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Abstract. We report measurements of the spreading rate of pairs of tracer
particles in an intensely turbulent laboratory water flow. We compare our
measurements of this turbulent relative dispersion with the longstanding work
of Richardson and Batchelor, and find excellent agreement with Batchelor’s
predictions. The distance neighbour function, the probability density function
of the relative dispersion, is measured and compared with existing models. We
also investigate the recently proposed exit time analysis of relative dispersion.

4 Author to whom any correspondence should be addressed.

New Journal of Physics 8 (2006) 109 Pll: S1367-2630(06)22751-4
1367-2630/06/010109+23%$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


mailto:E-mail: nto2@cornell.edu
http://www.njp.org/

2 Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents
1. Introduction 2
2. Experimental details 3
2.1. Lagrangian particle tracking. . . . . . . . .. .. ... Lo L. 3
2.2, Imaging System . . . . . . . .. e e e e e e e e e e 5
2.3. Calibration. . . . . . . . . e e e e e 6
2.4. Experimental parameters . . . . . . . .. ..o 7
3. Turbulent relative dispersion 8
4. Higher-order statistics 11
5. Distance neighbour function 14
6. Fixed-scale statistics 16
7. Conclusions 21
Acknowledgments 22
References 22

1. Introduction

Fluid flows in nature or in industry are rarely laminar; much more often, they are turbulent.
Turbulent flows are, however, very difficult to analyse. We have known the Navier—Stokes
equations that govern fluid flow for well over a century, but we have made little progress in
using them to understand turbulence. These difficulties combined with its prevalence in nature
led Feynman to call turbulence one of the greatest unsolved problems in physics [1].

The Navier—Stokes equations are very difficult to solve directly on the computer for very
intense turbulence or complex boundary conditions, since turbulence is typified by dynamics over
a huge range of relevant length and timescales. Researchers therefore commonly turn instead to
phenomenological statistical models. The most common and powerful of these is Kolmogorov’s
1941 scaling theory [2], which predicts scaling laws for many different statistical quantities in
turbulent flow.

Kolmogorov distinguished three regimes of turbulence. At large length and time scales,
energy is transferred from the forcing of the flow into the turbulence. At these scales, larger than
the correlation length L and correlation time 7; of the turbulent velocity field, the turbulence
statistics are expected to depend on the exact forcing mechanism and geometry of the flow.
For very intense turbulence, Kolmogorov broke the smaller length and time scales into two
regimes. At intermediate scales, he suggested that turbulence statistics should have a universal
form independent of the large-scale flow, and that the only relevant flow parameter should be the
rate of turbulent energy dissipation per unit mass €. This regime is known as the inertial range.
At small enough scales, however, molecular viscosity should begin to play a role. Below the
Kolmogorov length and time scales 7 and t,, defined as the scales at which the viscous forces
balance the inertial forces, Kolmogorov proposed that turbulence statistics will have different
universal forms that depend on both € and the kinematic viscosity v.

Kolmogorov’s model is only expected to be valid for very intense turbulence, typified by
large values of the Reynolds number. Defined as Re = uL /v, where u is the root mean square
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turbulent velocity, the Reynolds number measures the ratio of inertial and viscous forces. In this
work, we report the Reynolds number based on the Taylor microscale, R, = +/15Re.

Most of our knowledge of turbulence comes from so-called Eulerian measurements, made at
points fixed with respect to some laboratory reference frame. In recent years, however, Lagrangian
measurements that follow the motion of individual fluid elements have become possible. A
central component of the Lagrangian description of turbulence is the relative motion of pairs
of fluid elements. Termed turbulent relative dispersion, the spreading of fluid element pairs is
the fundamental mechanism underlying all turbulent mixing and transport. Therefore, without
understanding turbulent relative dispersion, we cannot hope to have a full understanding of
problems as diverse as pollutant or bioagent transport in the atmosphere, the growth rate of water
droplets in warm clouds, or the mixing of fuel in a combustion engine.

Researchers have proposed many models of turbulent relative dispersion, beginning with
Richardson’s work in the 1920s [3]. Due to the difficulty of Lagrangian measurements, however,
there have been little experimental data that can be used to test these models. We have measured
the spreading rates of passive tracer particles in an intensely turbulent laboratory water flow
(Reynolds numbers up to R; = 815). We have previously reported the observation of a scaling
range consistent with Batchelor’s predictions [4]; here, we apply several alternative models of
turbulent relative dispersion to our data.

