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Mixing and transport in turbulent flows, relevant in a huge variety of both

natural and industrial systems including chemical reactors, combustion en-

gines, warm clouds, and biological odor detection, depend strongly on local

concentration fluctuations. Local concentration in turn is intimately tied to

the longstanding problem of the average spreading rate of pairs of fluid ele-

ments. We have measured this separation rate in an intensely turbulent lab-

oratory flow and have found excellent agreement with the seminal theoretical

work of Batchelor, who predicted that the initial separation of the pair plays an

important role in the subsequent spreading of the particles. When the initial

separation is treated as a parameter, the power law scaling of the separation

rate changes with surprising consequences for the decay of the concentration
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fluctuations of substances carried along with the flow.

Turbulent mixing of liquids and gasses is ubiquitous in nature (1): it is the basis of all in-

dustrial fluid mixing processes, and it determines the spread of pollutants or bioagents in the

atmosphere (2) and oceans (3). Biological organisms in marine ecosystems exploit it for their

survival (4–6). A crucial component of turbulent mixing is the fluctuation of local concentra-

tion. The rate of destruction of ozone in the atmosphere, for example, is largely determined by

these fluctuations rather than by the mean concentration (7), as is the toxicity of gas leaks or air

pollution. It is natural to relate these concentration fluctutations to the separation of two nearby

fluid elements, i.e., pair dispersion (8, 9).

In a quiescent fluid, the relative dispersion of two fluid elements (or tracer particles) is dom-

inated by diffusion. The particles undergo Brownian motion, and the mean-square separation

between them grows linearly in time. In a turbulent flow, however, if the two particles are sep-

arated by distances smaller than the characteristic size of the largest eddies in the flow, they

will separate faster (i.e., superdiffusively). At large separation times and distances, the local

correlations responsible for the superdiffusive separation will no longer be present, and, on the

average, the relative dispersion will again be linear in time.

Despite almost eighty years of scientific inquiry into relative dispersion (2, 9–17), no clear

experimental verification of the theoretical predictions has emerged. One critical unresolved

question is the extent to which the initial separation of the fluid particles influences their subse-

quent motion. Surprisingly, our measurements in a laboratory water flow (18,19) in very intense

turbulence suggest that the initial separation remains important for all but the most violent flows

on Earth. This observation has important consequences for such varied problems as pollution

control, combustion modelling, hazardous chemical control, and even the understanding of how

animals locate food, predators, and mates (5, 6).

We have measured relative dispersion in a water flow at high turbulence levels using op-
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tical particle tracking. This technique has been used for a number of years in turbulence re-

search (13,20), but was limited to the measurement of low turbulence level flows due to the fact

that tracer particle motions must be resolved over times comparable to the smallest timescale

of the turbulence (i.e., the Kolmogorov time scale τη = (ν/�)1/2, where ν is the kinematic vis-

cosity and � is the energy dissipation rate per unit mass). In intense turbulence these times are

often very small. The turbulence level is generally quantified by the Reynolds number, which

measures the ratio of the nonlinear inertial forces to the linear viscous forces. In the present

work, we report the Reynolds number based on the Taylor microscale, Rλ =
�

15u�L/ν, where

u� is the root-mean-square velocity of the turbulent fluctuations and L is the largest length scale

of the turbulence. In our water flow at Rλ = 815, the highest Reynolds number reported in this

work, τη = 0.54 ms, and so very fast detectors must be used to resolve the fine structure of the

flow. Previously, using silicon strip detectors from high energy physics (18,19) we extended the

particle tracking technique to flows with high turbulence levels. Such detectors, however, are

unsuitable for measuring the statistics of many tracer particles at once. Here we use three Phan-

tom v7.1 digital cameras from Vision Research, Inc., which record 27,000 pictures per second

at a resolution of 256 × 256 pixels, as sketched in Fig. 1a. We can use this camera system to

track several hundred particles at once (21). An example of two such simultaneously measured

particle tracks is shown in Fig. 1b.

We generate turbulence between coaxial counter-rotating baffled disks in a closed chamber

with a volume of approximately 0.1 m3, as shown in Fig. 1a. We make measurements in a

subvolume of roughly 5×5×5 cm3 in the center of the tank where the mean flow is statistically

zero. Polystyrene tracer particles 25 µm in diameter, comparable to the Kolmogorov length

scale η = (ν3/�)1/4, the smallest scale of the turbulence, are illuminated by two frequency-

doubled, pulsed Nd:YAG with a combined power of roughly 150 W. The particle positions are

measured with a precision of roughly 0.1 pixels (21), corresponding to about 20 µm in the flow.
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Further description of this flow has been reported previously (18, 19).

