that are closer to astrophysical or geophysical
models [12]. It is thus of primary interest to study in-
duction effects in fully developed turbulent flows. It is
known that turbulent fluctuations enhance the effective
resistivity [13] but other antagonistic effects such as the
turbulent 	 effect [8,9] or ‘‘
 effect’’ [14] have been
predicted but not experimentally observed so far.

We have measured the induced magnetic field ~BB gen-
erated by a turbulent von Kármán swirling flow of liquid
sodium submitted to a transverse external magnetic field
~BB0(see Fig. 1). The sodium flow is operated in a loop that

has been described elsewhere together with the details of
the experimental setup [5]. In this study, the flow is driven
0031-9007=03=90(17)=174501(4)$20.00 
position (1) or (2) in a cylindrical vessel, 410 mm in inner
diameter and 400 mm in length. In most experiments
presented here, we use disks of radius R � 150 mm, fitted
with eight straight blades of height h � 10 mm driven at
a rotation frequency up to f � 30 Hz. Four baffles,
20 mm in height, have been mounted on the cylindrical
vessel inner wall, parallel to its axis. A turbulent swirling
flow with an integral Reynolds number, Re � 2R2f=�,
up to 3� 106 is driven by the rotating disk. The mean flow
has the following characteristics: the fluid is ejected
radially outward by the disk; this drives an axial flow
toward the disk along its axis and a recirculation in the
opposite direction along the cylinder lateral boundary.
The baffles inhibit the azimuthal velocity of the recircu-
lating flow and thus prevent a global rotation of the fluid.
2003 The American Physical Society 174501-1
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FIG. 2. Components of the total mean magnetic field as a
function of the rotation frequency of disk (2). The disk radius is
R � 150 mm with straight blades. Four baffles are mounted on
the inner wall of the cylindrical vessel. The magnetic field is
measured at z � 100 mm. [() hBxi
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In some experiments, we have used a disk of radius R �
190 mm, fitted with 16 curved blades of height h �
40 mm, with or without the lateral baffles in order to
observe the effect of a stronger azimuthal flow. Without
baffles, we have for the maximum velocity of the mean
flow VM=2fR � 0:39 for R � 150 mm and 0:58 for R �
190 mm. Two coils generate a nearly homogeneous mag-
netic field ~BB0, perpendicular to the cylinder axis (see
Fig. 1). The three components of the field induced by
the flow are measured with a 3D Hall probe, located
200 mm away from the disk in the plane perpendicular
to ~BB0 and containing the rotation axis. The probe distance
from the rotation axis is adjustable (z � 42, 100, 150 mm).

The equations governing the magnetic field ~BB0 �
~BB� ~rr; t�, where ~BB� ~rr; t� is the magnetic field generated by

the flow in the presence of the applied field ~BB0, are in the
MHD approximation,

~rr 
 ~BB � 0; (1)

@ ~BB
@t

� ~rr� � ~VV � � ~BB� ~BB0���
1

�0�
� ~BB; (2)

where ~VV� ~rr; t� is the velocity field, �0 is the magnetic
permeability of vacuum, and � is the fluid electric con-
ductivity. The reaction of the magnetic field on the flow is
characterized by the ratio of the Lorentz force to the
characteristic pressure forces driving the flow. This is
measured by the interaction parameter, N � �RB2

0=
�VM, where � is the fluid density. The maximum field
amplitude being B0 � 12 G, N is in the range 10�4–10�2,
thus the effect of the magnetic field on the flow is negli-
gible. This has been checked directly by measuring ~BB as a
function of ~BB0 at a constant driving of the flow. We
calculate the mean induced field h ~BBi where h
i stands for
the average in time, as well as its rms fluctuations in time,
~BBrms. Both vary linearly with B0, thus showing that the

modification of the velocity field ~VV in Eq. (2) can be
neglected [5]. Thus, the only relevant dimensionless pa-
rameters of our experiments are the magnetic Prandtl
number, Pm � �0�� � 10�5, where � is the kinematic
viscosity, and the magnetic Reynolds number, Rm �
2�0�R

2f, which is proportional to the rotation fre-
quency f and has been varied up to 40 for radius of the
disks R � 150 mm (55 for R � 190 mm).