In section 2, we describe our experimental setup and particle tracking algorithms. We discuss
the traditional Richardson and Batchelor models of relative dispersion in section 3. In section 4,
we discuss possible higher-order corrections to these models involving the relative velocity and
acceleration of the particles. Section 5 describes our measurements of the probability density
function (PDF) of turbulent relative dispersion, commonly known as the distance neighbour
function. Finally, in section 6, we investigate the recently proposed exit time analysis for relative
dispersion.

2. Experimental details

We generated turbulence by counter-rotating two baffled discs in a closed plexiglass cylindrical
chamber containing 120 litres of water, described in detail previously [5, 6]. While this flow is
both anisotropic and inhomogeneous, it can be used to achieve very high Reynolds numbers
in a relatively small amount of laboratory space. In addition, the size of the apparatus makes
it well-suited to Lagrangian measurements; in wind tunnels or other configurations with
strong mean flows, it is significantly more difficult to follow tracer particles for long periods of
time [7].

We here describe the Lagrangian particle tracking algorithms we use (subsection 2.1), the
optical setup and cameras (subsection 2.2), and the calibration procedure (subsection 2.3), and
finally show some of the parameters of our experiments (subsection 2.4).

2.1. Lagrangian particle tracking

Particle tracking is the most robust Lagrangian measurement technique in use in fluid mechanics
today. In this technique, the flow is seeded with very small tracer particles that behave
approximately as fluid elements. These tracers are typically imaged optically, although acoustic
systems have also been developed [8]; acoustic systems, however, directly measure the tracer
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velocities, and the velocity trajectories must then be integrated to give the tracer positions.
Optical three-dimensional Lagrangian particle tracking can broadly be broken into three steps.
First, the particle images must be identified from the recorded camera frames and their centres
must be located, ideally with sub-pixel resolution. Next, the two-dimensional coordinates of the
particle centres found from each camera must be correlated to produce three-dimensional particle
positions. This stereomatching step has the added benefit of filtering out spurious particles, since
they will not match images from the other cameras. Finally, the three-dimensional coordinates
of the particles must be followed in time, generating particle tracks. An analysis of Lagrangian
particle tracking algorithms was given by Ouellette et al [9]; we here briefly describe the particular
methods used in the experiments reported in this work.

Particle images were identified by assuming that every local intensity maximum above a
small threshold corresponded to a particle. The particle centres were then determined by fitting
two one-dimensional Gaussians to the particle image, one horizontally and one vertically. In
practice, this requires only the intensities of the local maximum pixel and the pixels directly
adjacent to it horizontally and vertically. Labelling the horizontal coordinates x, x, and x3,
where x, is the coordinate of the local maximum, we can solve for the coordinate x. of the centre
of the particle analytically, obtaining

_ l(x% —x)In(lL/ ) — (x3 — x3) In(1, /1)
2 (xy —x)In(h/ ;) — (x2 — x3) In(1; /)’

(D

Xe

where [, I, and I; are the pixel intensities. The vertical coordinate of the particle centre is defined
analogously. This method provides the coordinates of the particle centres with an accuracy of 0.1
pixels or better [9], as well as being efficient: since the cameras are digital, all possible logarithms
needed for (1) can be precomputed and stored.

After the locations of the particle centres are determined in the images from each camera, the
sets of two-dimensional particle coordinates must be correlated to generate three-dimensional
particle images. Since the tracers have no distinguishing characteristics, the only information
that can be used to match the particles is the photogrammetric condition that, for each camera,
the camera projective centre, the particle coordinates on the image plane, and the particle
coordinates in the laboratory frame must be collinear [10]. The stereomatching algorithm we
use is straightforward. Consider a particle image p; on one detector. We project a line from the
perspective centre of the camera, determined by calibration of the system, through p;,. We then
in turn project this line onto the image planes of the other cameras. Particle images on these
images planes that fall within a small tolerance are considered possible matches to p;. In this
fashion, a list of possible matches for p; is constructed for every other camera in the system. This
process is then repeated for every particle image on every detector. The lists are then checked
for consistency, and the three-dimensional coordinates are found.