By analyzing our measured particle tracks, we have investigated the time evolution of the

mean-square separation between two fluid elements. Predictions for the superdiffusivity of this

pair dispersion in turbulence date back to 1926 when Richardson (10) suggested that it should

grow in time as t3. By applying Kolmogorov’s scaling theory (22), Obukhov (23) specified that,

in the inertial range of turbulence where the only relevant flow parameter is the energy dissipa-

tion rate per unit mass �, the pair dispersion should grow as g�t3, where g is a universal constant.

Batchelor (11) refined this work, predicting that the mean-square separation should grow as t2

for times shorter than a characteristic timescale t0 that depends on the initial separation of the

pair.

Defining ∆(t) as the separation of two fluid elements at time t and ∆0 as the initial separa-

tion between the fluid elements, Batchelor predicted that, for ∆0 in the inertial range,

��
�∆(t)− �∆0

�2
�

=
11

3
C2 (�∆0)

2/3 t2, t < t0 =

�
∆2

0

�

�1/3

, (1)

where C2 is the universal constant in the inertial range scaling law for the Eulerian second order

velocity structure function with a well-known value of approximately 2.13 (24). In the classical

cascade model of turbulence, t0 may be identified as the time for which the two fluid elements

“remember” their initial relative velocity as they move in the same eddy of size ∆0. At times on

the order of t0, this eddy breaks up and the growth of the pair separation is expected to undergo

a transition to Richardson-Obukhov scaling.

To distinguish between Batchelor and Richardson-Obukhov scaling, the inertial range must

be large, so that there will be a large separation between the eddy turnover time TL and the

Kolmogorov time τη. To achieve such a wide range of scales, the turbulence level must be high,

since Rλ ∼ (TL/τη). Based on evidence from direct numerical simulation (25), a turbulence

level of at least Rλ = 600 − 700 is required to see true inertial range scaling of a Lagrangian

4



quantity like relative dispersion. Previous experimental and computational studies of dispersion

have been limited by their low turbulence levels (Rλ < 300) (12–15, 17) and have not been

conclusive. High turbulence levels are obtained in kinematic simulation models (16), but such

models may not be suited to the pair dispersion problem (26).

We show our measurements of relative dispersion for turbulence levels up to Rλ = 815

in Fig. 2. We find that, for experimentally accessible initial separations, our data scales as

t2 for more than two decades in time, with no hint of Richardson-Obukhov t3 scaling. This

behavior holds throughout the entire inertial range, even for large initial separations (up to 70%

of the largest length scale of the turbulence). When we scale our relative dispersion data by the

constant predicted by Batchelor, given in Eq. 1, the curves collapse onto a single t2 power law.

The line drawn in Fig. 2 is (11/3)C2(�∆0)2/3t2.

In Fig. 2, where time is plotted in units of τη, the data for different initial separations deviate

from the t2 law at times that vary with ∆0. If, however, we scale time by Batchelor’s t0 =

(∆2
0/�)

1/3, as shown in Fig. 3, the data for each initial separation deviates from Batchelor’s

prediction at the same universal value of roughly 0.1t0, irrespective of turbulence level.

For the quantities plotted in Figs. 2 and 3, we see no Richardson-Obukhov t3 scaling. We

have, however, also measured other statistics that, dimensionally, should obey the same scaling

laws. One such quantity is exit time statistics (14). Our measurements of such statistics showed

no clear t3 behavior. Another measure of relative dispersion is shown in Fig. 4 in which we plot

(�∆2/3� − ∆2/3
0 ) scaled by ∆2/3

0 as a function of t/t0. For small initial separations for which

(TL/t0) is of order 10, we see a transition to a scaling law consistent with the Richardson-

Obukhov prediction for times greater than roughly t0, irrespective of turbulence level. For larger

initial separations for which (TL/t0) is smaller, however, no such scaling is seen, as shown in

the inset to Fig. 4. The existence of a transition at times of the order of t0 shows once again that

the initial separation is an important parameter for relative dispersion and cannot be neglected.
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In any practical application of relative dispersion, the initial source will have finite size and

therefore a nonzero ∆0. Our data show that t0 accurately quantifies the transition between the

Batchelor scaling regime and the Richardson-Obukhov regime. Consequently, a clear t3 scaling

law requires not only a large separation between TL and τη but also a large separation between

TL and t0. For the initial separations accessible in our experiments, the maximum value of

the ratio of (TL/t0) was of order 10, with no fully developed t3 scaling. In order to apply the

Richardson-Obukhov scaling law to a practical situation, then, (TL/t0) must be much larger

than 10, which implies the necessity of a high turbulence level.