The three components of the mean magnetic field
~BB0 � h ~BB�~rr�i, at z � 100 mm above the rotation axis, are

displayed in Fig. 2 as a function of the rotation frequency.
We observe that when the rotation of the disk is reversed,
f ! �f, we get approximately �hBxi; hByi; hBzi� !
��hBxi; hByi;�hBzi�. When disk (2) is rotated instead of
(1) but keeping f unchanged, we get �hBxi; hByi; hBzi� !
��hBxi; hByi; hBzi� (note that the measurements of ~BB are
performed in the midplane between the two disks).
Assuming that the swirling flow has not broken the
symmetries of the driving configuration, the above trans-
174501-2
formations of the field components can be understood
using the following symmetry transformations.

(i) The symmetry with respect to the vertical plane
perpendicular to ~BB0, x0z, shows that if the disk is rotated
in the opposite way, f ! �f, we get �hBxi; hByi; hBzi� !
��hBxi; hByi;�hBzi� ( ~BB is a pseudovector).

(ii) The symmetry with respect to the vertical plane
parallel to ~BB0, y0z, followed by the transformation
~BB0 ! � ~BB0, shows that when we rotate disk (2) instead
of disk (1) without changing the sign of f, we get
�hBxi; hByi; hBzi� ! ��hBxi; hByi; hBzi�.

The induced field component hByi at z � 100 mm
above the rotation axis is opposed to ~BB0 and increases in
amplitude, thus the total field along ~BB0 decreases as Rm is
increased. This expulsion of a transverse magnetic field
from eddies is well documented, both theoretically [15]
and experimentally [16]. The expulsion is stronger close
to the axis of the cylinder (z � 42 mm). On the contrary,
closer to the cylinder lateral boundary (z � 150 mm), the
field increases with Rm. Thus, the field is expelled from
the core of the swirling flow and concentrates at its
periphery. The components of the field induced perpen-
dicular to ~BB0 at z � 100 mm both increase in amplitude
from zero, reach a maximum, and then saturate when Rm
is increased further. The large Rm behavior depends on z
as shown for hBxi in Fig. 3. hBxi vanishes at large Rm in
the core of the swirling flow (z � 42 mm), whereas it
saturates outside (z � 100 and 150 mm). Figure 3 also
shows that for fixed Rm, hBxi increases with the distance
to the cylinder axis in the range 42< z< 150 mm. We
can show that it should vanish for z � 0: indeed, the
rotation of angle  around the x axis followed by the
transformation ~BB0 ! � ~BB0, which implies ~BB! � ~BB, gives
hBx�x; 0; z�i � �hBx�x; 0;�z�i.
174501-2
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FIG. 4. (a),(b) Axial and vertical mean components of the
induced magnetic field as a function of the rotation frequency.
(c),(d) Axial and transverse mean components of the induced
magnetic field as a function of the square of the vertical one,
for f < 10 Hz. Same experimental configuration as in Fig. 2
(z � 100 mm).
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FIG. 3. Axial mean component of the induced magnetic field
as a function of the rotation frequency of disk (2) for different
depths z: (�) z � 42 mm, (�) z � 100 mm, () z � 150 mm.
Same experimental configuration as in Fig. 2.
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As shown in Fig. 4, hBxi and hBzi do not scale in
the same way at small rotation frequency, i.e., at small
Rm. The amplitude of the vertical component hBzi
increases linearly, whereas the axial component hBxi
increases quadratically with Rm. Indeed, at the location
of the measurements, near z � 100 mm, we observe
hBxi / hBzi2 and hByi / hBzi2, roughly up to f � 10 Hz
(see Fig. 4).

Writing ~BB�~rr; t� � h ~BB� ~rr�i � ~bb� ~rr; t�, where ~bb is the fluc-
tuating part of the magnetic field, and similarly for ~VV, we
get from Eq. (2) for the mean induced field

�
1

�0�
�h ~BBi � ~rr� �h ~VVi � ~BB0 � h ~VVi � h ~BBi � h ~vv� ~bbi�:

(3)

When the magnetic Reynolds number is small, the first
source term on the right hand side of Eq. (3) is the
dominant one, and we usually get the ith component of
the mean induced field hBii / RmB0. This is the case for
the vertical component hBzi, which is mainly generated
by the interaction of the toroidal velocity field with ~BB0.
The sign of hBzi is thus given by the one of f.