Once the three-dimensional coordinates have been determined, the particles must be tracked
in time. We use a four-frame predictive algorithm to solve the particle tracking problem. Using
the position of a particle in frames n and n — 1, we can estimate its velocity and thereby its
probable position in frame n + 1. We then investigate all particles in a small volume around the
estimate in frame n + 1. For each of these particles, we estimate both a new velocity and an
acceleration, and predict a position in frame n + 2. To extend the track, we choose the particle in
frame n + 1 that produced an estimate closest to a real particle in frame n + 2. We have previously
shown that this algorithm is both robust and accurate even in intensely turbulent flow [9].
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2.2. Imaging system

Optically resolving particle motions in intense turbulence requires an imaging system with a
very high temporal resolution. For efficient and accurate particle tracking, such a system must
over-resolve the Kolmogorov timescale 7, = /v/€, the smallest turbulent timescale, especially
when time derivatives of the particle motion are desired. 7, is typically very short; for example, in
our water flow at R, = 815, the highest Reynolds number reported here, 7, = 0.544 ms. Making
at least ten measurements per 7, thus corresponds to a minimum imaging rate of 18000 frames
per second; an even faster camera is required to make very accurate measurements. Previously,
due to the lack of commercial cameras capable of recording images at these speeds, we adapted
the silicon strip detectors used in the vertex detectors of high-energy particle accelerators for
use in Lagrangian particle tracking [6, 11, 12]. These strip detectors, however, have proved to be
unsuitable for measuring multiple particles simultaneously. For the work presented here, we have
therefore used commercial high-speed cameras. Recent advances in imaging technology have led
to commercial cameras with significantly higher imaging rates than were previously available.
We have used the Phantom v7.1 CMOS camera from Vision Research, Inc., which is capable of
recording images at a rate of 27 000 frames per second at a resolution of 256 x 256 pixels. Since
these cameras have a two-dimensional sensor, as opposed to the one-dimensional strip detectors,
we can use them to record the trajectories of several hundred particles simultaneously [9]. These
particle tracks can then be used to study multiparticle statistics such as the relative dispersion
discussed here.

Just as the imaging rate must be faster than the Kolmogorov timescale for accurate
measurements, so must the tracer particle size be smaller than the corresponding length scale
in order to ensure that the tracer behaves just like a real fluid element. The Kolmogorov length
scale n = (v*/€)!/* is the smallest turbulent length scale; the flow at scales smaller than 7 is
smooth and laminar. We use transparent polystyrene microspheres with a diameter of 25 um and
a density 1.06 times that of water.> These particles are smaller than or comparable to 7 for all
the Reynolds numbers reported in this work (see tablel), and have previously been shown to act
as passive tracers in this flow [6].

A sketch of our experimental apparatus and optical setup is shown in figure 1. We used three
Phantom cameras arranged in a single plane with an angular separation of roughly 45°. With three
cameras, we were able to measure the full three-dimensional positions of the tracer particles.
While two cameras are in principle sufficient for determining three-dimensional positions, Dracos
[13] has shown that at least three cameras are needed to resolve the ambiguities that can arise
when the images of the particles from each camera are correlated to generate three-dimensional
coordinates. Eight round, flat windows were glued around the centreline of the tank with an
angular separation of 45°; the cameras were aligned with these windows to avoid lensing by the
cylindrical walls of the tank. The cameras were fitted with 60 mm Nikon lenses with an f-number
of 11.

In the experiments presented here, we have used two Q-switched, frequency-doubled
Nd:YAG lasers for illumination. One of the lasers, pumped by flashlamps, had a peak output
power of roughly 60 W, while the other, pumped by diode arrays, had a peak power of roughly
90 W. The Q-switch was used both to pulse the lasers at speeds matched to the camera framerate

5> The Stokes number, defined as St = (1/18)[(pp — ,of)/,of](d/n)z, where p, and p; are the densities of the
particles and the fluid, respectively, and d is the particle diameter, measures the importance of particle inertia.
In these experiments, we have Stokes numbers ranging from 107> to 1073.
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Table 1. Experimental parameters. f denotes the rotation rate of the discs, u/. is
the RMS radial velocity, u’ is the RMS axial velocity, FPS is the camera frame
rate, and 8t is the time between frames. These data were taken with transparent
25 um polystyrene microspheres. We estimate that the uncertainty in € is

roughly 12%.

f(Hz) R, u.(ms™") ul(ms™') e(m?s™) n(um) L/n t,(ms) T./tr, FPS &t (ms) t,/8t
0.30 200 0.039 0.026 7.09 x 107* 192 365 36.8 51 1000 1.00 37
0.43 240 0.056 0.038 2.03 x 1073 146 479 21.3 61 1600 0.625 34
0.62 290 0.083 0.054 6.26 x 1073 111 630 12.3 74 3000 0.333 37
0.90 350 0.121 0.080 2.0l x 1072 84 830 7.11 88 5000 0.200 36
1.29 415 0.181 0.116 6.17 x 1072 64 1090 4.12 106 9000 0O.111 37
1.86 500 0.262 0.169 0.196 49 1433 2.39 127 27000 0.037 65
3.50 690 0.487 0.315 1.24 30 2337 0.897 176 27000 0.037 24
5.00 815 0.669 0.440 3.39 23 3087 0.544 208 27000 0.037 15

Figure 1. Sketch of the experimental setup. The three cameras have an angular
separation of approximately 45° and are arranged in the forward scattering
direction from both lasers.

and to increase their power. The pulse rate of both lasers was controlled by a single frequency
generator. These pulses obviated the need for exact camera synchronization, since the cameras
only recorded particle images while the lasers fired. Additionally, the pulse width of the lasers
set the effective exposure time of the cameras, and was typically on the order of a few hundred
nanoseconds. As sketched in figurel, the cameras were placed in the forward scattering direction
from each laser to maximize the amount of scattered light collected by the camera sensors.