For most flows on Earth, both natural and industrial, the turbulence levels are quite small;

typically, Rλ < 1000. Very turbulent atmospheric flows, such as warm clouds or the atmo-

spheric boundary layer (27), have turbulence levels of about Rλ ∼ 104. Even the most violent

flows on Earth, such as plinian volcanic eruptions, have similar turbulence levels. If we con-

sider a pair of particles with an initial separation of roughly 1 m, such as might be found in the

smokestack of an industrial plant, for a turbulence level of Rλ ∼ 104, (TL/t0) is only about 30,

assuming typical atmospheric flow parameters (28).

An important consequence of these results is that in almost all flows with industrial or

biological significance the initial separation ∆0 will influence the subsequent spreading of the

two fluid elements throughout the entire period of their turbulent superdiffusive separation.

This can explain, for example, measurements of the decay of the fluctuations of a passive scalar

injected into the flow (29). This decay becomes slower as the separation between two sources

was increased. These results may in turn explain why the spatial arrangement of odor sources

plays such an important role in the way crayfish and other crustaceans navigate their marine

environments (5).

In summary, we observed that Batchelor’s prediction is fulfilled for more than two decades

in time at high turbulence levels. While our data may be somewhat contaminated by the in-
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homogeneity and anisotropy present in our specific flow, the observed scale collapse onto the

Batchelor law appears very robust. In addition, we showed that the initial separation of the par-

ticle pair remains important in most flows in nature up to times of order t0, which itself depends

on the initial separation. We observed a transition near t0 only when (TL/t0) is of order 10

or larger. Therefore, a large separation between TL and t0 is required to see a fully developed

Richardson-Obukhov scaling regime, requiring a turbulence level beyond the reach of current

experiments and higher than will occur in most practical situations.

The difference between Richardson-Obukhov and Batchelor scaling can have surprising

consequences. Consider a leak of a highly toxic gas such as chlorine, widely used as a disin-

fectant, pesticide, and algaecide, and the first chemical weapon ever used in war. The United

States Occupational Safety and Health Administration has specified that the acceptable level of

gaseous chlorine exposure is 1 part per million. Recall that the local concentration decay rate

is related to relative dispersion (8). Using the Richardson-Obukhov law, the variance of the

chlorine concentration decays as t−9/2 as the gas disperses into the surrounding air. Batchelor

scaling, however, predicts that the concentration variance will decay as t−3. A simple calcu-

lation then shows that, in the initial stages, the local concentration could decay to safe levels

20 times slower when Batchelor scaling is assumed. Our results therefore are of immediate

application for the health and safety of those who work with toxic chemicals.
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Figure 1: (a) Sketch of the experimental setup. Three high-speed cameras are used to 

record the 3D tracks of tracer particles in intense turbulence. The particles are illuminated 

by two high- power lasers. (b) A  pair of measured particle trajectories at Rλ = 690. The 

small spheres mark every  other measured position of the particleʼs, and are separated by 

0.074 ms (≈ τη /13) in time; the large spheres mark every 30th position. The color of the 

spheres indicates the magnitude of each particles absolute velocity  in units of m/s. The 

particles enter the measurement volume as indicated by  the arrows, and separate under 

the influence of the turbulence.

where u¶ is the root mean square (rms) veloc-
ity of the turbulent fluctuations and L is the
largest length scale of the turbulence. In our
water flow at Rl 0 815, which is the highest
Reynolds number reported in this work, th 0
0.54 ms; therefore, very fast detectors must
be used to resolve the fine structure of the
flow. Previously, by using silicon strip detec-
tors from high-energy physics experiments
(18, 19), we extended the particle tracking tech-
nique to flows with high turbulence levels.
Such detectors, however, are unsuitable for
measuring the statistics of many tracer particles
at once. We therefore used three Phantom v7.1
digital cameras from Vision Research, Inc.
(Wayne, NJ), which record 27,000 pictures
per second at a resolution of 256 ! 256 pixels
(Fig. 1A). This camera system can be used to
track several hundred particles at once (21).
An example of two such simultaneously mea-
sured particle tracks is shown in Fig. 1B.

