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Abstract. We report measurements of the second-order Lagrangian structure
function and the Lagrangian velocity spectrum in an intensely turbulent laboratory
flow. We find that the asymmetries of the large-scale flow are reflected in the
small-scale statistics. In addition, we present new measurements of the Lagrangian
structure function scaling constant C0, which is of central importance to stochastic
turbulence models as well as to the understanding of turbulent pair dispersion and
scalar mixing. The scaling of C0 with the turbulence level is also investigated,
and found to be in agreement with an existing model.

Turbulence governs the vast majority of fluid flows in nature and in industrial applications,
including the dynamics of weather systems and clouds, the spread of odour plumes and pollutants,
and mixing in chemical reactors. Despite the importance of turbulence, however, our fundamental
understanding of the subject remains poor. Indeed, Feynman called turbulence one of the last
great unsolved problems of classical physics [1].

Due to the complexity of the fluid equations of motion, we are forced to turn to
phenomenological modelling to gain insight into the behaviour of turbulent flows. Statistical
turbulence modelling has been dominated by the ideas of Kolmogorov [2], whose 1941
hypotheses have so influenced the field that they are simply known as the ‘K41’ model.
Taken together, the K41 hypotheses assume that, in intense turbulence and well away from
any boundaries or singularities, the statistics of turbulent flow should be universal at length
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Figure 1. Sketch of the experimental apparatus. The trajectories of tracer particles
were recorded by three high-speed cameras in a 5 × 5 × 5 cm3 subvolume in the
centre of the tank. The tracers were illuminated by two pulsed Nd :YAG lasers
with a combined power of roughly 150 W. The cameras were arranged in a single
plane in the forward scattering direction from the lasers with an angular separation
of roughly 45◦. The discs rotated about the z -axis.

and timescales that are small compared with the injection of energy into the flow. If these
small-scale statistics are to be universal, they must be independent of the large-scale flow
structure. In particular, K41 predicts that at small scales the turbulence should ‘forget’
any preferred directions of the large-scale flow and that the small-scale fluctuations should
be statistically homogeneous and isotropic. Models and simulations of turbulence therefore
commonly assume isotropic flow. Real flows, however, are never homogeneous and isotropic at
large scales. Careful study of the effects of large-scale anisotropy on the small-scale turbulent
fluctuations is therefore very important for understanding the behaviour of turbulent flows in
nature. In addition, such study is necessary in order to relate current turbulence theory, modelling,
and simulation to practical applications.

We have investigated the K41 hypothesis of local isotropy in an optical three-dimensional
(3D) particle tracking experiment. Our experimental facility consists of a closed cylindrical
chamber where turbulence is generated between counter-rotating discs, as sketched in figure 1.
The tank has a diameter of 48.3 cm, and the discs are separated by 43.9 cm. The flow is seeded
with polystyrene tracer particles with a diameter of 25 µm and a density 1.06 times that of water,
which have been shown to act as passive tracers in this flow [3]. The particles are illuminated
with two pulsed Nd :YAG lasers with a combined power of roughly 150 W, and their motion
is followed using three Phantom v7.1 CMOS cameras from Vision Research. These cameras
are capable of recording 27 000 images per second at a resolution of 256 × 256 pixels. Tracer
particle tracks are found from the image sequences using particle tracking algorithms [4], and
their velocities are calculated by convolving the particle tracks with a Gaussian smoothing and
differentiating kernel [5].
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Because of the cylindrical symmetry of our apparatus, the large-scale flow is axisymmetric.
We investigate the effects of this large-scale anisotropy in the context of the variance of the
temporal increments of the turbulent velocity δui(τ) = ui(t + τ) − ui(t), known as the second-
order Lagrangian structure function DL

ij(τ). Axisymmetric turbulence has been the subject of
prior theoretical work [6]–[8], but has not yielded any experimentally verifiable predictions
similar to those made by the K41 model. K41 theory predicts that the structure function should
scale as DL

ij(τ) = 〈δui(τ)δuj(τ)〉 = C0ετδij in the so-called inertial range where the only relevant
flow parameter is the rate of energy dissipation per unit mass ε. According to K41, the structure
function should be isotropic and C0 should have a universal value for all turbulent flows. It
is an important parameter in stochastic models of turbulent transport and dispersion [9]–[11]
and is, remarkably, also connected both to the Richardson constant governing the separation
of fluid element pairs, assuming that the covariance of the relative acceleration of the pair is
stationary, and to the structure functions of the fluctuations of a scalar field passively advected by
the turbulence [12]. Previously measured values of C0 range from 2.1 to 7.0 [13], in part because
Lagrangian experiments, where the trajectories of individual fluid particles are followed, have
historically been very difficult. Here, we report new, better-resolved measurements of C0.