However, we emphasize that both hBxi and hByi behave
quadratically at low Rm (at least at the location of our
measurements). We have thus probed the nonlinear source
terms of Eq. (3). As shown above, hBx�x; 0; z�i �
�hBx�x; 0;�z�i, and hBxi is generated by a current density
parallel to ~BB0. Its sign is changed by the two transforma-
tions (i) and (ii) described above and is thus determined

by the flow helicity, h � ~VV 
 � ~rr� ~VV� where the overbar
stands for the spatial average. One can easily check that
hBxi changes sign under any symmetry with respect to a
plane containing the rotation axis, just as does the pseu-
doscalar h. Although the terminology 	 effect is usually
174501-3
restricted to configurations involving scale separation,
whereas our experiment does not, we do observe the
generation of a current parallel to ~BB0 by a cyclonic eddy
as described qualitatively by Parker [7]. In addition,
its magnitude increases like R2

m at low Rm, and its sign
is determined by the flow helicity, as in the case of the
	 effect.

When Rm is increased, hBxi seems to saturate for z �
100 mm (see Fig. 2). Closer to the rotation axis (z �
42 mm), it reaches a maximum and then decreases
roughly to zero when f is increased up to 30 Hz.
This traces back to the expulsion of ~BB0 from the core
of the swirling flow. However, we emphasize that the
effect of the expulsion on the induced fields is not
straightforward. Indeed, hBzi does not vanish but satu-
rates to a finite value at high frequency, even close to the
rotation axis. Induction mechanisms being nonlocal, the
expulsion of ~BB0 from the core of the flow does not neces-
sary imply that the induced fields all decrease to zero.

It is, however, possible to enhance the effect of the
expulsion by removing the baffles from the cylindrical
vessel inner wall, thus allowing global rotation of the
flow. Then all the components of the induced field mea-
sured 100 mm away from the rotation axis decrease al-
most to zero at large Rm (see Fig. 5 and compare with
Fig. 2 where they stay finite). We thus observe that the
axial field decreases to zero at large Rm when the azimu-
thal flow is large enough. A similar effect has been
recently computed by Rädler et al. in the case of the
Roberts flow [17]. These authors have shown by comput-
ing terms higher than the second order in Rm that the 	
effect reaches a maximum and then tends to zero whenRm
is increased further (compare their Fig. 3 with our Fig. 5).
174501-3
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FIG. 5. Components of the total mean magnetic field as a
function of the rotation frequency of disk (2). The disk radius is
R � 190 mm with curved blades. There are no baffles on the
inner wall of the cylindrical vessel. The magnetic field is
measured or computed at z � 100 mm. The open symbols refer
to the measurements and the dark ones to numerical results
obtained from the computation of the induced magnetic field
by the mean flow alone [(�) hBxi
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Using dimensional analysis, we can write hBx� ~rr�i �
B0 F � ~rr; Rm; Pm; N�. As said above, for B0 small enough,
F does not depend on the interaction parameter N.
We have provided a detailed investigation on the non-
linear behavior of F on Rm even at small Rm, in a non-
geometrically constrained flow. Its dependence on Pm, or
equivalently on the Reynolds number of the flow, is gov-
erned by the relative contribution of the two non-
linear source terms ~rr� �h ~VVi � h ~BBi� and ~rr� �h ~vv� ~bbi�
in Eq. (3). Both the velocity field, measured in water [5],
and the magnetic field display large fluctuations (roughly
20%). An estimate of the effect of h ~vv� ~bbi can be ob-
tained from the difference between the measured mag-
netic field (open symbols in Fig. 5) and a numerical
computation of the magnetic field induced by the mean
flow alone (solid symbols) measured in a 1=2-scale water
experiment as explained in [18]. We observe a perfect
agreement at low Rm (up to nearly f � 5 Hz). At larger
Rm, Fig. 5 displays clear differences between the com-
puted and measured fields for hBxi and hBzi. Although
we cannot rule out possible inaccuracies of the nu-
merical modelization (the cylindrical boundary made of
copper is modeled by sodium at rest, the boundary con-
ditions are periodic along the x axis, slight nonaxisym-
metry of the mean flow is not taken into account), we
observe a clear difference between the magnetic induction
by the turbulent flow at large Rm and the computed one
resulting from the mean flow alone.
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