2.3. Calibration

While particle-finding can be performed in the image space of each camera, the stereomatching
and subsequent particle tracking steps require knowledge of the locations of the particle centres
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Figure 2. Images of the calibration mask from each of the three cameras.

in real space. To construct the mapping between image space and real space, we use the camera
calibration method developed by Tsai [14].

This method involves the fitting of nine parameters for each camera. We can map the
coordinates of a particle in our experiment into the reference frame of the camera with a rotation
and a translation, introducing six parameters. We also must find the effective focal length of
the camera. Finally, we allow for possible radial distortion of the images, quantified with a
single parameter, and a possible mismatch in the vertical and horizontal spacing of the pixels
on the detector. To fit these parameters, we mount a regular dot pattern with a known spacing
on a micrometre stage in the water-filled apparatus and image it with each camera at several
locations. Sample images of the calibration mask are shown from each camera in figure 2. The
coordinates of the dots allow the determination of the camera parameters via Tsai’s model [14],
which in turn allow us to find the three-dimensional coordinates of the tracer particles.

2.4. Experimental parameters

The parameters of our experiments are shown in table 1. Velocities were calculated from the
particle tracks by convolution with a Gaussian smoothing and differentiating kernel as described
by Mordant et al [15]. The energy dissipation rate € was measured from the Eulerian second-order
velocity structure function. Defining the Eulerian velocity increment as du(r) = u(x + r) — u(x),
the structure function is given by D;.Ej = (8u;(r)du ;(r)). As is common, we split the structure
function into a longitudinal component D;; measured along the separation direction and a
transverse component Dyy measured orthogonal to r. In the inertial range,

Dy(r) = Cy(er)*?, (2)
and

Dnn = 5Ca(er)?, 3)
where C; is a constant with a well-known value of 2.13 4= 0.22 [16]. By measuring the structure

functions, we have determined € [17]. The other parameters in table 1 are found by simple scaling
arguments.
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3. Turbulent relative dispersion

In a turbulent flow, a pair of fluid elements separated by a distance smaller than the integral length
scale L should undergo superdiffusive separation. Once the separation of the pair has grown to the
integral scale, the mean-square separation is again expected to be diffusive, i.e., grow linearly in
time. When the pair separation is smaller than the Kolmogorov scale, the mean-square separation
should grow exponentially [ 18], but when the separation lies in the inertial range we expect power-
law growth rates. Richardson suggested that the mean-square separation should grow as > [3];
subsequently, Obukhov refined Richardson’s ideas [19] using Kolmogorov’s scaling theory [2]
to write

(r’) = get’, (4)

where r is the separation of the pair, € is the energy dissipation rate per unit mass, and g is
termed the Richardson constant. Equation (4) is known as the Richardson—Obukhov law. Despite
significant efforts, there has been no unambiguous observation of the Richardson—Obukhov law,
and estimates of the Richardson constant span a full order of magnitude [18].

The Richardson—Obukhov law is the only choice consistent with Kolmogorov’s scaling
theory [2] when the separation time is considered to be the only relevant parameter. As Batchelor
[4] realized, however, if the initial pair separation r is accounted for, a second scaling law can
be obtained. With rq in the problem, we have four independent parameters ((r(¢)?), ro, ¢, and
€) and only two independent units (length and time). Using the Buckingham m-theorem [20],
it follows that

2
YO _ i), 5)

ro

for some function f, where

o\ 1/3
fo = (r—°> . (6)
€

to, the classical correlation time of an eddy of size ry, is the time for which a particle pair
‘remembers’ its initial separation.