We generated turbulence between coaxial
counter-rotating baffled disks in a closed cham-
ber with a volume of approximately 0.1 m3

(Fig. 1A). We made measurements in a sub-
volume of roughly 5 ! 5 ! 5 cm3 in the
center of the tank, where the mean flow is sta-
tistically zero. Polystyrene tracer particles 25
mm in diameter, comparable to the Kolmogorov
length scale h 0 (n3/e)1/4, which is the smallest
scale of the turbulence, were illuminated by
two frequency-doubled, pulsed Nd–yttrium-
aluminum-garnet (Nd:YAG) lasers, with a com-
bined power of roughly 150 W. The particle
positions were measured with a precision of
roughly 0.1 pixels (21), corresponding to about
20 mm in the flow. Further description of this
flow has been reported previously (18, 19).

By analyzing our measured particle tracks,
we investigated the time evolution of the mean
square separation between two fluid elements.
Predictions for the superdiffusivity of this pair
dispersion in turbulence date back to 1926,
when Richardson (10) suggested that it should
grow in time as t3. By applying Kolmogorov_s
scaling theory (22), Obukhov (23) specified
that in the inertial range of turbulence, where
the only relevant flow parameter is the energy
dissipation rate per unit mass e, the pair
dispersion should grow as get3, where g is a
universal constant. Batchelor (11) refined this
work, predicting that the mean square separa-
tion should grow as t2 for times shorter than a
characteristic timescale t0, which depends on
the initial separation of the pair.

By defining D(t) as the separation of two fluid
elements at time t and defining D0 as the initial
separation between the fluid elements, Batchelor
predicted that for D0 in the inertial range

D
Y
ðtÞjD

Y

0
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0
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where C2 is the universal constant in the inertial
range scaling law for the Eulerian second-order
velocity structure function with a well-known
value of approximately 2.13 (24). In the classical
cascade model of turbulence, t0 may be identified
as the time for which the two fluid elements
Bremember[ their initial relative velocity as they
move in the same eddy of size D0. At times on
the order of t0, this eddy breaks up, and the
growth of the pair separation is expected to
undergo a transition to Richardson-Obukhov
scaling.

To distinguish between Batchelor and
Richardson-Obukhov scaling, the inertial range
must be large, so that there will be a large sep-
aration between the eddy turnover time TL
and the Kolmogorov time th. To achieve such
a wide range of scales, the turbulence level
must be high because Rl È (TL/th). Based on

evidence from direct numerical simulation
(25), a turbulence level of at least Rl 0 600 to
700 is required to see true inertial range scal-
ing of a Lagrangian quantity such as relative
dispersion. Previous experimental and compu-
tational studies of dispersion have been lim-
ited by their low turbulence levels (Rl G 300)
(12–15, 17) and have not been conclusive. High
turbulence levels are obtained in kinematic
simulation models (16), but such models
may not be suited to the pair dispersion prob-
lem (26).

Figure 2 shows measurements of relative
dispersion for turbulence levels up to Rl 0
815. We found that for experimentally acces-
sible initial separations, our data scales as t2

for more than two decades in time, with no
hint of classical Richardson-Obukhov t3 scal-
ing. This behavior holds throughout the entire

Fig. 1. (A) Sketch of the experimental setup. Three high-speed cameras were used to record the
three-dimensional tracks of tracer particles in intense turbulence. The particles were illuminated by
two high-power lasers. (B) A pair of measured particle trajectories at Rl 0 690. The small spheres
mark every other measured position of the particles and are separated by 0.074 ms (,th/13) in
time; the large spheres mark every 30th position. The color of the spheres indicates the magnitude
of each particle’s absolute velocity in units of m/s. The particles enter the measurement volume as
indicated by the arrows and separate under the influence of the turbulence.