Despite recent experimental and numerical studies of Lagrangian turbulence [3], [14]–[18],
most of our understanding of turbulence still comes from Eulerian measurements, where probes
are fixed with respect to some laboratory reference frame. For example, while the value of the
Lagrangian constant C0 is very uncertain, the corresponding Eulerian constant C2 has a well-
measured value of 2.13 ± 0.22 [19]. Lagrangian statistics also seem to require higher turbulence
levels to observe K41 scaling [18]. The turbulence level is quantified by the Reynolds number,
which measures the relative importance of the nonlinear inertial terms and the linear viscous
terms in the Navier–Stokes equations. In the present work, we report the Reynolds number based
on the Taylor microscale, Rλ ≡ u′λ/ν, where u′ is the root mean square velocity of the turbulent
fluctuations and ν is the kinematic viscosity. λ, the Taylor microscale, is defined to be

√
15u′2ν/ε.

To define our Reynolds numbers, we measure ε from the second- and third-order Eulerian
structure functions, which give us the spherically averaged dissipation rate. Since, as mentioned
above, the large-scale velocity is different in the axial direction and the radial directions,
we define the Reynolds number based on the radial root mean square velocity. Yeung [18]
has suggested that a Reynolds number of at least Rλ = 600–700 is required to observe K41
scaling of Lagrangian quantities, a range difficult to achieve both in experiments and simulations.
In this work, we report measurements at Reynolds numbers up to Rλ = 815.

Figure 2 shows a single component of our measured Lagrangian structure functions
compensated by τε at Rλ = 200, 350, and 815. Plotting the structure function in this fashion
should display a plateau in the inertial range with value C0. A well-developed inertial range
requires a large scale separation between the Kolmogorov timescale τη and the Lagrangian
integral time TL. TL is usually measured from the Lagrangian velocity autocorrelation function,
which decays approximately exponentially. We show the three diagonal components of the
autocorrelation tensor R(τ) measured at Rλ = 815 in figure 3 along with fits of the function

R(τ) = TLe−τ/TL − T2e−τ/T2

TL − T2
(1)

proposed by Sawford [10] to account for the finite slope of the autocorrelation function at the
origin. T2 here is related to the Kolmogorov time τη. We fit (1) between 0 and 40τη, and find an
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Figure 2. Compensated Lagrangian structure functions at Rλ = 200 (�), 350 (•)
and 815 (�). The structure functions have been scaled by τε so that they should
show a plateau in the inertial range. The scaling range is short at all Reynolds
numbers shown, but grows larger as the Reynolds number increases.
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Figure 3. Lagrangian velocity autocorrelation function measured at Rλ = 815.
The red and green symbols show the two radial velocity components, and the blue
symbols show the axial velocity component. The corresponding solid lines are
fits of (1). In a finite measurement volume like ours, the velocity autocorrelation
function is heavily biased.

integral time of approximately 40τη for each component. The autocorrelation function, however,
is known to be heavily biased in a finite measurement volume like ours since it mixes effects at all
scales [20, 21], and will give an integral time that is too short. We therefore also report the eddy
turnover time TE, estimated as TE = L/u′ where L is the integral length scale. At Rλ = 815 in
our experiment, TE = 208 τη, so that TL/TE ≈ 0.2. This ratio is roughly independent of Reynolds
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Figure 4. The xx (�), yy (•) and zz (�) components of the compensated
Lagrangian structure function at Rλ = 815. The other symbols show the off-
diagonal components. The time axis has been normalized by the Kolmogorov
time. The relative magnitude of the radial and axial components reflects the
anisotropy of our large-scale flow.

number in our experiment. Our scaling ranges are therefore short, but do grow with Reynolds
number.

In figure 4, we focus on the full structure function tensor at Rλ = 815. Two features of
this tensor are particularly noteworthy. We see very short plateau regions for all three diagonal
components of the structure function tensor, consistent with the K41 scaling prediction, though
without a fully developed Lagrangian inertial range. It is clear, however, that this tensor is not
isotropic, contradicting the K41 hypothesis of local isotropy. The zz component, measured in
the axial direction of our cylindrical flow chamber, shows a peak value roughly 25% lower than
that of the xx and yy components, measured in the radial direction. The xx and yy components
are identical within experimental precision, reflecting the axisymmetry of the large-scale flow.
Measuring ε from the Eulerian structure functions conditioned to lie in the axial or radial
directions cannot account for the observed anisotropy in the Lagrangian structure functions.
We note that the peak values of the compensated structure functions occur at very short times,
less than a factor of 10 larger than the Kolmogorov time τη = √

ν/ε, the characteristic timescale
of the fastest turbulent motion.