Let us define * = t/1y, and consider the derivative of the mean-square separation with
respect to ¥,

d (r()?) _ 2{ri(t)du; (1)) 7

" 2 2
dt g ry

where du(t*) is the relative velocity of the two fluid elements and summation over repeated
indices is implied. Using the fundamental theorem of calculus, we can rewrite this expression as

d (r(™? 2 . N
@T = % {(ro,-5u,~(t ) +/0 (Ou; (7)du; (1)) dr } . (8)

In his original work, Batchelor set (ry;éu;(t*)) to zero, reasoning that the initial separation and
the relative velocity should be uncorrelated [4]. As we show later, however, this assumption does
not appear to hold for our data, and we have therefore kept this term in our calculations.
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Figure 3. Scale collapse of the mean-square particle separation at R, = 815.
The relative dispersion (|r(f) — ry|?) scaled by (11/3)C,(erg)?? is plotted
for 50 different bins of initial separations, ranging from 0—1 mm (x0—43n) to
49-50 mm (22107-2150n). The solid line is a pure > power law, and is not a fit.
The data collapse on to the #*> law almost perfectly [21].

For t* <1, corresponding to t < ty, the relative velocity changes slowly and we can
approximate

(Sui (1) 8u, (1)) ~ (8u(0)?), 9)

which is equivalent to (8u(r()?), the trace of the second-order Eulerian velocity structure function
tensor. Integrating (8) and grouping terms, we therefore have

(Ie(®) = xol?) = 5 Calerg)™r?, (10)

where C; is again the scaling constant for the second-order Eulerian velocity structure function.
This expression, which we term Batchelor scaling, should hold for ¢ < #y. For t > 1,, the initial
separation should no longer be a relevant parameter, and the particle pair is expected to obey the
Richardson—Obukhov law. Combining Batchelor’s scaling law with the Richardson—Obukhov
law, we can write the evolution of the mean-square pair separation in the inertial range as

X BCy(erg)P, 1< 1,
(e —rol”) = (11)
get’, h <t LTy,

where 7} is the integral timescale.

We have previously reported the observation of a clear Batchelor scaling range at Reynolds
numbers up to R; = 815 [21]. When we plot (|r(f) — ry|?) scaled by Batchelor’s constant
(11/3)C,(ery)??, we see a collapse of the dispersion data for different initial separations on to a t>
power law with unit slope, as illustrated in figure 3 at R; = 815. Plotted in this fashion, with time
nondimensionalized by the Kolmogorov time 7, the data for each initial separation deviates from
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Figure 4. Compensated mean-square pair separation with timescaled by f#,.
Plotted in this way, the data collapse in both space and time [21].
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t 1t
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hl/n

Figure 5. Deviation from Batchelor’s prediction. We define #* to be the time when
the data deviate by more than 5% from Batchelor’s prediction. #*/f, is shown for
eight different Reynolds numbers: R; = 200 (L), 240 (H), 290 (o), 350 (e), 415
(4), 500 (A), 690 (V), and 815 (V).

the Batchelor prediction at a different time. When we scale time instead by Batchelor’s timescale
to = (rj /€)', the data collapse in both space and time. This is shown in figure 4, where the data
is now compensated by (11/3)C,(ery)*3t? to show the quality of the scale collapse. For each
initial separation, the data deviate from Batchelor’s prediction at approximately the same value
of (¢/1y). We define ¢* to be the time when the data deviate by 5% from the Batchelor prediction.
As shown 1n figure 5, t* = (0.071 £ 0.009)¢, for the entire range of Reynolds numbers tested.
Currently, we do not have enough data at very long times to see the scaling behaviour at times
longer than 7#y; we hope to measure this behaviour in the future.
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Figure 6. Batchelor’s original measure of relative dispersion at R, = 815. No
universal behaviour is seen for the different initial separations. Panel (a) shows
the raw dispersion data, while (b) shows an attempt to collapse the data with
Batchelor’s scaling prediction.

As we mentioned above, in Batchelor’s original work [4], he considered the quantity
[(r(£)*) — r3] rather than the (|r(f) —ry|?) we have shown here. The difference between the
two is the correlation between the initial separation and the relative velocity of the pair, which
he assumed to be negligible. This must not be the case, however, since when we compute
[(r(t)*) — r3], as shown in figure 6, we do not find clean, universal scaling behaviour. By the
same token, we do not see clean scaling when we plot (r(#)?) without removing the initial
separation. Similar non-universal behaviour for these quantities is evident in direct numerical
simulations of relative dispersion [22].

We note here that our results are in some sense surprising, given the large-scale
inhomogeneity and anisotropy present in our flow. It appears that the Batchelor > law is therefore
very robust, and should be present in other real-world flows that are not perfectly homogeneous
and isotropic.