Fig. 2. Evolution of the
mean square particle
separation. The mean
square separation be-
tween particle pairs is
plotted against time for
50 different initial sep-
arations at a turbulence
level of Rl 0 815, with
the time axis normal-
ized by the Kolmogorov
scales. Each curve rep-
resents a bin of initial
separations 1 mm wide
(,43h), ranging from
0 to 1 mm to 49 to 50
mm. The curves are
scaled by the constant
(113 )C2(eD0)

2/3 (Eq. 1).
The data collapse onto

a single universal power law. The bold black line is the power law predicted by Batchelor (11).
Because the smallest D0 measured is not in the inertial range, we do not expect it to scale perfectly
as t2, and indeed it does not scale as well as the larger D0. The inset shows the same curves scaled
simply by the Kolmogorov length, for which we see no scale collapse. For both plots, we see no
Richardson-Obukhov t3 scaling.
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Figure 2: Evolution of the mean-square particle separation. The mean-square separation 

be- tween particle pairs is plotted against time for fifty different initial separations at a 

turbulence level of Rλ = 815, with the time axis normalized by the Kolmogorov scales. Each 

curve repre- sents a bin of initial separations 1 mm wide (≈ 43η), ranging from 0-1 mm to 

49-50 mm. The curves are scaled by the constant (11/3)C2(ε∆0)2/3 (Eq. 1). The data 

collapse onto a single universal power law. The bold line is the power law predicted by 

Batchelor (11). We note that since the smallest ∆0 measured is not in the inertial range, we 

do not expect it to scale perfectly as t2, and indeed it does not scale as well as the larger 

∆0. The inset shows the same curves scaled simply by the Kolmogorov length, for which 

we see no scale collapse. For both plots, we see no Richardson-Obukhov t3 scaling.

Figure 2: Evolution of the mean-square particle separation. The mean-square separation be-

tween particle pairs is plotted against time for fifty different initial separations at a turbulence

level of Rλ = 815, with the time axis normalized by the Kolmogorov scales. Each curve repre-

sents a bin of initial separations 1 mm wide (≈ 43η), ranging from 0-1 mm to 49-50 mm. The

curves are scaled by the constant (11/3)C2(�∆0)2/3
(Eq. 1). The data collapse onto a single

universal power law. The bold line is the power law predicted by Batchelor (11). We note that

since the smallest ∆0 measured is not in the inertial range, we do not expect it to scale perfectly

as t2, and indeed it does not scale as well as the larger ∆0. The inset shows the same curves

scaled simply by the Kolmogorov length, for which we see no scale collapse. For both plots,

we see no Richardson-Obukhov t3 scaling.
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Figure 3: Mean-square separation with time scaled by t0. The mean-square separation at 

Rλ = 815 compensated by  Batchelorʼs scaling law (Eq. 1) is plotted against time in units of 

t0 = (∆20/ε)1/3. Plotted in this way, a plateau corresponds to Batchelor scaling. The inset 

shows the same compensated data plotted against time scaled by the Kolmogorov time. 

The data clearly collapses significantly better with time scaled by t0. The data begins to 

deviate from a t2 power law at a universal time of about 0.1t0.

Figure 3: Mean-square separation with time scaled by t0. The mean-square separation at Rλ =
815 compensated by Batchelor’s scaling law (Eq. 1) is plotted against time in units of t0 =
(∆2

0/�)
1/3. The inset shows the same compensated data plotted against time scaled by the

Kolmogorov time. The data clearly collapses significantly better with time scaled by t0. The
data begins to deviate from a t2 power law at a universal time of about 0.1t/t0.
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Figure 4: (⟨∆(t)2/3⟩ − ∆2/3) scaled by ∆2/3 and compensated by t/t . The data are plotted 000

against t/t0; a plateau denotes Richardson-Obukhov-like scaling. The initial separation in- 

10creases from 1 mm (≈ 43η) for the top curve to 5 mm (≈ 215η) for the bottom curve, 

and (TL/t0) is of order 10. The inset shows the same quantity plotted against t/t0 for larger 

initial separations, ranging from 20 mm (≈ 860η) for the top curve to 30 mm (≈ 1290η) for 

the bottom curve.

Figure 4: (�∆(t)2/3� − ∆2/3
0 ) scaled by ∆2/3

0 and compensated by t/t0. The data are plotted

against t/t0; a plateau denotes Richardson-Obukhov-like scaling. The initial separation in-

creases from 1 mm (≈ 43η) for the top curve to 5 mm (≈ 215η) for the bottom curve, and

(TL/t0) is of order 10. The inset shows the same quantity plotted against t/t0 for larger initial

separations, ranging from 20 mm (≈ 860η) for the top curve to 30 mm (≈ 1290η) for the bottom

curve.
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