We have also measured the anisotropy present in the Lagrangian velocity spectrum, defined
as the Fourier transform of the Lagrangian velocity autocorrelation function.Though the spectrum
and the structure function are related, they can contain different information [22]. Again using
K41 theory, the spectrum should scale as EL

ij(ω) = B0εω
−2δij, and like the structure function

should be isotropic. The constant B0 is related to C0 simply by a factor of π : C0 = πB0 [23].
The anisotropy we see in the structure function is also present in the spectrum. Figure 5

shows the diagonal components of the spectrum for Rλ = 690 compensated by εω−2, where again
a plateau corresponds to K41 scaling. The anisotropy between the axial and radial components
of the spectrum is clear. While our spectral data are not as well resolved as our structure function
data due to the scarcity of very long particle tracks observed in our experiment, we can still
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Figure 5. Compensated Lagrangian velocity spectra at Rλ = 690 in the
x-direction (�), y-direction (•) and z-direction (�). By scaling the spectra by
εω−2, we expect to see a plateau in the inertial range with value B0. The frequency
axis has been scaled by the Kolmogorov frequency. As above, we note that the
difference in magnitude between the radial spectra and the axial spectrum reflects
the large-scale structure of our flow. The bump in the spectrum at high frequencies
is due to noise in the measurements, but the inertial range behaviour is unaffected.

measure both the anisotropy and the scaling constant B0. The bump in the spectrum at high
frequencies is due to noise in the measurements; by adjusting the width of our smoothing and
differentiating filter, however, we have found that the inertial range values of the spectrum are
not affected by the noise.

Persistent anisotropy has been noted previously in Eulerian studies of homogeneous shear
flows [24, 25] and in the context of the SO(3) symmetry group [26, 27], as well as in Lagrangian
studies of fluid particle acceleration [3, 15] but has not been investigated in the context of the
statistics of the Lagrangian velocity. Indeed, only a small number of studies of the Lagrangian
structure function and spectrum have been conducted. These experiments, however, suffered
both from large experimental uncertainties and from large Lagrangian tracers that may have
averaged out the smallest scales of the flow. Hanna [28] measured the Lagrangian spectra in the
atmospheric boundary layer using neutrally buoyant balloons, but acknowledged significant
(as much as 50%) uncertainty in the measurements, reporting a value of 4 ± 2 for C0.
Lien et al [29] measured 1D spectra using large floaters (roughly 1 m in scale) in the oceanic
boundary layer. Due to the considerable noise in their measurements, they were only able
to estimate that the value of C0 lies somewhere between 3.1 and 6.2. Mordant et al [16]
measured the radial Lagrangian structure function in a 1D laboratory acoustic particle tracking
experiment in a counter-rotating disc device similar to ours. While their tracer particles were
significantly smaller than those of Hanna or Lien et al, they were still at least a factor of 10
larger than the Kolmogorov length scale η = (ν3/ε)1/4, the scale of the smallest turbulent motion
in the flow. In contrast, our particles are smaller than η for all Reynolds numbers investigated.
Mordant et al [16] obtained a maximum value of 4 for C0, which may be depressed due to the
filtering effect of their tracer particles. Lien and D’Asaro [13] have estimated a value of 5.5 for
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Figure 6. Measurements of C0 from the Lagrangian structure function tensor for
the xx component (�), yy component (•) and zz component (�) as a function of
Reynolds number. The zz component C0 values are smaller than those measured
for the two radial components, presumably due to the large-scale axisymmetry
of our flow. C0 is observed to increase weakly with Reynolds number. The solid
lines are fits of Sawford’s model (2) for the Reynolds number dependence of
C0 [10]. We note that due to the time resolution in the Rλ = 500 data run, we
encountered large uncertainties and were not able to measure a C0 value from the
xx component. We have therefore not included the Rλ = 500 data points in the
fits of (2).

πB0 from the spectral data published by Mordant et al [16]. None of these three experiments
addressed the anisotropy of C0.

Lagrangian structure functions and spectra have also been investigated in direct numerical
simulations (DNS) of the Navier–Stokes equations [17, 30]. These studies have provided a great
deal of insight into Lagrangian turbulence and into the low Reynolds number scaling behaviour
of these quantities. For instance, by fitting his stochastic model to low Reynolds number DNS,
Sawford [10] has estimated that C0 = 7 at high Reynolds numbers. DNS cannot, however, be
seen as a replacement for experimental results. In addition, DNS is usually performed assuming
homogeneous, isotropic flow, and so does not generally address issues of anisotropy. A review
of published values for C0, including those from DNS, experiments, and theoretical results, is
given by Lien and D’Asaro [13].