4. Higher-order statistics

We have shown in figures 4 and 5 that the mean-square pair separation deviates from the
Batchelor prediction at a universal time of roughly 0.071¢,. This turnover cannot be a transition
to Richardson—Obukhov scaling, since the Richardson constant g is assumed to be positive: the
Richardson—Obukhov regime accelerates the dispersion, while the deviation from the Batchelor
law we have found corresponds to slower dispersion. We have therefore investigated the
possibility that this deviation is a manifestation of higher-order corrections to Batchelor’s law.
Let us consider the Taylor expansion of (|r(f) — ro|?) in time. To third order, this expansion
gives

(Ir(1) = rol?) = (Su(ro) - Su(rg))e® + (Su(ro) - 8a(ro))r’, (12)
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Figure 7. Longitudinal (e) and transverse (V) scaling constants for the Eulerian
mixed velocity—acceleration structure function. The magnitude of the transverse
component shrinks for R; > 500, possibly due to poor resolution of the
acceleration at high Reynolds number. We have therefore plotted these points
using open symbols. Even at these high Reynolds numbers, we note that the
velocity and position statistics should be well-resolved. Error bars were estimated
using the methodology given in [6].

where du and da are the relative velocity and acceleration of the two particles, respectively. The
zero- and first-order terms of the expansion drop out, as they must, and the second-order term is
exactly the Batchelor prediction.

The coefficient of the third-order term is the trace of the Eulerian mixed velocity—
acceleration structure function tensor evaluated at ry. Since ry is in the inertial range, we must
construct the K41 scaling law for this quantity. (Su(r)da(r)) has the same dimensions as the
dissipation rate €, and so should be constant and proportional to € in the inertial range. Recently,
Hill [23], building on earlier work of Mann et al [24], has shown from the Navier—Stokes equations
that

(du(rp) - da(ry)) = —2e€ (13)

in the inertial range, assuming only local homogeneity. We have investigated this velocity—
acceleration structure function, and have found that, as expected, it is constant in the inertial range.
Just as with the Eulerian velocity structure function, we split (éu;(r)da;(r)) into longitudinal and
transverse components, as shown in figure 7 as a function of Reynolds number. Above R; = 500,
the transverse component decreases in magnitude, most likely due to poorer resolution of the
acceleration. The trace of (Su;(r)da;(r)) is near —2 for low Reynolds numbers, as shown in
figure 8, and is nearer to —1.8 for higher Reynolds numbers, since the transverse component is
smaller. We note that it is only the acceleration that is under-resolved at high Reynolds numbers:
the position and velocity data should be accurate. In any case, since (Su;(r)da;(r)) is always
negative, it is conceivable that this term may account for the deviation of the data shown in
figure 4, since it tends to slow the relative dispersion.

We have replotted the data shown in figure 4 in figure 9 and have compared them with the
third-order Taylor expansion discussed above. While the model has the same downward trend in
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is primarily due to the smaller transverse scaling constant. Again, we plot the
high Reynolds number results using open symbols since the acceleration may be
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Figure 9. The same data shown in figure 4 shown with the Batchelor prediction
augmented with the third-order correction (solid line). The new model captures
the trend of the deviation, but is not quantitatively correct.

the compensated plot as the data, it deviates later. In order to bring the model closer to the data,
the trace of (Su(ry) - da(rg)) would have to be roughly five times larger. It is therefore more likely
that the deviation of our data is due to the influence of the large scales, as the relative dispersion
moves into the linear Taylor regime [25]. There is also the possibility that the deviation of our
data is due to a bias caused by our finite measurement volume.
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5. Distance neighbour function

InRichardson’s seminal paper [3], he suggested that turbulent relative dispersion can be described
by a diffusion equation, albeit one where the diffusion constant K(r, ) is a function of space and
time. With the additional assumption that the flow is isotropic, the equation can be reduced to a
single spatial dimension, namely

9 |:r2K(r, ) (14)

dq(r, 1)
H=—— .
ot rZ or

or

q(r, t), which Richardson called the distance neighbour function, represents the spherically
averaged PDF of the relative dispersion. Assuming the boundary conditions g(oco, ) = 0 and
q(r,00) = 0, (14) admits a self-similar solution if we additionally assume the initial condition
q(r, 0) = 4(r), i.e., diffusion from a point source. Under these conditions, Richardson [3] showed

that
429 [143 5, 128772\
qr(r, 1) = ET 7(77(” ) Texp| — 8072) ; (15)

by assuming that K (r, 1) ~ r*3, based on measurements of diffusion constants in systems ranging
from volcanoes and cyclones to molecular diffusion. Subsequently, Batchelor proposed instead
that K(r, 1) ~ 1> [26], leading to

27, —3/2 3 7
qp(r, 1) = <?(r )) exp [—§<r—2>] . (16)

Both of these expressions for the distance neighbour function imply a #* law for (r?); indeed,
any K(r, 1) ~ r®t? that is consistent dimensionally and with K41 leads to (r*) ~ 3 [27].