The anisotropy we find between the radial and axial components of both the structure
function and the spectrum persists at all Reynolds numbers measured. In figure 6, we show
values of C0 determined from the plateaux of the compensated structure functions as a function
of Rλ. For both the axial and radial structure functions, we also observe that C0 increases weakly
with Reynolds number. It is encouraging to note that figure 6 shows that our C0 estimates seem to
saturate as the Reynolds number increases; this result suggests that we can measure true inertial
range behaviour at high Reynolds number despite the very short scaling range of the structure
function, as can also be inferred from figure 2. To model this Reynolds number dependence of
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Figure 7. Measurements from the Lagrangian spectra for the x-direction (�),
y-direction (•) and z-direction (�). The solid lines are again fits of (2). Despite the
larger degree of scatter in the data, we find good agreement with C0 as calculated
directly from the structure functions. Again, we have not included the Rλ = 500
data point in the fits.

C0, Sawford [10] has proposed that

C0 = C∞
0

1 + AR−1.64
λ

, (2)

where C∞
0 is the asymptotic value of C0 at infinite Reynolds number. Sawford suggested that

A ≈ 365, and we find values of A of the same order. Fits of this function to our C0 data are shown
in figure 6. We find that C∞

0 = 6.2 ± 0.3 for the radial structure functions and C∞
0 = 5.0 ± 0.4

for the axial structure function.
Figure 7 shows our measurements of πB0 = C0 as a function of Reynolds number. It is clear

that our measurements of B0 are significantly more uncertain than those of C0 from the structure
functions. Nevertheless, when we fit (2) to the πB0 data, we find agreement with the values
of C∞

0 found above. For the radial spectral components, we find πB∞
0 = 6.3 ± 0.4, while for

the axial component we find πB∞
0 = 4.7 ± 0.4.

We observe that the Reynolds number dependence of B0 appears to be stronger than that
of C0 from our fits of (2). This is contrary to the prediction of Lien and D’Asaro [13], who
suggested that B0 has the weaker Reynolds number dependence of the two constants. The scatter
seen in figure 7 is most probably not due to Reynolds number effects, but merely to the scarcity
of long tracks in our experiment and the corresponding uncertainty in the low frequencies of the
spectrum. The number of long tracks observed is independent of Reynolds number.

Our measurements of C0 and πB0 remain anisotropic even at the highest Reynolds number
investigated. In figure 8, we plot the ratio of the radial measurements to the axial measurements.
The anisotropy drops weakly with Reynolds number, but the decrease is very slow and the
anisotropy remains strong even at the highest Reynolds number measured.

Taken together, our results suggest that any symmetries (or lack thereof) present at the large
scales of the flow will also be reflected in the small-scale turbulent fluctuations. Clearly, therefore,
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Figure 8. The ratio of the radial to the axial measurements of C0 as a function
of Reynolds number from both the structure function (•) and the spectrum (�).
While the anisotropy decreases weakly with increasing Reynolds number, the
measurements remain far from isotropic even at the highest Reynolds numbers
measured.

great care must be exercised when applying the results of isotropic turbulence theory to real
experimental, industrial and natural flows. For instance, any climate or pollutant transport models
must take the significant anisotropies present in the atmosphere into account. The significant
difference between the scaling constants measured in the radial and axial directions reflects
the large-scale axisymmetry in our flow. We do, however, see K41 scaling ranges for both the
Lagrangian structure function and spectrum, suggesting that while our results contradict the K41
hypothesis of local isotropy, the K41 scaling hypotheses are fulfilled.

In summary, we have investigated the effects of large-scale anisotropy on the Lagrangian
characteristics of small-scale turbulence. We find that the axisymmetry of our large-scale flow is
also present in the small-scale fluctuations as measured by the Lagrangian second-order structure
function and velocity spectrum, in contrast with Kolmogorov’s hypothesis of local isotropy [2].
We have also measured the scaling constants for both the structure function and the spectrum.
Using Sawford’s model [10], we have extrapolated our results to the limit of infinite Reynolds
number and found that C∞

0 = 6.2 ± 0.3 and πB∞
0 = 6.3 ± 0.4 for the radial components and

that C∞
0 = 5.0 ± 0.4 and πB∞

0 = 4.7 ± 0.4 for the axial component in our swirling flow. It is
our hope that these new measurements of scaling constants in an anisotropic flow will shed light
on the nature of Lagrangian turbulence and will lead to improved models with more applicability
to real flows.
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