The two solutions to (14) given above both require that the fluid element pairs were at
the same place at t = 0. We cannot replicate this condition in the laboratory. We can attempt to
approximate it, however, by subtracting the initial separation of each particle pair componentwise
and considering g(Ar, ), where we define Ar = |r — ry|. This approach has the perhaps
unwelcome side effect of treating all pairs in the same fashion, whether they are separating
or coming closer together. Since some pairs will first move closer before separating [28], simply
subtracting the initial pair separation may not capture all the physics of pair separation.

Our measurements of g(Ar, t) are shown in figure 10 for six different initial separations
at R, = 815. For each initial separation, the distance neighbour function is shown for 20
different times ranging from 7, to 20t,. For small initial separations (<40n), the measured
distance neighbour function agrees well with Richardson’s predicted form, while for large initial
separations (>1100n), the data agree well with Batchelor’s form. We show the relative deviation,
defined as the difference between the predicted value and the measured value scaled by the
predicted value, from Richardson’s and Batchelor’s forms, respectively, for the smallest and
largest initial separations considered in figure 11. For intermediate initial separations, the data
lie between the two predictions and undergo a transition between the two laws.

The same qualitative trend is seen at all Reynolds number investigated. We show the distance
neighbour function measured at R, = 200 in figure 12. Again, as the initial separation increases,
the data undergo a transition from Richardson’s prediction to Batchelor’s. g(Ar, 1) is self-similar
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Figure 10. The distance neighbour function for different initial separations at
R; = 815. The red straight line is Richardson’s predicted PDF, while the green
curved line is Batchelor’s. The symbols show the experimental measurements.
Each plot shows a different initial separation; for each initial separation, PDFs
from 20 times ranging from 7, to 207, are shown.

int for all Reynolds numbers measured. We show the deviation from the Richardson and Batchelor
distance neighbour function predictions for the R; = 200 data in figure 13.

This is not the case if we consider g(r, t) without accounting for the nonzero initial separation
of the pair. As shown in figure 14, the raw distance neighbour function is strongly peaked around
the root-mean-square separation for short times. As time increases, g(r, f) spreads out, appearing
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Figure 11. The relative deviation from (a) Richardson’s prediction for the
distance neighbour function, for small initial separations, and (b) Batchelor’s
prediction, for large initial separations, both at R; = 815.

to approach the Batchelor prediction at long times regardless of the initial separation. It remains
unclear whether this approach is more justified for calculating the distance neighbour function
when faced with a real, physical situation where the pairs are not dispersing from a point source
or whether the initial separation should be removed. We also note that our large-scale flow is
neither homogeneous nor isotropic, while standard solutions of the Richardson diffusion equation
assume isotropy.

6. Fixed-scale statistics

As we have shown in section 3, we did not observe the Richardson—Obukhov law in its original
form even at Reynolds numbers as high as R; = 8135; instead, we observed a regime consistent
with Batchelor’s predictions throughout most of our inertial range with initial separations also
lying in the inertial range. This behaviour suggests that a much higher Reynolds number may
be required before the Richardson—Obukhov prediction can be unambiguously observed in its
original form. The appeal of the Richardson—Obukhov law, though, seeing as it should be
universal for all particle pairs with only a single free parameter, has led researchers to introduce
new statistics in the hope that behaviour consistent with it may be found at the moderate Reynolds
numbers reached in experiments and simulations. One such quantity, the average (r*/3), was
shown by Bourgoin er al [21]. Instead of studying different averages of the pair separation
as a function of time, however, one can also study averages of the time it takes for the pair
separation to grow to a particular threshold. These so-called fixed-scale statistics are averaged
over an ensemble of pairs at a fixed spatial scale rather than at a fixed temporal scale as in the
traditional Richardson—Obukhov or Batchelor descriptions of turbulent relative dispersion [29].
Dimensionally, a scaling law such as

(t) = Ge V3?3 (17)
is consistent with the Richardson—Obukhov law.
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Figure 12. The distance neighbour function for different initial separations at
R; = 200. The red line is again Richardson’s PDF, while the green line is
Batchelor’s. The symbols are the experimental measurements. While the data
are much noisier, the same qualitative trends as in the R, = 815 data are evident.
Here, 1 mm = 5n.

The most well-known fixed-scale statistics are the exit time or doubling time statistics
introduced by Artale ef al [30]. In an exit time analysis, one defines a set of thresholds r, for
every particle pair such that

rp :lonr()v (18)
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Figure 15. Average exit times at R, = 815 with p = 1.05. The solid line is an
r2/3 power law for reference. From left to right, the symbols correspond to 1 mm
wide bins of initial separations ranging from 1-2 mm (43-867) to 19-20 mm
(817-860n). The dashed line on the right corresponds to the integral length scale.

where p > 1 is a scale factor. The exit time ¢,(r,) is then defined to be the time it takes for the
separation of the particle pair to grow from r, to r,,;. For the case of p = 2, t,(r,) 1s the time it
takes for the pair to double in size. Exit time statistics have recently been proposed as a powerful
alternative to the traditional analyses of turbulent relative dispersion, and it has been suggested
that they should show ‘true’ inertial range scaling behaviour (i.e., behaviour consistent with the
Richardson—Obukhov law) even at moderate Reynolds numbers [22], [29]-[31].
Dimensionally, (7,(r,)) ~ r**. Without additional assumptions, however, this exit time
analysis cannot be compared with the traditional metrics of relative dispersion. To overcome these
difficulties, Boffetta and Sokolov [31] assumed the Richardson form for the distance neighbour

function and showed that

143 V323
) Y 2/3 (19)

_ (2 ~1
{to(rn)) = ( g1 (89 r

23 "

This expression can be inverted to give an expression for the Richardson constant g in terms of
the ensemble average of the exit times, namely

ST 2 ey 0

143 (p*? = 1)° r?
g =

We have performed an exit time analysis of our data with p = 1.05; p was chosen so that
we could see a long series of data. The results are shown in figure 15 for several different initial
separations at R; = 815. There is no clear collapse of the data for different initial separations,
although the scaling range increases as the initial separation decreases. At larger scales, the
data may be approaching an r2/*> power law as predicted by Boffetta and Sokolov [31], though

these scales are also very close to the integral length scale, beyond which there should be no
superdiffusive behaviour.
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Figure 17. The Richardson constant computed from the exit times with the initial
separation subtracted at R, = 815. No initial-separation-independent plateau is
seen.

Just as we did with the distance neighbour function, we have also attempted to account
for the finite initial separations in our data by subtracting off r, componentwise from the exit
time data. These results are shown in figure 16, again at R; = 815 and with p = 1.05. With
this modification to the model, our results appear similar to those of Biferale ef al [22], who
investigated relative dispersion in a direct numerical simulation of the Navier—Stokes equations.
Though Biferale e al [22] did not remove their initial separations, they considered only initial
separations of less than 20n. With r, that small, initial separation effects may be negligible.
We, however, do not have enough data at initial separations of that scale with which to test this
hypothesis.

Equation (20) can be used to extract the Richardson constant from an exit time analysis,
subject to the assumptions outlined above. We show this mapping in figure 17 for the exit time
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analysis with the initial separations subtracted. Biferale et a/ [22] report that this analysis shows a
plateau in the Richardson constant with a value of g & 0.5. We, however, see different behaviour.
While the data does begin to flatten, there is no universal value of g observed. In addition, the
putative Richardson constant we find is two orders of magnitude smaller than that of Biferale
et al. If we instead plot the Richardson constant without subtracting the initial separation, as
shown in figure 18, no plateau is seen.

The apparent scaling found by Biferale e al may be attributable to the small initial
separations used in their simulations. Here, we have measured initial separations in the inertial
range, since the original Richardson and Batchelor predictions are inertial range theories. For
the separations investigated in our experiments, we do not see a clear scale collapse.

7. Conclusions

We have measured the spreading of pairs of passive tracer particles in an intensely turbulent
water flow, and have tested several models of turbulent relative dispersion. We find no traditional
Richardson—Obukhov scaling, but do find excellent agreement with Batchelor’s predictions that
treat the initial pair separation as an important parameter. We find that Batchelor’s timescale
accurately quantifies the persistence of the Batchelor scaling regime, and that deviations from
the Batchelor law are not due to higher-order corrections. We have shown measurements of
the distance neighbour function, the PDF of relative dispersion, and have found that it appears
to undergo a transition between Richardson’s form and Batchelor’s form when we remove the
initial separation. We have also investigated the recently proposed exit time statistics, and have
found that they do not appear to fit our data accurately. Finally, we note that our experiments were
conducted in a flow that is neither homogeneous nor statistically isotropic. Since our measurement
volume was large enough that some of our data comes nearly an integral scale away from the
point of highest symmetry in our flow, our results appear to be robust to these non-idealities.
Nevertheless, we look forward to experiments conducted in other flows to compare with our
results.
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